Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos

The international endocrine association has a consensus of metrics, which are used to assess glycemic variability from continuous glucose monitoring sensor measurements. Glucose monitoring records sample every 5 minutes and are useful for detecting episodes of hypo/hyperglycemia in patients with dia...

Full description

Autores:
Ospitia Forero, Miguel Angel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/9043
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/9043
Palabra clave:
Variabilidad glucémica
data gaps
métricas
precisión
análisis
621.52 O839
Glycemic variability
data gaps
metrics
accuracy
analysis
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_61da9c63e6260705834dfe12718d2b9d
oai_identifier_str oai:repositorio.uan.edu.co:123456789/9043
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
title Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
spellingShingle Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
Variabilidad glucémica
data gaps
métricas
precisión
análisis
621.52 O839
Glycemic variability
data gaps
metrics
accuracy
analysis
title_short Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
title_full Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
title_fullStr Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
title_full_unstemmed Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
title_sort Análisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datos
dc.creator.fl_str_mv Ospitia Forero, Miguel Angel
dc.contributor.advisor.spa.fl_str_mv León, Fabian
dc.contributor.author.spa.fl_str_mv Ospitia Forero, Miguel Angel
dc.subject.es_ES.fl_str_mv Variabilidad glucémica
data gaps
métricas
precisión
análisis
topic Variabilidad glucémica
data gaps
métricas
precisión
análisis
621.52 O839
Glycemic variability
data gaps
metrics
accuracy
analysis
dc.subject.ddc.es_ES.fl_str_mv 621.52 O839
dc.subject.keyword.es_ES.fl_str_mv Glycemic variability
data gaps
metrics
accuracy
analysis
description The international endocrine association has a consensus of metrics, which are used to assess glycemic variability from continuous glucose monitoring sensor measurements. Glucose monitoring records sample every 5 minutes and are useful for detecting episodes of hypo/hyperglycemia in patients with diabetes. Communication failures, device misuse and other reasons lead to data loss affecting the calculation of metrics.
publishDate 2023
dc.date.issued.spa.fl_str_mv 2023-11-23
dc.date.accessioned.none.fl_str_mv 2024-01-24T19:26:20Z
dc.date.available.none.fl_str_mv 2024-01-24T19:26:20Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/9043
dc.identifier.bibliographicCitation.spa.fl_str_mv Danne, T. (2017, November 10). International Consensus on Use of Continuous Glucose Monitoring. CONTINUOUS GLUCOSE MONITORING AND RISK OF HYPOGLYCEMIA.
Fabian Mauricio León Vargas, M. G.-J. (2018). Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 1007-1015.
Maira A. García-Jaramillo, F. M. (2019). Impact of sensor-augmented pump therapy with predictive low-glucose management on hypoglycemia and glycemic control in patients with type 1 diabetes mellitus: 1-year follow-up. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2635-2631.
Martina. Drecogna, e. a. (2021). Data Gap Modeling in Continuous Glucose Monitoring Sensor Data. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Virtual Conference .
MathWorks. (2023). MathWorks. Retrieved from One-sample Kolmogorov-Smirnov test: https://www.mathworks.com/help/stats/kstest.html
MathWorks. (2023). MathWorks. Retrieved from Two-sample F-test for equal variances: https://www.mathworks.com/help/stats/vartest2.html
Monnier, L. (2016). Toward Defining the Threshold Between Low and High Glucose Variability in Diabetes. CLINICAL CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL RESEARCH, 832–838.
Nathan. R. Hil, e. a. (2011). Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. DIABETES TECHNOLOGY & THERAPEUTICS, nº 201 921-928.
Peter. A. Baghurst, e. a. (2010). The Minimum Frequency of Glucose Measurements from Which Glycemic Variation Can Be Consistently Assessed. Journal of Diabetes Science and Technology, vol. IV, nº 6, 1382 - 1385.
Rodbard, D. (2011). Glycemic Variability: Measurement and Utility in Clinical Medicine and Research—One Viewpoint. DIABETES TECHNOLOGY & THERAPEUTICS,1077-1080.
Stephanie. J. Fonda, e. a. (2013). Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. Journal of Diabetes Science and Technology, vol. XII, 88-92.
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/9043
identifier_str_mv Danne, T. (2017, November 10). International Consensus on Use of Continuous Glucose Monitoring. CONTINUOUS GLUCOSE MONITORING AND RISK OF HYPOGLYCEMIA.
Fabian Mauricio León Vargas, M. G.-J. (2018). Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 1007-1015.
Maira A. García-Jaramillo, F. M. (2019). Impact of sensor-augmented pump therapy with predictive low-glucose management on hypoglycemia and glycemic control in patients with type 1 diabetes mellitus: 1-year follow-up. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2635-2631.
Martina. Drecogna, e. a. (2021). Data Gap Modeling in Continuous Glucose Monitoring Sensor Data. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Virtual Conference .
MathWorks. (2023). MathWorks. Retrieved from One-sample Kolmogorov-Smirnov test: https://www.mathworks.com/help/stats/kstest.html
MathWorks. (2023). MathWorks. Retrieved from Two-sample F-test for equal variances: https://www.mathworks.com/help/stats/vartest2.html
Monnier, L. (2016). Toward Defining the Threshold Between Low and High Glucose Variability in Diabetes. CLINICAL CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL RESEARCH, 832–838.
Nathan. R. Hil, e. a. (2011). Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. DIABETES TECHNOLOGY & THERAPEUTICS, nº 201 921-928.
Peter. A. Baghurst, e. a. (2010). The Minimum Frequency of Glucose Measurements from Which Glycemic Variation Can Be Consistently Assessed. Journal of Diabetes Science and Technology, vol. IV, nº 6, 1382 - 1385.
Rodbard, D. (2011). Glycemic Variability: Measurement and Utility in Clinical Medicine and Research—One Viewpoint. DIABETES TECHNOLOGY & THERAPEUTICS,1077-1080.
Stephanie. J. Fonda, e. a. (2013). Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. Journal of Diabetes Science and Technology, vol. XII, 88-92.
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Bogotá - Sur
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/bb3a2c86-38f7-4c0a-8c3c-8dfb60e39663/download
https://repositorio.uan.edu.co/bitstreams/2374d8a2-aad7-48d7-ab93-41bba776eb2a/download
https://repositorio.uan.edu.co/bitstreams/6e903c70-994f-45d6-998f-d45849c7ee60/download
https://repositorio.uan.edu.co/bitstreams/f4f99cb0-14c8-4640-8a13-e6fd2d26946b/download
bitstream.checksum.fl_str_mv 928963a09a112945d3bc4287749be87b
49fbee1faf0abc1f581bb33120aeb734
33b7b79b46373043223383e44048208c
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300395007115264
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2León, FabianOspitia Forero, Miguel Angel114819158692024-01-24T19:26:20Z2024-01-24T19:26:20Z2023-11-23http://repositorio.uan.edu.co/handle/123456789/9043Danne, T. (2017, November 10). International Consensus on Use of Continuous Glucose Monitoring. CONTINUOUS GLUCOSE MONITORING AND RISK OF HYPOGLYCEMIA.Fabian Mauricio León Vargas, M. G.-J. (2018). Different Indexes of Glycemic Variability as Identifiers of Patients with Risk of Hypoglycemia in Type 2 Diabetes Mellitus. Journal of Diabetes Science and Technology, 1007-1015.Maira A. García-Jaramillo, F. M. (2019). Impact of sensor-augmented pump therapy with predictive low-glucose management on hypoglycemia and glycemic control in patients with type 1 diabetes mellitus: 1-year follow-up. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 2635-2631.Martina. Drecogna, e. a. (2021). Data Gap Modeling in Continuous Glucose Monitoring Sensor Data. 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Virtual Conference .MathWorks. (2023). MathWorks. Retrieved from One-sample Kolmogorov-Smirnov test: https://www.mathworks.com/help/stats/kstest.htmlMathWorks. (2023). MathWorks. Retrieved from Two-sample F-test for equal variances: https://www.mathworks.com/help/stats/vartest2.htmlMonnier, L. (2016). Toward Defining the Threshold Between Low and High Glucose Variability in Diabetes. CLINICAL CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL RESEARCH, 832–838.Nathan. R. Hil, e. a. (2011). Normal Reference Range for Mean Tissue Glucose and Glycemic Variability Derived from Continuous Glucose Monitoring for Subjects Without Diabetes in Different Ethnic Groups. DIABETES TECHNOLOGY & THERAPEUTICS, nº 201 921-928.Peter. A. Baghurst, e. a. (2010). The Minimum Frequency of Glucose Measurements from Which Glycemic Variation Can Be Consistently Assessed. Journal of Diabetes Science and Technology, vol. IV, nº 6, 1382 - 1385.Rodbard, D. (2011). Glycemic Variability: Measurement and Utility in Clinical Medicine and Research—One Viewpoint. DIABETES TECHNOLOGY & THERAPEUTICS,1077-1080.Stephanie. J. Fonda, e. a. (2013). Minding the Gaps in Continuous Glucose Monitoring: A Method to Repair Gaps to Achieve More Accurate Glucometrics. Journal of Diabetes Science and Technology, vol. XII, 88-92.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/The international endocrine association has a consensus of metrics, which are used to assess glycemic variability from continuous glucose monitoring sensor measurements. Glucose monitoring records sample every 5 minutes and are useful for detecting episodes of hypo/hyperglycemia in patients with diabetes. Communication failures, device misuse and other reasons lead to data loss affecting the calculation of metrics.La asociación internacional de endocrinología cuenta con un consenso de métricas, las cuales son usadas para evaluar la variabilidad glucémica a partir de las mediciones de los sensores de monitoreo continuo de glucosa. Los registros de monitorización toman muestras cada 5 minutos y son útiles para la detección de episodios de hipo/hiperglucemia en pacientes con diabetes. Fallas en la comunicación, mal uso del dispositivo y otras razones llevan a pérdidas de datos (‘data gaps’) afectando el cálculo de las métricas.Ingeniero(a) Mecatrónico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoIngeniería MecatrónicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaBogotá - SurVariabilidad glucémicadata gapsmétricasprecisiónanálisis621.52 O839Glycemic variabilitydata gapsmetricsaccuracyanalysisAnálisis del impacto en la precisión del cálculo de métricas de variabilidad glucémica en registros de glucosa que presentan pérdida de datosTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85GeneralORIGINAL2023_MiguelAngelOspitiaForero_Autorización.pdf2023_MiguelAngelOspitiaForero_Autorización.pdfAutorización autoresapplication/pdf613599https://repositorio.uan.edu.co/bitstreams/bb3a2c86-38f7-4c0a-8c3c-8dfb60e39663/download928963a09a112945d3bc4287749be87bMD512023_MiguelAngelOspitiaForero.pdf2023_MiguelAngelOspitiaForero.pdfTrabajo de gradoapplication/pdf1253214https://repositorio.uan.edu.co/bitstreams/2374d8a2-aad7-48d7-ab93-41bba776eb2a/download49fbee1faf0abc1f581bb33120aeb734MD522023_MiguelAngelOspitiaForero_Acta.pdf2023_MiguelAngelOspitiaForero_Acta.pdfActa de sustentaciónapplication/pdf263092https://repositorio.uan.edu.co/bitstreams/6e903c70-994f-45d6-998f-d45849c7ee60/download33b7b79b46373043223383e44048208cMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/f4f99cb0-14c8-4640-8a13-e6fd2d26946b/download9868ccc48a14c8d591352b6eaf7f6239MD54123456789/9043oai:repositorio.uan.edu.co:123456789/90432024-10-09 23:07:17.009https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co