Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior

Concrete is one of the most widely used materials for the structuring of different buildings such as homes, schools, shopping centers, bridges, and the road network of the different cities and municipalities. This implies a large consumption of this cementitious material, in the case of Colombia for...

Full description

Autores:
Gomez Nova, Gisseth Katherine
Medina Patiño, Laura Alejandra
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/5774
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/5774
Palabra clave:
Concreto autorreparable
Laboratorio de enseñanza
628
Self-healing concrete
Teaching lab
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_585ef1e91d67e5759ea1b2a8b96c229e
oai_identifier_str oai:repositorio.uan.edu.co:123456789/5774
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
spellingShingle Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
Concreto autorreparable
Laboratorio de enseñanza
628
Self-healing concrete
Teaching lab
title_short Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_full Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_fullStr Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_full_unstemmed Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
title_sort Bases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superior
dc.creator.fl_str_mv Gomez Nova, Gisseth Katherine
Medina Patiño, Laura Alejandra
dc.contributor.advisor.spa.fl_str_mv Avila Leon, Ivan Alejandro
dc.contributor.author.spa.fl_str_mv Gomez Nova, Gisseth Katherine
Medina Patiño, Laura Alejandra
dc.subject.es_ES.fl_str_mv Concreto autorreparable
Laboratorio de enseñanza
topic Concreto autorreparable
Laboratorio de enseñanza
628
Self-healing concrete
Teaching lab
dc.subject.ddc.es_ES.fl_str_mv 628
dc.subject.keyword.es_ES.fl_str_mv Self-healing concrete
Teaching lab
description Concrete is one of the most widely used materials for the structuring of different buildings such as homes, schools, shopping centers, bridges, and the road network of the different cities and municipalities. This implies a large consumption of this cementitious material, in the case of Colombia for the period established between July 2020 and June 2021, there have been produced 13,454.9 thousand tons of gray cement (DANE, 2021). This material is characterized by its resistance and durability; however, microcracks may exist in the matrix of cement as a result of mechanical load and environmental load; Due to their small size they are not visible and give way to the formation of larger cracks due to the pore connectivity. These larger cracks provide a path for aggressive substances that cause corrosion, which accelerates the deterioration of the structural properties of the material and is a serious threat to the safety, integrity and durability of concrete (Gonzalez et al., 2018; Li, 2018). On the other hand, the production of Cement for different types of material generates carbon dioxide (CO2) emissions. For every 1000 g of cement, approximately 900 g of CO2 are produced (ENNOMOTIVE, 2020), This compound is part of the greenhouse effect gases, which contribute to the environmental problem known as climate change.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-06T19:44:41Z
dc.date.available.none.fl_str_mv 2021-12-06T19:44:41Z
dc.date.issued.spa.fl_str_mv 2021-11-18
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/5774
dc.identifier.bibliographicCitation.spa.fl_str_mv Alazhari, M., Sharma, T., Heath, A., Cooper, R., & Paine, K. (2018). Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Construction and Building Materials, 160, 610-619. https://doi.org/10.1016/j.conbuildmat.2017.11.086
Alconz Ingala, W. P. (2006). Material de apoyo didáctico para la enseñanza y aprendizaje de la asignatura materiales de construcción (Guía de las practicas de campo y normas de calidad). Universidad Mayor de San Simón. Retrieved septiembre 27, 2021, from https://topodata.com/wp-content/uploads/2019/09/001MaterialesConstruccion.pdf
Basa, B., Panda, K. C., Sahoo, N. K., & Jena, S. (2020). Impact of Bacillus subtilis bacterium on the properties of concrete. Materials Today: Proceedings, 32, 651-656. https://doi.org/10.1016/j.matpr.2020.03.129
Basha, S., Lingamgunta, L. K., Kannali, J., Gajula, S. K., Bandikari, R., Dasari, S., Dalavai, V., Chinthala, P., Gundala, P. B., Kutagolla, P., & Balaji, V. K. (2018). Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties. Scientific Reports, 8(1), 6448. https://doi.org/10.1038/s41598-018-24730-3
Bayati, M., & Saadabadi, L. A. (2021). Efficiency of bacteria based self-healing method in alkaliactivated slag (AAS) mortars. Journal of Building Engineering, 42, 102492. https://doi.org/10.1016/j.jobe.2021.102492
Bush, L., & Vazques-Pertejo, M. T. (2019). Generalidades sobre las bacterias anaerobias— Enfermedades infecciosas. Manual MSD versión para profesionales. https://www.msdmanuals.com/es/professional/enfermedades-infecciosas/bacteriasanaerobias/generalidades-sobre-las-bacterias-anaerobias
Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J.-P. (1999). Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view. Sedimentary Geology, 126(1), 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7
Chen, B., Sun, W., Sun, X., Cui, C., Lai, J., Wang, Y., & Feng, J. (2021). Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry, 107, 100-111. https://doi.org/10.1016/j.procbio.2021.05.001
Chetty, K., Xie, S., Song, Y., McCarthy, T., Garbe, U., Li, X., & Jiang, G. (2021). Self-healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure. Journal of Water Process Engineering, 42, 102139. https://doi.org/10.1016/j.jwpe.2021.102139
Choi, S., Park, S., Park, M., Kim, Y., Lee, K. M., Lee, O.-M., & Son, H.-J. (2021). Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks. Molecules, 26(10), 2967. https://doi.org/10.3390/molecules26102967
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/5774
identifier_str_mv Alazhari, M., Sharma, T., Heath, A., Cooper, R., & Paine, K. (2018). Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Construction and Building Materials, 160, 610-619. https://doi.org/10.1016/j.conbuildmat.2017.11.086
Alconz Ingala, W. P. (2006). Material de apoyo didáctico para la enseñanza y aprendizaje de la asignatura materiales de construcción (Guía de las practicas de campo y normas de calidad). Universidad Mayor de San Simón. Retrieved septiembre 27, 2021, from https://topodata.com/wp-content/uploads/2019/09/001MaterialesConstruccion.pdf
Basa, B., Panda, K. C., Sahoo, N. K., & Jena, S. (2020). Impact of Bacillus subtilis bacterium on the properties of concrete. Materials Today: Proceedings, 32, 651-656. https://doi.org/10.1016/j.matpr.2020.03.129
Basha, S., Lingamgunta, L. K., Kannali, J., Gajula, S. K., Bandikari, R., Dasari, S., Dalavai, V., Chinthala, P., Gundala, P. B., Kutagolla, P., & Balaji, V. K. (2018). Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties. Scientific Reports, 8(1), 6448. https://doi.org/10.1038/s41598-018-24730-3
Bayati, M., & Saadabadi, L. A. (2021). Efficiency of bacteria based self-healing method in alkaliactivated slag (AAS) mortars. Journal of Building Engineering, 42, 102492. https://doi.org/10.1016/j.jobe.2021.102492
Bush, L., & Vazques-Pertejo, M. T. (2019). Generalidades sobre las bacterias anaerobias— Enfermedades infecciosas. Manual MSD versión para profesionales. https://www.msdmanuals.com/es/professional/enfermedades-infecciosas/bacteriasanaerobias/generalidades-sobre-las-bacterias-anaerobias
Castanier, S., Le Métayer-Levrel, G., & Perthuisot, J.-P. (1999). Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view. Sedimentary Geology, 126(1), 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7
Chen, B., Sun, W., Sun, X., Cui, C., Lai, J., Wang, Y., & Feng, J. (2021). Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry, 107, 100-111. https://doi.org/10.1016/j.procbio.2021.05.001
Chetty, K., Xie, S., Song, Y., McCarthy, T., Garbe, U., Li, X., & Jiang, G. (2021). Self-healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure. Journal of Water Process Engineering, 42, 102139. https://doi.org/10.1016/j.jwpe.2021.102139
Choi, S., Park, S., Park, M., Kim, Y., Lee, K. M., Lee, O.-M., & Son, H.-J. (2021). Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks. Molecules, 26(10), 2967. https://doi.org/10.3390/molecules26102967
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
dc.publisher.campus.spa.fl_str_mv Bogotá - Sur
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/29df3646-743a-427b-b003-dbba55e63f45/download
https://repositorio.uan.edu.co/bitstreams/70f8bae5-8279-4601-a6ad-67afec9c9579/download
https://repositorio.uan.edu.co/bitstreams/2c3f93d4-71c1-4a79-8a26-048765d75394/download
https://repositorio.uan.edu.co/bitstreams/8dbdacbc-a555-4af7-b4c7-2c07eb1bbfc2/download
bitstream.checksum.fl_str_mv cdecd5b23410b0eaba4906899f2b9941
7152cefe4db3edbaa1c646f1832f8964
392d35d12bc51dec6d8594a08723a4a6
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928349945724928
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Avila Leon, Ivan AlejandroGomez Nova, Gisseth KatherineMedina Patiño, Laura Alejandra11231712768112317174872021-12-06T19:44:41Z2021-12-06T19:44:41Z2021-11-18http://repositorio.uan.edu.co/handle/123456789/5774Alazhari, M., Sharma, T., Heath, A., Cooper, R., & Paine, K. (2018). Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete. Construction and Building Materials, 160, 610-619. https://doi.org/10.1016/j.conbuildmat.2017.11.086Alconz Ingala, W. P. (2006). Material de apoyo didáctico para la enseñanza y aprendizaje de la asignatura materiales de construcción (Guía de las practicas de campo y normas de calidad). Universidad Mayor de San Simón. Retrieved septiembre 27, 2021, from https://topodata.com/wp-content/uploads/2019/09/001MaterialesConstruccion.pdfBasa, B., Panda, K. C., Sahoo, N. K., & Jena, S. (2020). Impact of Bacillus subtilis bacterium on the properties of concrete. Materials Today: Proceedings, 32, 651-656. https://doi.org/10.1016/j.matpr.2020.03.129Basha, S., Lingamgunta, L. K., Kannali, J., Gajula, S. K., Bandikari, R., Dasari, S., Dalavai, V., Chinthala, P., Gundala, P. B., Kutagolla, P., & Balaji, V. K. (2018). Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties. Scientific Reports, 8(1), 6448. https://doi.org/10.1038/s41598-018-24730-3Bayati, M., & Saadabadi, L. A. (2021). Efficiency of bacteria based self-healing method in alkaliactivated slag (AAS) mortars. Journal of Building Engineering, 42, 102492. https://doi.org/10.1016/j.jobe.2021.102492Bush, L., & Vazques-Pertejo, M. T. (2019). Generalidades sobre las bacterias anaerobias— Enfermedades infecciosas. Manual MSD versión para profesionales. https://www.msdmanuals.com/es/professional/enfermedades-infecciosas/bacteriasanaerobias/generalidades-sobre-las-bacterias-anaerobiasCastanier, S., Le Métayer-Levrel, G., & Perthuisot, J.-P. (1999). Ca-carbonates precipitation and limestone genesis—The microbiogeologist point of view. Sedimentary Geology, 126(1), 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7Chen, B., Sun, W., Sun, X., Cui, C., Lai, J., Wang, Y., & Feng, J. (2021). Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry, 107, 100-111. https://doi.org/10.1016/j.procbio.2021.05.001Chetty, K., Xie, S., Song, Y., McCarthy, T., Garbe, U., Li, X., & Jiang, G. (2021). Self-healing bioconcrete based on non-axenic granules: A potential solution for concrete wastewater infrastructure. Journal of Water Process Engineering, 42, 102139. https://doi.org/10.1016/j.jwpe.2021.102139Choi, S., Park, S., Park, M., Kim, Y., Lee, K. M., Lee, O.-M., & Son, H.-J. (2021). Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks. Molecules, 26(10), 2967. https://doi.org/10.3390/molecules26102967instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Concrete is one of the most widely used materials for the structuring of different buildings such as homes, schools, shopping centers, bridges, and the road network of the different cities and municipalities. This implies a large consumption of this cementitious material, in the case of Colombia for the period established between July 2020 and June 2021, there have been produced 13,454.9 thousand tons of gray cement (DANE, 2021). This material is characterized by its resistance and durability; however, microcracks may exist in the matrix of cement as a result of mechanical load and environmental load; Due to their small size they are not visible and give way to the formation of larger cracks due to the pore connectivity. These larger cracks provide a path for aggressive substances that cause corrosion, which accelerates the deterioration of the structural properties of the material and is a serious threat to the safety, integrity and durability of concrete (Gonzalez et al., 2018; Li, 2018). On the other hand, the production of Cement for different types of material generates carbon dioxide (CO2) emissions. For every 1000 g of cement, approximately 900 g of CO2 are produced (ENNOMOTIVE, 2020), This compound is part of the greenhouse effect gases, which contribute to the environmental problem known as climate change.El concreto es uno de los materiales más implementados para la estructuración de distintas edificaciones como viviendas, colegios, centros comerciales, puentes, y la malla vial de las distintas ciudades y municipios. Esto implica un gran consumo de este material cementoso, en el caso de Colombia para el periodo establecido entre julio de 2020 y junio de 2021, se han producido 13454,9 miles de toneladas de cemento gris (DANE, 2021). Este material se caracteriza por su resistencia y durabilidad; sin embargo, pueden existir microgrietas en la matriz del cemento como resultado de la carga mecánica y carga ambiental; debido a su tamaño reducido no son visibles y le dan paso a la formación de grietas más grandes a causa de la conectividad de los poros. Estas grietas de mayor tamaño proporcionan un camino para las sustancias agresivas que provocan la corrosión, lo cual va acelerando el deterioro de las propiedades estructurales del material y es una grave amenaza para la seguridad, integridad y durabilidad del concreto (Gonzalez et al., 2018; Li, 2018). Por otra parte, la producción de cemento para los distintos tipos de material genera emisiones de dióxido de carbono (CO2). Por cada 1000 g de cemento se producen aproximadamente 900 g de CO2 (ENNOMOTIVE, 2020), este compuesto hace parte de los gases efecto invernadero, que aportan a la problemática ambiental conocida como cambio climático.Ingeniero(a) AmbientalPregradoPresencialMonografíaspaUniversidad Antonio NariñoIngeniería AmbientalFacultad de Ingeniería AmbientalBogotá - SurConcreto autorreparableLaboratorio de enseñanza628Self-healing concreteTeaching labBases teóricas para la implementación del concreto autorreparable en laboratorios de enseñanza superiorTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2021_GissethGomezLauraMedin_Acta.pdf2021_GissethGomezLauraMedin_Acta.pdfapplication/pdf487119https://repositorio.uan.edu.co/bitstreams/29df3646-743a-427b-b003-dbba55e63f45/downloadcdecd5b23410b0eaba4906899f2b9941MD512021_GissethGomezLauraMedin_Autorizacion.pdf2021_GissethGomezLauraMedin_Autorizacion.pdfapplication/pdf1792758https://repositorio.uan.edu.co/bitstreams/70f8bae5-8279-4601-a6ad-67afec9c9579/download7152cefe4db3edbaa1c646f1832f8964MD522021_GissethGomezLauraMedina.pdf2021_GissethGomezLauraMedina.pdfapplication/pdf1913026https://repositorio.uan.edu.co/bitstreams/2c3f93d4-71c1-4a79-8a26-048765d75394/download392d35d12bc51dec6d8594a08723a4a6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/8dbdacbc-a555-4af7-b4c7-2c07eb1bbfc2/download9868ccc48a14c8d591352b6eaf7f6239MD54123456789/5774oai:repositorio.uan.edu.co:123456789/57742024-10-09 23:05:36.714https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co