Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method
Abstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas,...
- Autores:
-
Ravelo Mendivelso Karol Yuliete
Villate Mercy Tatiana
Hernandez, José D.
Miranda, Orlando M.
Pacheco, Pedro J.
Campusano, Manuel J.
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/8511
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/8511
- Palabra clave:
- AHP
Rendimiento Hidrodinámico
MCDM
Intercambiador de calor de carcasa y tubos
Eficiencia térmica
AHP
Hydrodynamic performance
MCDM
Shell-and-tube heat exchanger
- Rights
- closedAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id |
UAntonioN2_579f4a3e647db4c2c0649afbc2c3d9fc |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/8511 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method |
title |
Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method |
spellingShingle |
Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method AHP Rendimiento Hidrodinámico MCDM Intercambiador de calor de carcasa y tubos Eficiencia térmica AHP Hydrodynamic performance MCDM Shell-and-tube heat exchanger |
title_short |
Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method |
title_full |
Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method |
title_fullStr |
Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method |
title_full_unstemmed |
Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method |
title_sort |
Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method |
dc.creator.fl_str_mv |
Ravelo Mendivelso Karol Yuliete Villate Mercy Tatiana Hernandez, José D. Miranda, Orlando M. Pacheco, Pedro J. Campusano, Manuel J. |
dc.contributor.advisor.spa.fl_str_mv |
Villate Mercy Tatiana |
dc.contributor.author.spa.fl_str_mv |
Ravelo Mendivelso Karol Yuliete Villate Mercy Tatiana Hernandez, José D. Miranda, Orlando M. Pacheco, Pedro J. Campusano, Manuel J. |
dc.subject.es_ES.fl_str_mv |
AHP Rendimiento Hidrodinámico MCDM Intercambiador de calor de carcasa y tubos Eficiencia térmica |
topic |
AHP Rendimiento Hidrodinámico MCDM Intercambiador de calor de carcasa y tubos Eficiencia térmica AHP Hydrodynamic performance MCDM Shell-and-tube heat exchanger |
dc.subject.keyword.es_ES.fl_str_mv |
AHP Hydrodynamic performance MCDM Shell-and-tube heat exchanger |
description |
Abstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas, and alternative energy industry, to analyze and learn about the main criteria that directly impact the thermal efficiency of a heat exchanger. The applied methodology was based on the AHP (Analytic Hierarchy Process) multicriteria method. Three relevant criteria were identified: Thermodynamic, Hydrodynamic, and Economic. Additionally, a complete analysis of 9 sub-criteria (i.e. energy and exergetic analysis of the process, analysis of the thermodynamic properties of the fluids; pressure drop, volumetric flow of hot and cold fluids; energy costs, maintenance, operation and geometry of the heat exchanger) allowed us to conclude that the best strategy to increase the thermal efficiency of a heat exchanger in real operating conditions consists of using innovative online cleaning prototypes that use abrasive spheres. This will allow the heat exchanger to be cleaned simultaneously with its operation, reducing downtime and maintenance times/costs. |
publishDate |
2022 |
dc.date.issued.spa.fl_str_mv |
2022-11-30 |
dc.date.accessioned.none.fl_str_mv |
2023-08-16T03:03:25Z |
dc.date.available.none.fl_str_mv |
