Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
The international endocrine association has a consensus of metrics, which are used to assess glycemic variability from continuous glucose monitoring sensor measurements. Glucose monitoring records sample every 5 minutes and are useful for detecting episodes of hypo/hyperglycemia in patients with dia...
- Autores:
-
Ospitia Forero, Miguel Angel
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/9043
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/9043
- Palabra clave:
- Variabilidad glucémica
data gaps
métricas
precisión
análisis
621.52 O839
Glycemic variability
data gaps
metrics
accuracy
analysis
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id |
UAntonioN2_61da9c63e6260705834dfe12718d2b9d |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/9043 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos |
title |
Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos |
spellingShingle |
Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos Variabilidad glucémica data gaps métricas precisión análisis 621.52 O839 Glycemic variability data gaps metrics accuracy analysis |
title_short |
Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos |
title_full |
Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos |
title_fullStr |
Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos |
title_full_unstemmed |
Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos |
title_sort |
Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos |
dc.creator.fl_str_mv |
Ospitia Forero, Miguel Angel |
dc.contributor.advisor.spa.fl_str_mv |
León, Fabian |
dc.contributor.author.spa.fl_str_mv |
Ospitia Forero, Miguel Angel |
dc.subject.es_ES.fl_str_mv |
Variabilidad glucémica data gaps métricas precisión análisis |
topic |
Variabilidad glucémica data gaps métricas precisión análisis 621.52 O839 Glycemic variability data gaps metrics accuracy analysis |
dc.subject.ddc.es_ES.fl_str_mv |
621.52 O839 |
dc.subject.keyword.es_ES.fl_str_mv |
Glycemic variability data gaps metrics accuracy analysis |
description |
The international endocrine association has a consensus of metrics, which are used to assess glycemic variability from continuous glucose monitoring sensor measurements. Glucose monitoring records sample every 5 minutes and are useful for detecting episodes of hypo/hyperglycemia in patients with diabetes. Communication failures, device misuse and other reasons lead to data loss affecting the calculation of metrics. |
publishDate |
2023 |
dc.date.issued.spa.fl_str_mv |
2023-11-23 |
dc.date.accessioned.none.fl_str_mv |
2024-01-24T19:26:20Z |
dc.date.available.none.fl_str_mv |
2024-01-24T19:26:20Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/9043 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Danne, T. (2017, November 10). International Consensus on Use of Continuous Glucose Monitoring. CONTINUOUS GLUCOSE MONITORING AND RISK OF HYPOGLYCEMIA. Fabian Mauricio León Vargas, M. G.-J. (2018). Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 1007-1015. Maira A. García-Jaramillo, F. M. (2019). Impact of sensor-augmented pump therapy with predictive low-glucose management on hypoglycemia and glycemic control in patients with type 1 diabetes mellitus: 1-year follow-up. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2635-2631. Martina. Drecogna, e. a. (2021). Data Gap Modeling in Continuous Glucose Monitoring Sensor Data. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Virtual Conference . MathWorks. (2023). MathWorks. Retrieved from One-sample Kolmogorov-Smirnov test: https://www.mathworks.com/help/stats/kstest.html MathWorks. (2023). MathWorks. Retrieved from Two-sample F-test for equal variances: https://www.mathworks.com/help/stats/vartest2.html Monnier, L. (2016). Toward Defining the Threshold Between Low and High Glucose Variability in Diabetes. CLINICAL CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL RESEARCH, 832–838. Nathan. R. Hil, e. a. (2011). Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. DIABETES TECHNOLOGY & THERAPEUTICS, nº 201 921-928. Peter. A. Baghurst, e. a. (2010). The Minimum Frequency of Glucose Measurements from Which Glycemic Variation Can Be Consistently Assessed. Journal of Diabetes Science and Technology, vol. IV, nº 6, 1382 - 1385. Rodbard, D. (2011). Glycemic Variability: Measurement and Utility in Clinical Medicine and Research—One Viewpoint. DIABETES TECHNOLOGY & THERAPEUTICS,1077-1080. Stephanie. J. Fonda, e. a. (2013). Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. Journal of Diabetes Science and Technology, vol. XII, 88-92. |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/9043 |
identifier_str_mv |
Danne, T. (2017, November 10). International Consensus on Use of Continuous Glucose Monitoring. CONTINUOUS GLUCOSE MONITORING AND RISK OF HYPOGLYCEMIA. Fabian Mauricio León Vargas, M. G.-J. (2018). Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 1007-1015. Maira A. García-Jaramillo, F. M. (2019). Impact of sensor-augmented pump therapy with predictive low-glucose management on hypoglycemia and glycemic control in patients with type 1 diabetes mellitus: 1-year follow-up. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2635-2631. Martina. Drecogna, e. a. (2021). Data Gap Modeling in Continuous Glucose Monitoring Sensor Data. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Virtual Conference . MathWorks. (2023). MathWorks. Retrieved from One-sample Kolmogorov-Smirnov test: https://www.mathworks.com/help/stats/kstest.html MathWorks. (2023). MathWorks. Retrieved from Two-sample F-test for equal variances: https://www.mathworks.com/help/stats/vartest2.html Monnier, L. (2016). Toward Defining the Threshold Between Low and High Glucose Variability in Diabetes. CLINICAL CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL RESEARCH, 832–838. Nathan. R. Hil, e. a. (2011). Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. DIABETES TECHNOLOGY & THERAPEUTICS, nº 201 921-928. Peter. A. Baghurst, e. a. (2010). The Minimum Frequency of Glucose Measurements from Which Glycemic Variation Can Be Consistently Assessed. Journal of Diabetes Science and Technology, vol. IV, nº 6, 1382 - 1385. Rodbard, D. (2011). Glycemic Variability: Measurement and Utility in Clinical Medicine and Research—One Viewpoint. DIABETES TECHNOLOGY & THERAPEUTICS,1077-1080. Stephanie. J. Fonda, e. a. (2013). Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. Journal of Diabetes Science and Technology, vol. XII, 88-92. instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Acceso abierto https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Mecatrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica, Electrónica y Biomédica |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Sur |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/bb3a2c86-38f7-4c0a-8c3c-8dfb60e39663/download https://repositorio.uan.edu.co/bitstreams/2374d8a2-aad7-48d7-ab93-41bba776eb2a/download https://repositorio.uan.edu.co/bitstreams/6e903c70-994f-45d6-998f-d45849c7ee60/download https://repositorio.uan.edu.co/bitstreams/f4f99cb0-14c8-4640-8a13-e6fd2d26946b/download |
bitstream.checksum.fl_str_mv |
928963a09a112945d3bc4287749be87b 49fbee1faf0abc1f581bb33120aeb734 33b7b79b46373043223383e44048208c 9868ccc48a14c8d591352b6eaf7f6239 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300395007115264 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2León, FabianOspitia Forero, Miguel Angel114819158692024-01-24T19:26:20Z2024-01-24T19:26:20Z2023-11-23http://repositorio.uan.edu.co/handle/123456789/9043Danne, T. (2017, November 10). International Consensus on Use of Continuous Glucose Monitoring. CONTINUOUS GLUCOSE MONITORING AND RISK OF HYPOGLYCEMIA.Fabian Mauricio León Vargas, M. G.-J. (2018). Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 1007-1015.Maira A. García-Jaramillo, F. M. (2019). Impact of sensor-augmented pump therapy with predictive low-glucose management on hypoglycemia and glycemic control in patients with type 1 diabetes mellitus: 1-year follow-up. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2635-2631.Martina. Drecogna, e. a. (2021). Data Gap Modeling in Continuous Glucose Monitoring Sensor Data. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Virtual Conference .MathWorks. (2023). MathWorks. Retrieved from One-sample Kolmogorov-Smirnov test: https://www.mathworks.com/help/stats/kstest.htmlMathWorks. (2023). MathWorks. Retrieved from Two-sample F-test for equal variances: https://www.mathworks.com/help/stats/vartest2.htmlMonnier, L. (2016). Toward Defining the Threshold Between Low and High Glucose Variability in Diabetes. CLINICAL CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL RESEARCH, 832–838.Nathan. R. Hil, e. a. (2011). Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. DIABETES TECHNOLOGY & THERAPEUTICS, nº 201 921-928.Peter. A. Baghurst, e. a. (2010). The Minimum Frequency of Glucose Measurements from Which Glycemic Variation Can Be Consistently Assessed. Journal of Diabetes Science and Technology, vol. IV, nº 6, 1382 - 1385.Rodbard, D. (2011). Glycemic Variability: Measurement and Utility in Clinical Medicine and Research—One Viewpoint. DIABETES TECHNOLOGY & THERAPEUTICS,1077-1080.Stephanie. J. Fonda, e. a. (2013). Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. Journal of Diabetes Science and Technology, vol. XII, 88-92.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/The international endocrine association has a consensus of metrics, which are used to assess glycemic variability from continuous glucose monitoring sensor measurements. Glucose monitoring records sample every 5 minutes and are useful for detecting episodes of hypo/hyperglycemia in patients with diabetes. Communication failures, device misuse and other reasons lead to data loss affecting the calculation of metrics.La asociación internacional de endocrinología cuenta con un consenso de métricas, las cuales son usadas para evaluar la variabilidad glucémica a partir de las mediciones de los sensores de monitoreo continuo de glucosa. Los registros de monitorización toman muestras cada 5 minutos y son útiles para la detección de episodios de hipo/hiperglucemia en pacientes con diabetes. Fallas en la comunicación, mal uso del dispositivo y otras razones llevan a pérdidas de datos (‘data gaps’) afectando el cálculo de las métricas.Ingeniero(a) Mecatrónico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoIngeniería MecatrónicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaBogotá - SurVariabilidad glucémicadata gapsmétricasprecisiónanálisis621.52 O839Glycemic variabilitydata gapsmetricsaccuracyanalysisAnálisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datosTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85GeneralORIGINAL2023_MiguelAngelOspitiaForero_Autorización.pdf2023_MiguelAngelOspitiaForero_Autorización.pdfAutorización autoresapplication/pdf613599https://repositorio.uan.edu.co/bitstreams/bb3a2c86-38f7-4c0a-8c3c-8dfb60e39663/download928963a09a112945d3bc4287749be87bMD512023_MiguelAngelOspitiaForero.pdf2023_MiguelAngelOspitiaForero.pdfTrabajo de gradoapplication/pdf1253214https://repositorio.uan.edu.co/bitstreams/2374d8a2-aad7-48d7-ab93-41bba776eb2a/download49fbee1faf0abc1f581bb33120aeb734MD522023_MiguelAngelOspitiaForero_Acta.pdf2023_MiguelAngelOspitiaForero_Acta.pdfActa de sustentaciónapplication/pdf263092https://repositorio.uan.edu.co/bitstreams/6e903c70-994f-45d6-998f-d45849c7ee60/download33b7b79b46373043223383e44048208cMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/f4f99cb0-14c8-4640-8a13-e6fd2d26946b/download9868ccc48a14c8d591352b6eaf7f6239MD54123456789/9043oai:repositorio.uan.edu.co:123456789/90432024-10-09 23:07:17.009https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |