Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method

Abstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas,...

Full description

Autores:
Ravelo Mendivelso Karol Yuliete
Villate Mercy Tatiana
Hernandez, José D.
Miranda, Orlando M.
Pacheco, Pedro J.
Campusano, Manuel J.
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
eng
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/8511
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/8511
Palabra clave:
AHP
Rendimiento Hidrodinámico
MCDM
Intercambiador de calor de carcasa y tubos
Eficiencia térmica
AHP
Hydrodynamic performance
MCDM
Shell-and-tube heat exchanger
Rights
closedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_579f4a3e647db4c2c0649afbc2c3d9fc
oai_identifier_str oai:repositorio.uan.edu.co:123456789/8511
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
title Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
spellingShingle Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
AHP
Rendimiento Hidrodinámico
MCDM
Intercambiador de calor de carcasa y tubos
Eficiencia térmica
AHP
Hydrodynamic performance
MCDM
Shell-and-tube heat exchanger
title_short Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
title_full Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
title_fullStr Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
title_full_unstemmed Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
title_sort Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
dc.creator.fl_str_mv Ravelo Mendivelso Karol Yuliete
Villate Mercy Tatiana
Hernandez, José D.
Miranda, Orlando M.
Pacheco, Pedro J.
Campusano, Manuel J.
dc.contributor.advisor.spa.fl_str_mv Villate Mercy Tatiana
dc.contributor.author.spa.fl_str_mv Ravelo Mendivelso Karol Yuliete
Villate Mercy Tatiana
Hernandez, José D.
Miranda, Orlando M.
Pacheco, Pedro J.
Campusano, Manuel J.
dc.subject.es_ES.fl_str_mv AHP
Rendimiento Hidrodinámico
MCDM
Intercambiador de calor de carcasa y tubos
Eficiencia térmica
topic AHP
Rendimiento Hidrodinámico
MCDM
Intercambiador de calor de carcasa y tubos
Eficiencia térmica
AHP
Hydrodynamic performance
MCDM
Shell-and-tube heat exchanger
dc.subject.keyword.es_ES.fl_str_mv AHP
Hydrodynamic performance
MCDM
Shell-and-tube heat exchanger
description Abstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas, and alternative energy industry, to analyze and learn about the main criteria that directly impact the thermal efficiency of a heat exchanger. The applied methodology was based on the AHP (Analytic Hierarchy Process) multicriteria method. Three relevant criteria were identified: Thermodynamic, Hydrodynamic, and Economic. Additionally, a complete analysis of 9 sub-criteria (i.e. energy and exergetic analysis of the process, analysis of the thermodynamic properties of the fluids; pressure drop, volumetric flow of hot and cold fluids; energy costs, maintenance, operation and geometry of the heat exchanger) allowed us to conclude that the best strategy to increase the thermal efficiency of a heat exchanger in real operating conditions consists of using innovative online cleaning prototypes that use abrasive spheres. This will allow the heat exchanger to be cleaned simultaneously with its operation, reducing downtime and maintenance times/costs.
publishDate 2022
dc.date.issued.spa.fl_str_mv 2022-11-30
dc.date.accessioned.none.fl_str_mv 2023-08-16T03:03:25Z
dc.date.available.none.fl_str_mv 2023-08-16T03:03:25Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/8511
dc.identifier.bibliographicCitation.spa.fl_str_mv Cui, X., Zhang, H., Guo, J., Huai, X., Xu, M. 2019. Analysis Of Two‐Stage Waste Heat Recovery Based on Natural Gas‐Fired Boiler. International Journal of Energy Research, Volume 43(14), pp. 8898–8912
Frota, M.N., Castro-Pacheco, E.R., Hernández-Vásquez, J.D., da-Silva, R.P.M., 2021a. Alternative Method for Assessing The Effectiveness of Heat Exchangers. Measurement: Sensors, Volume 18, p. 100066
Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, E.R., Germano, S.B., Jr, J.B., 2019. Enhancing the Effectiveness of Hydro Generator Heat Exchangers Through the Control of Measurement Uncertainties. In: XIII Heat Exchanger Fouling and Cleaning Conference, Warsaw, Poland
Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, R.P., da-Silva, M., 2021b. An Adapted Version of The Ε-Ntu Method For Assessing The Effectiveness of Multiple-Pass Heat 534 Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method Exchangers of Hydrogenerators. In: 15th
Gowri, N.V., Isaac, J.S., Muralikrishna, T., Babu, G.S., Depoures, M.V., Sekar, S., Sasirekha, P., Ramesh, M., Prabhakar, S., 2022. Genetic Algorithm Integrated Fuzzy AHP-VIKOR Approach for the Investigation of W-Cut Insert Heat Exchanger for Cooling of Dielectric Fluid Used in Ultra-High Voltage Transformer. Advances in Materials Science and Engineering, Volume 2022, p. 2819688
Hazza, M.H.A., Abdelwahed, A., Ali, M.Y., Sidek, A.B.A., 2022. An Integrated Approach for Supplier Evaluation and Selection using the Delphi Method and Analytic Hierarchy Process (AHP): A New Framework. International Journal of Technology, Volume 13(1), pp. 16–25
Kadoi, N., Re-ep, N.B., Divjak, B., 2017. Decision Making with The Analytical Network Process. In: 14th International Symposium on Operations Research. Slovenia
He, F., Nagano, K., Seol, S.H., Togawa, J., 2022. Thermal Performance Improvement of AHP Using Corrugated Heat Exchanger by Dip-Coating Method with Mass Recovery. Energy, Volume 239, p. 122418
Keklikcioglu, O., Günes, S., Senyigit, E., Akcadirci, E., Ozceyhan, V., 2022. The Optimization of The Thermal and Hydraulic Characteristics of a Tube With Twisted Tapes Using Taguchi-Based-AHP-TOPSIS Approach. Journal of Thermal Analysis and Calorimetry, Volume 2022, pp. 1–13
Krishankumar, R., Nimmagadda, S.S., Rani, P., Mishra, A.R., Ravichandran, K.S., Gandomi, A.H., 2021. Solving Renewable Energy Source Selection Problems Using a Q-Rung Orthopair Fuzzy-Based Integrated Decision-Making Approach. Journal of Cleaner Production, Volume 279, p. 123329
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/8511
identifier_str_mv Cui, X., Zhang, H., Guo, J., Huai, X., Xu, M. 2019. Analysis Of Two‐Stage Waste Heat Recovery Based on Natural Gas‐Fired Boiler. International Journal of Energy Research, Volume 43(14), pp. 8898–8912
Frota, M.N., Castro-Pacheco, E.R., Hernández-Vásquez, J.D., da-Silva, R.P.M., 2021a. Alternative Method for Assessing The Effectiveness of Heat Exchangers. Measurement: Sensors, Volume 18, p. 100066
Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, E.R., Germano, S.B., Jr, J.B., 2019. Enhancing the Effectiveness of Hydro Generator Heat Exchangers Through the Control of Measurement Uncertainties. In: XIII Heat Exchanger Fouling and Cleaning Conference, Warsaw, Poland
Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, R.P., da-Silva, M., 2021b. An Adapted Version of The Ε-Ntu Method For Assessing The Effectiveness of Multiple-Pass Heat 534 Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method Exchangers of Hydrogenerators. In: 15th
Gowri, N.V., Isaac, J.S., Muralikrishna, T., Babu, G.S., Depoures, M.V., Sekar, S., Sasirekha, P., Ramesh, M., Prabhakar, S., 2022. Genetic Algorithm Integrated Fuzzy AHP-VIKOR Approach for the Investigation of W-Cut Insert Heat Exchanger for Cooling of Dielectric Fluid Used in Ultra-High Voltage Transformer. Advances in Materials Science and Engineering, Volume 2022, p. 2819688
Hazza, M.H.A., Abdelwahed, A., Ali, M.Y., Sidek, A.B.A., 2022. An Integrated Approach for Supplier Evaluation and Selection using the Delphi Method and Analytic Hierarchy Process (AHP): A New Framework. International Journal of Technology, Volume 13(1), pp. 16–25
Kadoi, N., Re-ep, N.B., Divjak, B., 2017. Decision Making with The Analytical Network Process. In: 14th International Symposium on Operations Research. Slovenia
He, F., Nagano, K., Seol, S.H., Togawa, J., 2022. Thermal Performance Improvement of AHP Using Corrugated Heat Exchanger by Dip-Coating Method with Mass Recovery. Energy, Volume 239, p. 122418
Keklikcioglu, O., Günes, S., Senyigit, E., Akcadirci, E., Ozceyhan, V., 2022. The Optimization of The Thermal and Hydraulic Characteristics of a Tube With Twisted Tapes Using Taguchi-Based-AHP-TOPSIS Approach. Journal of Thermal Analysis and Calorimetry, Volume 2022, pp. 1–13
Krishankumar, R., Nimmagadda, S.S., Rani, P., Mishra, A.R., Ravichandran, K.S., Gandomi, A.H., 2021. Solving Renewable Energy Source Selection Problems Using a Q-Rung Orthopair Fuzzy-Based Integrated Decision-Making Approach. Journal of Cleaner Production, Volume 279, p. 123329
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv Acceso a solo metadatos
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso a solo metadatos
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Tunja
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/a3054d9a-94e7-474f-9871-4f650f428295/download
https://repositorio.uan.edu.co/bitstreams/ae3fde98-0216-4519-8865-60ec915d7d44/download
https://repositorio.uan.edu.co/bitstreams/76de7c93-31ed-4305-8597-7a17c77439d5/download
https://repositorio.uan.edu.co/bitstreams/e43e616c-5a11-4bb6-9f05-309af37753c4/download
https://repositorio.uan.edu.co/bitstreams/ef0620b1-7c89-4ede-95fd-c348d4b59b7c/download
https://repositorio.uan.edu.co/bitstreams/8cb5fcb3-49b2-4e17-ad20-9f787f5ed41b/download
https://repositorio.uan.edu.co/bitstreams/2a47b0bd-9d11-47e5-8930-2a628dd37293/download
https://repositorio.uan.edu.co/bitstreams/90a3b0a4-55cf-48cf-b03c-f55b55722fa5/download
https://repositorio.uan.edu.co/bitstreams/a33c1c0a-aa8d-4b3a-b038-bdc3ea42164b/download
bitstream.checksum.fl_str_mv c1220a1d70182eb121b6da30607f3fff
d336debc67ed4be7d96310a948ddfe7b
0a6ff980fd70e3553ea4e5243ee91f63
a19c551ceb4931c10075755c76d45097
10fd080456b4bcc67e75221830ab2fc3
6d93d3216dc4a7f5df47d4876fbec4d3
ba59c7c316af60d26dd032756ef53e7e
cb3c36d52245082116a5fb3df93dabbe
0b890c40cebc7daad8671506ef787b3f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928350250860544
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso a solo metadatoshttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbVillate Mercy TatianaRavelo Mendivelso Karol YulieteVillate Mercy TatianaHernandez, José D.Miranda, Orlando M.Pacheco, Pedro J.Campusano, Manuel J.204517295512023-08-16T03:03:25Z2023-08-16T03:03:25Z2022-11-30http://repositorio.uan.edu.co/handle/123456789/8511Cui, X., Zhang, H., Guo, J., Huai, X., Xu, M. 2019. Analysis Of Two‐Stage Waste Heat Recovery Based on Natural Gas‐Fired Boiler. International Journal of Energy Research, Volume 43(14), pp. 8898–8912Frota, M.N., Castro-Pacheco, E.R., Hernández-Vásquez, J.D., da-Silva, R.P.M., 2021a. Alternative Method for Assessing The Effectiveness of Heat Exchangers. Measurement: Sensors, Volume 18, p. 100066Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, E.R., Germano, S.B., Jr, J.B., 2019. Enhancing the Effectiveness of Hydro Generator Heat Exchangers Through the Control of Measurement Uncertainties. In: XIII Heat Exchanger Fouling and Cleaning Conference, Warsaw, PolandFrota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, R.P., da-Silva, M., 2021b. An Adapted Version of The Ε-Ntu Method For Assessing The Effectiveness of Multiple-Pass Heat 534 Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method Exchangers of Hydrogenerators. In: 15thGowri, N.V., Isaac, J.S., Muralikrishna, T., Babu, G.S., Depoures, M.V., Sekar, S., Sasirekha, P., Ramesh, M., Prabhakar, S., 2022. Genetic Algorithm Integrated Fuzzy AHP-VIKOR Approach for the Investigation of W-Cut Insert Heat Exchanger for Cooling of Dielectric Fluid Used in Ultra-High Voltage Transformer. Advances in Materials Science and Engineering, Volume 2022, p. 2819688Hazza, M.H.A., Abdelwahed, A., Ali, M.Y., Sidek, A.B.A., 2022. An Integrated Approach for Supplier Evaluation and Selection using the Delphi Method and Analytic Hierarchy Process (AHP): A New Framework. International Journal of Technology, Volume 13(1), pp. 16–25Kadoi, N., Re-ep, N.B., Divjak, B., 2017. Decision Making with The Analytical Network Process. In: 14th International Symposium on Operations Research. SloveniaHe, F., Nagano, K., Seol, S.H., Togawa, J., 2022. Thermal Performance Improvement of AHP Using Corrugated Heat Exchanger by Dip-Coating Method with Mass Recovery. Energy, Volume 239, p. 122418Keklikcioglu, O., Günes, S., Senyigit, E., Akcadirci, E., Ozceyhan, V., 2022. The Optimization of The Thermal and Hydraulic Characteristics of a Tube With Twisted Tapes Using Taguchi-Based-AHP-TOPSIS Approach. Journal of Thermal Analysis and Calorimetry, Volume 2022, pp. 1–13Krishankumar, R., Nimmagadda, S.S., Rani, P., Mishra, A.R., Ravichandran, K.S., Gandomi, A.H., 2021. Solving Renewable Energy Source Selection Problems Using a Q-Rung Orthopair Fuzzy-Based Integrated Decision-Making Approach. Journal of Cleaner Production, Volume 279, p. 123329instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Abstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas, and alternative energy industry, to analyze and learn about the main criteria that directly impact the thermal efficiency of a heat exchanger. The applied methodology was based on the AHP (Analytic Hierarchy Process) multicriteria method. Three relevant criteria were identified: Thermodynamic, Hydrodynamic, and Economic. Additionally, a complete analysis of 9 sub-criteria (i.e. energy and exergetic analysis of the process, analysis of the thermodynamic properties of the fluids; pressure drop, volumetric flow of hot and cold fluids; energy costs, maintenance, operation and geometry of the heat exchanger) allowed us to conclude that the best strategy to increase the thermal efficiency of a heat exchanger in real operating conditions consists of using innovative online cleaning prototypes that use abrasive spheres. This will allow the heat exchanger to be cleaned simultaneously with its operation, reducing downtime and maintenance times/costs.Abstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas, and alternative energy industry, to analyze and learn about the main criteria that directly impact the thermal efficiency of a heat exchanger. The applied methodology was based on the AHP (Analytic Hierarchy Process) multicriteria method. Three relevant criteria were identified: Thermodynamic, Hydrodynamic, and Economic. Additionally, a complete analysis of 9 sub-criteria (i.e. energy and exergetic analysis of the process, analysis of the thermodynamic properties of the fluids; pressure drop, volumetric flow of hot and cold fluids; energy costs, maintenance, operation and geometry of the heat exchanger) allowed us to conclude that the best strategy to increase the thermal efficiency of a heat exchanger in real operating conditions consists of using innovative online cleaning prototypes that use abrasive spheres. This will allow the heat exchanger to be cleaned simultaneously with its operation, reducing downtime and maintenance times/costs.Ingeniero(a) Mecánico(a)PregradoPresencialInvestigaciónengUniversidad Antonio NariñoIngeniería MecánicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaTunjaAHPRendimiento HidrodinámicoMCDMIntercambiador de calor de carcasa y tubosEficiencia térmicaAHPHydrodynamic performanceMCDMShell-and-tube heat exchangerThermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria MethodTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_KarolRaveloMendivelso_Actapdf2023_KarolRaveloMendivelso_ActapdfActa de sustentaciónapplication/pdf169772https://repositorio.uan.edu.co/bitstreams/a3054d9a-94e7-474f-9871-4f650f428295/downloadc1220a1d70182eb121b6da30607f3fffMD512023_KarolRaveloMendivelso _Articulo.pdf2023_KarolRaveloMendivelso _Articulo.pdfArticulo publicado.application/pdf391322https://repositorio.uan.edu.co/bitstreams/ae3fde98-0216-4519-8865-60ec915d7d44/downloadd336debc67ed4be7d96310a948ddfe7bMD522023_KarolRaveloMendivelso_Autorizaciòn.pdf2023_KarolRaveloMendivelso_Autorizaciòn.pdfAutorización autoresapplication/pdf956395https://repositorio.uan.edu.co/bitstreams/76de7c93-31ed-4305-8597-7a17c77439d5/download0a6ff980fd70e3553ea4e5243ee91f63MD53TEXT2023_KarolRaveloMendivelso_Actapdf.txt2023_KarolRaveloMendivelso_Actapdf.txtExtracted texttext/plain2085https://repositorio.uan.edu.co/bitstreams/e43e616c-5a11-4bb6-9f05-309af37753c4/downloada19c551ceb4931c10075755c76d45097MD542023_KarolRaveloMendivelso _Articulo.pdf.txt2023_KarolRaveloMendivelso _Articulo.pdf.txtExtracted texttext/plain47558https://repositorio.uan.edu.co/bitstreams/ef0620b1-7c89-4ede-95fd-c348d4b59b7c/download10fd080456b4bcc67e75221830ab2fc3MD562023_KarolRaveloMendivelso_Autorizaciòn.pdf.txt2023_KarolRaveloMendivelso_Autorizaciòn.pdf.txtExtracted texttext/plain6https://repositorio.uan.edu.co/bitstreams/8cb5fcb3-49b2-4e17-ad20-9f787f5ed41b/download6d93d3216dc4a7f5df47d4876fbec4d3MD58THUMBNAIL2023_KarolRaveloMendivelso_Actapdf.jpg2023_KarolRaveloMendivelso_Actapdf.jpgGenerated Thumbnailimage/jpeg16414https://repositorio.uan.edu.co/bitstreams/2a47b0bd-9d11-47e5-8930-2a628dd37293/downloadba59c7c316af60d26dd032756ef53e7eMD552023_KarolRaveloMendivelso _Articulo.pdf.jpg2023_KarolRaveloMendivelso _Articulo.pdf.jpgGenerated Thumbnailimage/jpeg17549https://repositorio.uan.edu.co/bitstreams/90a3b0a4-55cf-48cf-b03c-f55b55722fa5/downloadcb3c36d52245082116a5fb3df93dabbeMD572023_KarolRaveloMendivelso_Autorizaciòn.pdf.jpg2023_KarolRaveloMendivelso_Autorizaciòn.pdf.jpgGenerated Thumbnailimage/jpeg20861https://repositorio.uan.edu.co/bitstreams/a33c1c0a-aa8d-4b3a-b038-bdc3ea42164b/download0b890c40cebc7daad8671506ef787b3fMD59123456789/8511oai:repositorio.uan.edu.co:123456789/85112024-10-09 23:36:16.66https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso a solo metadatosrestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co