2023-08-16T03:03:25Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/8511 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Cui, X., Zhang, H., Guo, J., Huai, X., Xu, M. 2019. Analysis Of Two‐Stage Waste Heat Recovery Based on Natural Gas‐Fired Boiler. International Journal of Energy Research, Volume 43(14), pp. 8898–8912 Frota, M.N., Castro-Pacheco, E.R., Hernández-Vásquez, J.D., da-Silva, R.P.M., 2021a. Alternative Method for Assessing The Effectiveness of Heat Exchangers. Measurement: Sensors, Volume 18, p. 100066 Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, E.R., Germano, S.B., Jr, J.B., 2019. Enhancing the Effectiveness of Hydro Generator Heat Exchangers Through the Control of Measurement Uncertainties. In: XIII Heat Exchanger Fouling and Cleaning Conference, Warsaw, Poland Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, R.P., da-Silva, M., 2021b. An Adapted Version of The Ε-Ntu Method For Assessing The Effectiveness of Multiple-Pass Heat 534 Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method Exchangers of Hydrogenerators. In: 15th Gowri, N.V., Isaac, J.S., Muralikrishna, T., Babu, G.S., Depoures, M.V., Sekar, S., Sasirekha, P., Ramesh, M., Prabhakar, S., 2022. Genetic Algorithm Integrated Fuzzy AHP-VIKOR Approach for the Investigation of W-Cut Insert Heat Exchanger for Cooling of Dielectric Fluid Used in Ultra-High Voltage Transformer. Advances in Materials Science and Engineering, Volume 2022, p. 2819688 Hazza, M.H.A., Abdelwahed, A., Ali, M.Y., Sidek, A.B.A., 2022. An Integrated Approach for Supplier Evaluation and Selection using the Delphi Method and Analytic Hierarchy Process (AHP): A New Framework. International Journal of Technology, Volume 13(1), pp. 16–25 Kadoi, N., Re-ep, N.B., Divjak, B., 2017. Decision Making with The Analytical Network Process. In: 14th International Symposium on Operations Research. Slovenia He, F., Nagano, K., Seol, S.H., Togawa, J., 2022. Thermal Performance Improvement of AHP Using Corrugated Heat Exchanger by Dip-Coating Method with Mass Recovery. Energy, Volume 239, p. 122418 Keklikcioglu, O., Günes, S., Senyigit, E., Akcadirci, E., Ozceyhan, V., 2022. The Optimization of The Thermal and Hydraulic Characteristics of a Tube With Twisted Tapes Using Taguchi-Based-AHP-TOPSIS Approach. Journal of Thermal Analysis and Calorimetry, Volume 2022, pp. 1–13 Krishankumar, R., Nimmagadda, S.S., Rani, P., Mishra, A.R., Ravichandran, K.S., Gandomi, A.H., 2021. Solving Renewable Energy Source Selection Problems Using a Q-Rung Orthopair Fuzzy-Based Integrated Decision-Making Approach. Journal of Cleaner Production, Volume 279, p. 123329 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/8511 |
identifier_str_mv |
Cui, X., Zhang, H., Guo, J., Huai, X., Xu, M. 2019. Analysis Of Two‐Stage Waste Heat Recovery Based on Natural Gas‐Fired Boiler. International Journal of Energy Research, Volume 43(14), pp. 8898–8912 Frota, M.N., Castro-Pacheco, E.R., Hernández-Vásquez, J.D., da-Silva, R.P.M., 2021a. Alternative Method for Assessing The Effectiveness of Heat Exchangers. Measurement: Sensors, Volume 18, p. 100066 Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, E.R., Germano, S.B., Jr, J.B., 2019. Enhancing the Effectiveness of Hydro Generator Heat Exchangers Through the Control of Measurement Uncertainties. In: XIII Heat Exchanger Fouling and Cleaning Conference, Warsaw, Poland Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, R.P., da-Silva, M., 2021b. An Adapted Version of The Ε-Ntu Method For Assessing The Effectiveness of Multiple-Pass Heat 534 Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method Exchangers of Hydrogenerators. In: 15th Gowri, N.V., Isaac, J.S., Muralikrishna, T., Babu, G.S., Depoures, M.V., Sekar, S., Sasirekha, P., Ramesh, M., Prabhakar, S., 2022. Genetic Algorithm Integrated Fuzzy AHP-VIKOR Approach for the Investigation of W-Cut Insert Heat Exchanger for Cooling of Dielectric Fluid Used in Ultra-High Voltage Transformer. Advances in Materials Science and Engineering, Volume 2022, p. 2819688 Hazza, M.H.A., Abdelwahed, A., Ali, M.Y., Sidek, A.B.A., 2022. An Integrated Approach for Supplier Evaluation and Selection using the Delphi Method and Analytic Hierarchy Process (AHP): A New Framework. International Journal of Technology, Volume 13(1), pp. 16–25 Kadoi, N., Re-ep, N.B., Divjak, B., 2017. Decision Making with The Analytical Network Process. In: 14th International Symposium on Operations Research. Slovenia He, F., Nagano, K., Seol, S.H., Togawa, J., 2022. Thermal Performance Improvement of AHP Using Corrugated Heat Exchanger by Dip-Coating Method with Mass Recovery. Energy, Volume 239, p. 122418 Keklikcioglu, O., Günes, S., Senyigit, E., Akcadirci, E., Ozceyhan, V., 2022. The Optimization of The Thermal and Hydraulic Characteristics of a Tube With Twisted Tapes Using Taguchi-Based-AHP-TOPSIS Approach. Journal of Thermal Analysis and Calorimetry, Volume 2022, pp. 1–13 Krishankumar, R., Nimmagadda, S.S., Rani, P., Mishra, A.R., Ravichandran, K.S., Gandomi, A.H., 2021. Solving Renewable Energy Source Selection Problems Using a Q-Rung Orthopair Fuzzy-Based Integrated Decision-Making Approach. Journal of Cleaner Production, Volume 279, p. 123329 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
Acceso a solo metadatos |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Acceso a solo metadatos https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica, Electrónica y Biomédica |
dc.publisher.campus.spa.fl_str_mv |
Tunja |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/a3054d9a-94e7-474f-9871-4f650f428295/download https://repositorio.uan.edu.co/bitstreams/ae3fde98-0216-4519-8865-60ec915d7d44/download https://repositorio.uan.edu.co/bitstreams/76de7c93-31ed-4305-8597-7a17c77439d5/download https://repositorio.uan.edu.co/bitstreams/e43e616c-5a11-4bb6-9f05-309af37753c4/download https://repositorio.uan.edu.co/bitstreams/ef0620b1-7c89-4ede-95fd-c348d4b59b7c/download https://repositorio.uan.edu.co/bitstreams/8cb5fcb3-49b2-4e17-ad20-9f787f5ed41b/download https://repositorio.uan.edu.co/bitstreams/2a47b0bd-9d11-47e5-8930-2a628dd37293/download https://repositorio.uan.edu.co/bitstreams/90a3b0a4-55cf-48cf-b03c-f55b55722fa5/download https://repositorio.uan.edu.co/bitstreams/a33c1c0a-aa8d-4b3a-b038-bdc3ea42164b/download |
bitstream.checksum.fl_str_mv |
c1220a1d70182eb121b6da30607f3fff d336debc67ed4be7d96310a948ddfe7b 0a6ff980fd70e3553ea4e5243ee91f63 a19c551ceb4931c10075755c76d45097 10fd080456b4bcc67e75221830ab2fc3 6d93d3216dc4a7f5df47d4876fbec4d3 ba59c7c316af60d26dd032756ef53e7e cb3c36d52245082116a5fb3df93dabbe 0b890c40cebc7daad8671506ef787b3f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300391171424256 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso a solo metadatoshttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbVillate Mercy TatianaRavelo Mendivelso Karol YulieteVillate Mercy TatianaHernandez, José D.Miranda, Orlando M.Pacheco, Pedro J.Campusano, Manuel J.204517295512023-08-16T03:03:25Z2023-08-16T03:03:25Z2022-11-30http://repositorio.uan.edu.co/handle/123456789/8511Cui, X., Zhang, H., Guo, J., Huai, X., Xu, M. 2019. Analysis Of Two‐Stage Waste Heat Recovery Based on Natural Gas‐Fired Boiler. International Journal of Energy Research, Volume 43(14), pp. 8898–8912Frota, M.N., Castro-Pacheco, E.R., Hernández-Vásquez, J.D., da-Silva, R.P.M., 2021a. Alternative Method for Assessing The Effectiveness of Heat Exchangers. Measurement: Sensors, Volume 18, p. 100066Frota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, E.R., Germano, S.B., Jr, J.B., 2019. Enhancing the Effectiveness of Hydro Generator Heat Exchangers Through the Control of Measurement Uncertainties. In: XIII Heat Exchanger Fouling and Cleaning Conference, Warsaw, PolandFrota, M.N., Hernández-Vásquez, J.D., Castro-Pacheco, R.P., da-Silva, M., 2021b. An Adapted Version of The Ε-Ntu Method For Assessing The Effectiveness of Multiple-Pass Heat 534 Thermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria Method Exchangers of Hydrogenerators. In: 15thGowri, N.V., Isaac, J.S., Muralikrishna, T., Babu, G.S., Depoures, M.V., Sekar, S., Sasirekha, P., Ramesh, M., Prabhakar, S., 2022. Genetic Algorithm Integrated Fuzzy AHP-VIKOR Approach for the Investigation of W-Cut Insert Heat Exchanger for Cooling of Dielectric Fluid Used in Ultra-High Voltage Transformer. Advances in Materials Science and Engineering, Volume 2022, p. 2819688Hazza, M.H.A., Abdelwahed, A., Ali, M.Y., Sidek, A.B.A., 2022. An Integrated Approach for Supplier Evaluation and Selection using the Delphi Method and Analytic Hierarchy Process (AHP): A New Framework. International Journal of Technology, Volume 13(1), pp. 16–25Kadoi, N., Re-ep, N.B., Divjak, B., 2017. Decision Making with The Analytical Network Process. In: 14th International Symposium on Operations Research. SloveniaHe, F., Nagano, K., Seol, S.H., Togawa, J., 2022. Thermal Performance Improvement of AHP Using Corrugated Heat Exchanger by Dip-Coating Method with Mass Recovery. Energy, Volume 239, p. 122418Keklikcioglu, O., Günes, S., Senyigit, E., Akcadirci, E., Ozceyhan, V., 2022. The Optimization of The Thermal and Hydraulic Characteristics of a Tube With Twisted Tapes Using Taguchi-Based-AHP-TOPSIS Approach. Journal of Thermal Analysis and Calorimetry, Volume 2022, pp. 1–13Krishankumar, R., Nimmagadda, S.S., Rani, P., Mishra, A.R., Ravichandran, K.S., Gandomi, A.H., 2021. Solving Renewable Energy Source Selection Problems Using a Q-Rung Orthopair Fuzzy-Based Integrated Decision-Making Approach. Journal of Cleaner Production, Volume 279, p. 123329instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Abstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas, and alternative energy industry, to analyze and learn about the main criteria that directly impact the thermal efficiency of a heat exchanger. The applied methodology was based on the AHP (Analytic Hierarchy Process) multicriteria method. Three relevant criteria were identified: Thermodynamic, Hydrodynamic, and Economic. Additionally, a complete analysis of 9 sub-criteria (i.e. energy and exergetic analysis of the process, analysis of the thermodynamic properties of the fluids; pressure drop, volumetric flow of hot and cold fluids; energy costs, maintenance, operation and geometry of the heat exchanger) allowed us to conclude that the best strategy to increase the thermal efficiency of a heat exchanger in real operating conditions consists of using innovative online cleaning prototypes that use abrasive spheres. This will allow the heat exchanger to be cleaned simultaneously with its operation, reducing downtime and maintenance times/costs.Abstract. The goal of this work is to identify the best alternatives that allow for improving the thermal efficiency of a shell and tube heat exchanger in real operating conditions. The main motivation for carrying out the research is based on the need identified, together with the oil, natural gas, and alternative energy industry, to analyze and learn about the main criteria that directly impact the thermal efficiency of a heat exchanger. The applied methodology was based on the AHP (Analytic Hierarchy Process) multicriteria method. Three relevant criteria were identified: Thermodynamic, Hydrodynamic, and Economic. Additionally, a complete analysis of 9 sub-criteria (i.e. energy and exergetic analysis of the process, analysis of the thermodynamic properties of the fluids; pressure drop, volumetric flow of hot and cold fluids; energy costs, maintenance, operation and geometry of the heat exchanger) allowed us to conclude that the best strategy to increase the thermal efficiency of a heat exchanger in real operating conditions consists of using innovative online cleaning prototypes that use abrasive spheres. This will allow the heat exchanger to be cleaned simultaneously with its operation, reducing downtime and maintenance times/costs.Ingeniero(a) Mecánico(a)PregradoPresencialInvestigaciónengUniversidad Antonio NariñoIngeniería MecánicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaTunjaAHPRendimiento HidrodinámicoMCDMIntercambiador de calor de carcasa y tubosEficiencia térmicaAHPHydrodynamic performanceMCDMShell-and-tube heat exchangerThermal and Hydrodynamic Performance Analysis of a Shell and Tube Heat Exchanger Using the AHP Multicriteria MethodTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_KarolRaveloMendivelso_Actapdf2023_KarolRaveloMendivelso_ActapdfActa de sustentaciónapplication/pdf169772https://repositorio.uan.edu.co/bitstreams/a3054d9a-94e7-474f-9871-4f650f428295/downloadc1220a1d70182eb121b6da30607f3fffMD512023_KarolRaveloMendivelso _Articulo.pdf2023_KarolRaveloMendivelso _Articulo.pdfArticulo publicado.application/pdf391322https://repositorio.uan.edu.co/bitstreams/ae3fde98-0216-4519-8865-60ec915d7d44/downloadd336debc67ed4be7d96310a948ddfe7bMD522023_KarolRaveloMendivelso_Autorizaciòn.pdf2023_KarolRaveloMendivelso_Autorizaciòn.pdfAutorización autoresapplication/pdf956395https://repositorio.uan.edu.co/bitstreams/76de7c93-31ed-4305-8597-7a17c77439d5/download0a6ff980fd70e3553ea4e5243ee91f63MD53TEXT2023_KarolRaveloMendivelso_Actapdf.txt2023_KarolRaveloMendivelso_Actapdf.txtExtracted texttext/plain2085https://repositorio.uan.edu.co/bitstreams/e43e616c-5a11-4bb6-9f05-309af37753c4/downloada19c551ceb4931c10075755c76d45097MD542023_KarolRaveloMendivelso _Articulo.pdf.txt2023_KarolRaveloMendivelso _Articulo.pdf.txtExtracted texttext/plain47558https://repositorio.uan.edu.co/bitstreams/ef0620b1-7c89-4ede-95fd-c348d4b59b7c/download10fd080456b4bcc67e75221830ab2fc3MD562023_KarolRaveloMendivelso_Autorizaciòn.pdf.txt2023_KarolRaveloMendivelso_Autorizaciòn.pdf.txtExtracted texttext/plain6https://repositorio.uan.edu.co/bitstreams/8cb5fcb3-49b2-4e17-ad20-9f787f5ed41b/download6d93d3216dc4a7f5df47d4876fbec4d3MD58THUMBNAIL2023_KarolRaveloMendivelso_Actapdf.jpg2023_KarolRaveloMendivelso_Actapdf.jpgGenerated Thumbnailimage/jpeg16414https://repositorio.uan.edu.co/bitstreams/2a47b0bd-9d11-47e5-8930-2a628dd37293/downloadba59c7c316af60d26dd032756ef53e7eMD552023_KarolRaveloMendivelso _Articulo.pdf.jpg2023_KarolRaveloMendivelso _Articulo.pdf.jpgGenerated Thumbnailimage/jpeg17549https://repositorio.uan.edu.co/bitstreams/90a3b0a4-55cf-48cf-b03c-f55b55722fa5/downloadcb3c36d52245082116a5fb3df93dabbeMD572023_KarolRaveloMendivelso_Autorizaciòn.pdf.jpg2023_KarolRaveloMendivelso_Autorizaciòn.pdf.jpgGenerated Thumbnailimage/jpeg20861https://repositorio.uan.edu.co/bitstreams/a33c1c0a-aa8d-4b3a-b038-bdc3ea42164b/download0b890c40cebc7daad8671506ef787b3fMD59123456789/8511oai:repositorio.uan.edu.co:123456789/85112024-10-09 23:36:16.66https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso a solo metadatosrestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |