Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA

There are 3 main types of wind turbines, their difference lies mainly in their type of rotor, the direction of their axis, and the shape of their blades. For vertical axis, wind turbines are the Darrieus, Giromill, and Savonius. The present project, which aims to simulate the savonius rotor by adapt...

Full description

Autores:
Vega Beleño, Daniela Andrea
Pereira Guerrero, Brayan Daniel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/2578
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/2578
Palabra clave:
Rotor
Savonius
Alabe
NACA
CFD
Rotor
Savonius
Alabe
NACA
CFD
Rights
openAccess
License
Attribution 4.0 International (CC BY 4.0)
id UAntonioN2_7848e6bcca6bd2a9044f232654ef8fb1
oai_identifier_str oai:repositorio.uan.edu.co:123456789/2578
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
spellingShingle Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
Rotor
Savonius
Alabe
NACA
CFD
Rotor
Savonius
Alabe
NACA
CFD
title_short Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_full Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_fullStr Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_full_unstemmed Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
title_sort Simulación de rotores tipo savonius adaptando en sus alabes un perfil NACA
dc.creator.fl_str_mv Vega Beleño, Daniela Andrea
Pereira Guerrero, Brayan Daniel
dc.contributor.advisor.spa.fl_str_mv Fabregas Villegas, Jonathan
Palencia Diaz, Argemiro
dc.contributor.author.spa.fl_str_mv Vega Beleño, Daniela Andrea
Pereira Guerrero, Brayan Daniel
dc.subject.es_ES.fl_str_mv Rotor
Savonius
Alabe
NACA
CFD
topic Rotor
Savonius
Alabe
NACA
CFD
Rotor
Savonius
Alabe
NACA
CFD
dc.subject.keyword.es_ES.fl_str_mv Rotor
Savonius
Alabe
NACA
CFD
description There are 3 main types of wind turbines, their difference lies mainly in their type of rotor, the direction of their axis, and the shape of their blades. For vertical axis, wind turbines are the Darrieus, Giromill, and Savonius. The present project, which aims to simulate the savonius rotor by adapting a NACA profile on its blades. For its execution there will be a CAD design software called SolidWorks® in which the geometry of the selected NACA profile will be outlined and generated to be used in the savonius rotor, after this and with the help of CFD simulation (Fluid Computational Dynamics) in the ANSYS software, its power coefficient is evaluated. Results were obtained from the comparison of the behavior of each rotor according to its power generated, power coefficient and speeds reached, showing that the adaptation of an aerodynamic profile improves the behavior of the rotor as the wind speed increases.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-06-06
dc.date.accessioned.none.fl_str_mv 2021-03-03T20:33:47Z
dc.date.available.none.fl_str_mv 2021-03-03T20:33:47Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/2578
dc.identifier.bibliographicCitation.spa.fl_str_mv Cárdenas, R. D. (2015). Generador eólico como proyecto de intercambio cultural y tecnológico entre Flathead Valley Community College de Montana y el Centro de Automatización Industrial del SENA. Vector, 10, 80–88.
De Lellis, M., Reginatto, R., Saraiva, R., & Trofino, A. (2018). The Betz limit applied to Airborne Wind Energy. Renewable Energy, 127, 32–40. https://doi.org/10.1016/j.renene.2018.04.034
Harpe, S. E., Zohrabi, M., Barkaoui, K., Lozano, L. M., García-Cueto, E., Muñiz, J., Menold, N., Kaczmirek, L., Lenzner, T., Neusar, A., Martin-Raugh, M., Tannenbaum, R. J., Tocci, C. M., Reese, C., Reid, R., Dupaul, G. J., Power, T. J., Anastopoulos, A. D., Rogers-Adkinson, D., … Schillewaert, N. (2015). No Titleبیبیب. ثبثبثب, ث ققثق(2), ثقثقثقثق. https://doi.org/10.5897/ERR2015
Hidalgo, I. R., Rojas, I. O., Riano, A. B., Morales, C. C., & Arias, A. R. (2018). Evaluation of a Geometric Modification in Savonius Rotor Using CFD Evaluación de Modificación Geométrica en Rotor Savonius Usando CFD. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564608
Kothe, L. B., Möller, S. V., & Petry, A. P. (2020). Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, 148, 627–638. https://doi.org/10.1016/j.renene.2019.10.151
Mahmoud, N. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25. https://doi.org/10.1016/j.aej.2012.07.003
Paz, S. P. (2013). El perfil alar y su nomenclatura NACA. Ciencia y Poder Aéreo, 8(1), 26–32. https://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/download/4/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4/106
Pulfer, J., Meza, W., & Mitjans, F. (2017). eólicos a eje vertical y de arrastre diferencial Energy efficiency assessment of four designs of vertical axis and drag differential wind turbines. xx(x), 32.
Saad, A. S., El-Sharkawy, I. I., Ookawara, S., & Ahmed, M. (2020). Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, 209(March). https://doi.org/10.1016/j.enconman.2020.112673
Troncoso, C. (2014). Diseño de un rotor hidrocinético usando perfiles NACA y NREL.
Zemamou, A. M. (2017). ScienceDirect ScienceDirect Review of savonius wind turbine design and performance Review of savonius wind turbine design and performance *, of the feasibility using the temperature function for a district heat demand forecast. Energy Procedia, 141, 383–388. https://doi.org/10.1016/j.egypro.2017.11.047
Cárdenas, R. D. (2015). Generador eólico como proyecto de intercambio cultural y tecnológico entre Flathead Valley Community College de Montana y el Centro de Automatización Industrial del SENA. Vector, 10, 80–88.
De Lellis, M., Reginatto, R., Saraiva, R., & Trofino, A. (2018). The Betz limit applied to Airborne Wind Energy. Renewable Energy, 127, 32–40. https://doi.org/10.1016/j.renene.2018.04.034
Harpe, S. E., Zohrabi, M., Barkaoui, K., Lozano, L. M., García-Cueto, E., Muñiz, J., Menold, N., Kaczmirek, L., Lenzner, T., Neusar, A., Martin-Raugh, M., Tannenbaum, R. J., Tocci, C. M., Reese, C., Reid, R., Dupaul, G. J., Power, T. J., Anastopoulos, A. D., Rogers-Adkinson, D., … Schillewaert, N. (2015). No Titleبیبیب. ثبثبثب, ث ققثق(2), ثقثقثقثق. https://doi.org/10.5897/ERR2015
Hidalgo, I. R., Rojas, I. O., Riano, A. B., Morales, C. C., & Arias, A. R. (2018). Evaluation of a Geometric Modification in Savonius Rotor Using CFD Evaluación de Modificación Geométrica en Rotor Savonius Usando CFD. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564608
Kothe, L. B., Möller, S. V., & Petry, A. P. (2020). Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, 148, 627–638. https://doi.org/10.1016/j.renene.2019.10.151
Mahmoud, N. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25. https://doi.org/10.1016/j.aej.2012.07.003
Paz, S. P. (2013). El perfil alar y su nomenclatura NACA. Ciencia y Poder Aéreo, 8(1), 26–32. https://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/download/4/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4/106
Pulfer, J., Meza, W., & Mitjans, F. (2017). eólicos a eje vertical y de arrastre diferencial Energy efficiency assessment of four designs of vertical axis and drag differential wind turbines. xx(x), 32.
Saad, A. S., El-Sharkawy, I. I., Ookawara, S., & Ahmed, M. (2020). Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, 209(March). https://doi.org/10.1016/j.enconman.2020.112673
Troncoso, C. (2014). Diseño de un rotor hidrocinético usando perfiles NACA y NREL.
Zemamou, A. M. (2017). ScienceDirect ScienceDirect Review of savonius wind turbine design and performance Review of savonius wind turbine design and performance *, of the feasibility using the temperature function for a district heat demand forecast. Energy Procedia, 141, 383–388. https://doi.org/10.1016/j.egypro.2017.11.047
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/2578
identifier_str_mv Cárdenas, R. D. (2015). Generador eólico como proyecto de intercambio cultural y tecnológico entre Flathead Valley Community College de Montana y el Centro de Automatización Industrial del SENA. Vector, 10, 80–88.
De Lellis, M., Reginatto, R., Saraiva, R., & Trofino, A. (2018). The Betz limit applied to Airborne Wind Energy. Renewable Energy, 127, 32–40. https://doi.org/10.1016/j.renene.2018.04.034
Harpe, S. E., Zohrabi, M., Barkaoui, K., Lozano, L. M., García-Cueto, E., Muñiz, J., Menold, N., Kaczmirek, L., Lenzner, T., Neusar, A., Martin-Raugh, M., Tannenbaum, R. J., Tocci, C. M., Reese, C., Reid, R., Dupaul, G. J., Power, T. J., Anastopoulos, A. D., Rogers-Adkinson, D., … Schillewaert, N. (2015). No Titleبیبیب. ثبثبثب, ث ققثق(2), ثقثقثقثق. https://doi.org/10.5897/ERR2015
Hidalgo, I. R., Rojas, I. O., Riano, A. B., Morales, C. C., & Arias, A. R. (2018). Evaluation of a Geometric Modification in Savonius Rotor Using CFD Evaluación de Modificación Geométrica en Rotor Savonius Usando CFD. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564608
Kothe, L. B., Möller, S. V., & Petry, A. P. (2020). Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, 148, 627–638. https://doi.org/10.1016/j.renene.2019.10.151
Mahmoud, N. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25. https://doi.org/10.1016/j.aej.2012.07.003
Paz, S. P. (2013). El perfil alar y su nomenclatura NACA. Ciencia y Poder Aéreo, 8(1), 26–32. https://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/download/4/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4/106
Pulfer, J., Meza, W., & Mitjans, F. (2017). eólicos a eje vertical y de arrastre diferencial Energy efficiency assessment of four designs of vertical axis and drag differential wind turbines. xx(x), 32.
Saad, A. S., El-Sharkawy, I. I., Ookawara, S., & Ahmed, M. (2020). Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, 209(March). https://doi.org/10.1016/j.enconman.2020.112673
Troncoso, C. (2014). Diseño de un rotor hidrocinético usando perfiles NACA y NREL.
Zemamou, A. M. (2017). ScienceDirect ScienceDirect Review of savonius wind turbine design and performance Review of savonius wind turbine design and performance *, of the feasibility using the temperature function for a district heat demand forecast. Energy Procedia, 141, 383–388. https://doi.org/10.1016/j.egypro.2017.11.047
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution 4.0 International (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International (CC BY 4.0)
Acceso abierto
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Puerto Colombia Barranquilla
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/8fc181c1-ea48-4b41-80dd-21868d3295cb/download
https://repositorio.uan.edu.co/bitstreams/2ecfdce5-82f5-4266-828c-8b0480750c3e/download
https://repositorio.uan.edu.co/bitstreams/0d82caa0-2779-4a45-bf8f-958f3b5f05eb/download
https://repositorio.uan.edu.co/bitstreams/f6797b5c-1b5b-4fb5-a3fd-71c74676410b/download
https://repositorio.uan.edu.co/bitstreams/eb0b86fe-a795-4aa2-8c3c-7f3f0a9644a5/download
https://repositorio.uan.edu.co/bitstreams/80382e7c-2d7a-4e00-80e0-77dbef60ad6d/download
https://repositorio.uan.edu.co/bitstreams/ee47bd47-b2f7-4e54-8f4a-4adc088a9a60/download
https://repositorio.uan.edu.co/bitstreams/0f5346d3-649f-4fc8-a9dd-2a9ce0b136c0/download
https://repositorio.uan.edu.co/bitstreams/23cd8e6c-5f97-45c2-a237-1742e216bf65/download
https://repositorio.uan.edu.co/bitstreams/d0cae54a-7efc-4b46-8bf7-5006eb98fdd5/download
https://repositorio.uan.edu.co/bitstreams/5f400979-7f1d-4bb4-aa37-d59b0d6f115e/download
bitstream.checksum.fl_str_mv 2b2ab6ec8a6a222739b9c0e57c635c2e
2e388663398085f69421c9e4c5fcf235
36241483383d6ea75dc3d34ed9d09e22
166858f86f8f7e3ae4c6344722fe15ff
071eaac277eba476a829560559a5a0cb
b2607395df651639ce6a64d07c05703e
5dbe86c1111d64f45ba435df98fdc825
5dbe86c1111d64f45ba435df98fdc825
15fc9b83144c5aca3035fc64687fe317
8fd1f011ea4d52a9a92f331d1428991d
31db2a9e14a60b6b59aa4ad116268dc5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300428908625920
spelling Attribution 4.0 International (CC BY 4.0)Acceso abiertohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fabregas Villegas, JonathanPalencia Diaz, ArgemiroVega Beleño, Daniela AndreaPereira Guerrero, Brayan Daniel2021-03-03T20:33:47Z2021-03-03T20:33:47Z2020-06-06http://repositorio.uan.edu.co/handle/123456789/2578Cárdenas, R. D. (2015). Generador eólico como proyecto de intercambio cultural y tecnológico entre Flathead Valley Community College de Montana y el Centro de Automatización Industrial del SENA. Vector, 10, 80–88.De Lellis, M., Reginatto, R., Saraiva, R., & Trofino, A. (2018). The Betz limit applied to Airborne Wind Energy. Renewable Energy, 127, 32–40. https://doi.org/10.1016/j.renene.2018.04.034Harpe, S. E., Zohrabi, M., Barkaoui, K., Lozano, L. M., García-Cueto, E., Muñiz, J., Menold, N., Kaczmirek, L., Lenzner, T., Neusar, A., Martin-Raugh, M., Tannenbaum, R. J., Tocci, C. M., Reese, C., Reid, R., Dupaul, G. J., Power, T. J., Anastopoulos, A. D., Rogers-Adkinson, D., … Schillewaert, N. (2015). No Titleبیبیب. ثبثبثب, ث ققثق(2), ثقثقثقثق. https://doi.org/10.5897/ERR2015Hidalgo, I. R., Rojas, I. O., Riano, A. B., Morales, C. C., & Arias, A. R. (2018). Evaluation of a Geometric Modification in Savonius Rotor Using CFD Evaluación de Modificación Geométrica en Rotor Savonius Usando CFD. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564608Kothe, L. B., Möller, S. V., & Petry, A. P. (2020). Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, 148, 627–638. https://doi.org/10.1016/j.renene.2019.10.151Mahmoud, N. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25. https://doi.org/10.1016/j.aej.2012.07.003Paz, S. P. (2013). El perfil alar y su nomenclatura NACA. Ciencia y Poder Aéreo, 8(1), 26–32. https://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/download/4/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4/106Pulfer, J., Meza, W., & Mitjans, F. (2017). eólicos a eje vertical y de arrastre diferencial Energy efficiency assessment of four designs of vertical axis and drag differential wind turbines. xx(x), 32.Saad, A. S., El-Sharkawy, I. I., Ookawara, S., & Ahmed, M. (2020). Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, 209(March). https://doi.org/10.1016/j.enconman.2020.112673Troncoso, C. (2014). Diseño de un rotor hidrocinético usando perfiles NACA y NREL.Zemamou, A. M. (2017). ScienceDirect ScienceDirect Review of savonius wind turbine design and performance Review of savonius wind turbine design and performance *, of the feasibility using the temperature function for a district heat demand forecast. Energy Procedia, 141, 383–388. https://doi.org/10.1016/j.egypro.2017.11.047Cárdenas, R. D. (2015). Generador eólico como proyecto de intercambio cultural y tecnológico entre Flathead Valley Community College de Montana y el Centro de Automatización Industrial del SENA. Vector, 10, 80–88.De Lellis, M., Reginatto, R., Saraiva, R., & Trofino, A. (2018). The Betz limit applied to Airborne Wind Energy. Renewable Energy, 127, 32–40. https://doi.org/10.1016/j.renene.2018.04.034Harpe, S. E., Zohrabi, M., Barkaoui, K., Lozano, L. M., García-Cueto, E., Muñiz, J., Menold, N., Kaczmirek, L., Lenzner, T., Neusar, A., Martin-Raugh, M., Tannenbaum, R. J., Tocci, C. M., Reese, C., Reid, R., Dupaul, G. J., Power, T. J., Anastopoulos, A. D., Rogers-Adkinson, D., … Schillewaert, N. (2015). No Titleبیبیب. ثبثبثب, ث ققثق(2), ثقثقثقثق. https://doi.org/10.5897/ERR2015Hidalgo, I. R., Rojas, I. O., Riano, A. B., Morales, C. C., & Arias, A. R. (2018). Evaluation of a Geometric Modification in Savonius Rotor Using CFD Evaluación de Modificación Geométrica en Rotor Savonius Usando CFD. 2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings. https://doi.org/10.1109/ANDESCON.2018.8564608Kothe, L. B., Möller, S. V., & Petry, A. P. (2020). Numerical and experimental study of a helical Savonius wind turbine and a comparison with a two-stage Savonius turbine. Renewable Energy, 148, 627–638. https://doi.org/10.1016/j.renene.2019.10.151Mahmoud, N. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25. https://doi.org/10.1016/j.aej.2012.07.003Paz, S. P. (2013). El perfil alar y su nomenclatura NACA. Ciencia y Poder Aéreo, 8(1), 26–32. https://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/download/4/4%0Ahttps://www.publicacionesfac.com/index.php/cienciaypoderaereo/article/view/4/106Pulfer, J., Meza, W., & Mitjans, F. (2017). eólicos a eje vertical y de arrastre diferencial Energy efficiency assessment of four designs of vertical axis and drag differential wind turbines. xx(x), 32.Saad, A. S., El-Sharkawy, I. I., Ookawara, S., & Ahmed, M. (2020). Performance enhancement of twisted-bladed Savonius vertical axis wind turbines. Energy Conversion and Management, 209(March). https://doi.org/10.1016/j.enconman.2020.112673Troncoso, C. (2014). Diseño de un rotor hidrocinético usando perfiles NACA y NREL.Zemamou, A. M. (2017). ScienceDirect ScienceDirect Review of savonius wind turbine design and performance Review of savonius wind turbine design and performance *, of the feasibility using the temperature function for a district heat demand forecast. Energy Procedia, 141, 383–388. https://doi.org/10.1016/j.egypro.2017.11.047instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/There are 3 main types of wind turbines, their difference lies mainly in their type of rotor, the direction of their axis, and the shape of their blades. For vertical axis, wind turbines are the Darrieus, Giromill, and Savonius. The present project, which aims to simulate the savonius rotor by adapting a NACA profile on its blades. For its execution there will be a CAD design software called SolidWorks® in which the geometry of the selected NACA profile will be outlined and generated to be used in the savonius rotor, after this and with the help of CFD simulation (Fluid Computational Dynamics) in the ANSYS software, its power coefficient is evaluated. Results were obtained from the comparison of the behavior of each rotor according to its power generated, power coefficient and speeds reached, showing that the adaptation of an aerodynamic profile improves the behavior of the rotor as the wind speed increases.Existen 3 principales tipos de aerogeneradores, su diferencia radica principalmente en su tipo de rotor, la dirección de su eje y la forma de sus alabes. Para los aerogeneradores de eje vertical se encuentra los Darrieus, Giromill y Savonius. El presente proyecto, que tiene como finalidad la simulación del rotor tipo savonius adaptando en sus alabes un perfil NACA. Para la ejecución del mismo se contará con un software de diseño CAD llamado SolidWorks® en el cual se delineará y se generará la geometría del perfil NACA seleccionado para ser usado en el rotor savonius, luego de esto y con la ayuda de simulación CFD (Computacional Fluid Dynamics) en el software ANSYS se evalúa el coeficiente de desempeño del mismo. Se obtuvieron resultados de la comparación del comportamiento de cada rotor según su potencia generada, coeficiente de desempeño y velocidades alcanzadas, mostrando que la adaptación de un perfil aerodinámico mejora el comportamiento del rotor conforme se incrementa la velocidad del viento.OtroIngeniero(a) Mecánico(a)Pregrado$13.800.000 (de acuerdo a lo reportado en el anteproyecto): $3.300.000 (Propios) $6.500.000 (UAN) $4.000.000 (Empresa)PresencialspaUniversidad Antonio NariñoIngeniería MecánicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaPuerto Colombia BarranquillaRotorSavoniusAlabeNACACFDRotorSavoniusAlabeNACACFDSimulación de rotores tipo savonius adaptando en sus alabes un perfil NACATrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uan.edu.co/bitstreams/8fc181c1-ea48-4b41-80dd-21868d3295cb/download2b2ab6ec8a6a222739b9c0e57c635c2eMD518LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/2ecfdce5-82f5-4266-828c-8b0480750c3e/download2e388663398085f69421c9e4c5fcf235MD519ORIGINAL2020DanielaAndreaVegaBeleño.pdf2020DanielaAndreaVegaBeleño.pdfapplication/pdf3108376https://repositorio.uan.edu.co/bitstreams/0d82caa0-2779-4a45-bf8f-958f3b5f05eb/download36241483383d6ea75dc3d34ed9d09e22MD5142020Autorización1.pdf2020Autorización1.pdfapplication/pdf446820https://repositorio.uan.edu.co/bitstreams/f6797b5c-1b5b-4fb5-a3fd-71c74676410b/download166858f86f8f7e3ae4c6344722fe15ffMD5152020Autorización2pdf2020Autorización2pdfapplication/pdf369430https://repositorio.uan.edu.co/bitstreams/eb0b86fe-a795-4aa2-8c3c-7f3f0a9644a5/download071eaac277eba476a829560559a5a0cbMD516TEXT2020DanielaAndreaVegaBeleño.pdf.txt2020DanielaAndreaVegaBeleño.pdf.txtExtracted texttext/plain85402https://repositorio.uan.edu.co/bitstreams/80382e7c-2d7a-4e00-80e0-77dbef60ad6d/downloadb2607395df651639ce6a64d07c05703eMD5202020Autorización1.pdf.txt2020Autorización1.pdf.txtExtracted texttext/plain5https://repositorio.uan.edu.co/bitstreams/ee47bd47-b2f7-4e54-8f4a-4adc088a9a60/download5dbe86c1111d64f45ba435df98fdc825MD5222020Autorización2pdf.txt2020Autorización2pdf.txtExtracted texttext/plain5https://repositorio.uan.edu.co/bitstreams/0f5346d3-649f-4fc8-a9dd-2a9ce0b136c0/download5dbe86c1111d64f45ba435df98fdc825MD524THUMBNAIL2020DanielaAndreaVegaBeleño.pdf.jpg2020DanielaAndreaVegaBeleño.pdf.jpgGenerated Thumbnailimage/jpeg8011https://repositorio.uan.edu.co/bitstreams/23cd8e6c-5f97-45c2-a237-1742e216bf65/download15fc9b83144c5aca3035fc64687fe317MD5212020Autorización1.pdf.jpg2020Autorización1.pdf.jpgGenerated Thumbnailimage/jpeg13472https://repositorio.uan.edu.co/bitstreams/d0cae54a-7efc-4b46-8bf7-5006eb98fdd5/download8fd1f011ea4d52a9a92f331d1428991dMD5232020Autorización2pdf.jpg2020Autorización2pdf.jpgGenerated Thumbnailimage/jpeg17138https://repositorio.uan.edu.co/bitstreams/5f400979-7f1d-4bb4-aa37-d59b0d6f115e/download31db2a9e14a60b6b59aa4ad116268dc5MD525123456789/2578oai:repositorio.uan.edu.co:123456789/25782024-10-09 23:20:46.218https://creativecommons.org/licenses/by/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==