Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica

Propia

Autores:
Castiblanco Ramirez, Diego Andres
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/1493
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/1493
Palabra clave:
Tratamiento
Nanomaterial
Curtiembres
Cromo Hexavalente
Tanneries
hexavalent chromium
treatment
nanomaterial
Rights
openAccess
License
Attribution 4.0 International (CC BY 4.0)
id UAntonioN2_489cd3bfce0793607fb1b148073c66ee
oai_identifier_str oai:repositorio.uan.edu.co:123456789/1493
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
title Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
spellingShingle Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
Tratamiento
Nanomaterial
Curtiembres
Cromo Hexavalente
Tanneries
hexavalent chromium
treatment
nanomaterial
title_short Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
title_full Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
title_fullStr Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
title_full_unstemmed Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
title_sort Aproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológica
dc.creator.fl_str_mv Castiblanco Ramirez, Diego Andres
dc.contributor.advisor.spa.fl_str_mv Rincón Ortiz, Rolando Javier
dc.contributor.author.spa.fl_str_mv Castiblanco Ramirez, Diego Andres
dc.subject.es_ES.fl_str_mv Tratamiento
Nanomaterial
Curtiembres
Cromo Hexavalente
topic Tratamiento
Nanomaterial
Curtiembres
Cromo Hexavalente
Tanneries
hexavalent chromium
treatment
nanomaterial
dc.subject.keyword.es_ES.fl_str_mv Tanneries
hexavalent chromium
treatment
nanomaterial
description Propia
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-11-19
dc.date.accessioned.none.fl_str_mv 2021-02-18T17:57:14Z
dc.date.available.none.fl_str_mv 2021-02-18T17:57:14Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/1493
dc.identifier.bibliographicCitation.spa.fl_str_mv AFIRM GROUP. (2019). Documento informativo sobre sustancias químicas: Cromo VI. https://echa.europa.eu/substances-restricted-under-
Ahamed, M. I. N., Rajeshkumar, S., Ragul, V., Anand, S., & Kaviyarasu, K. (2018). Chromium remediation and toxicity assessment of nano zerovalent iron against contaminated lake water sample (Puliyanthangal Lake, Tamilnadu, India). South African Journal of Chemical Engineering, 25, 128–132. https://doi.org/10.1016/j.sajce.2018.04.004
Alcaldía de Bogotá. (2015). Guía de producción más limpia para el sector curtiembres de Bogotá Enfoque en vertimientos y residuos. http://www.ambientebogota.gov.co/web/sda/search?p_auth=cpOG8bqA&p_p_auth=y3HWCdzt&p_p_id=20&p_p_lifecycle=1&p_p_state=exclusive&p_p_mode=view&_20_struts_action=%2Fdocument_library%2Fget_file&_20_groupId=24732&_20_folderId=3987253&_20_name=21215
Almeida, J. C., Cardoso, C. E. D., Tavares, D. S., Freitas, R., Trindade, T., Vale, C., & Pereira, E. (2019). Chromium removal from contaminated waters using nanomaterials – A review. TrAC - Trends in Analytical Chemistry, 118, 277–291. https://doi.org/10.1016/j.trac.2019.05.005
Anastopoulos, I., Anagnostopoulos, V. A., Bhatnagar, A., Mitropoulos, A. C., & Kyzas, G. Z. (2017). A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 33(6), 572–588. https://doi.org/10.1080/02757540.2017.1328503
Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. In Arabian Journal of Chemistry (Vol. 12, Issue 8, pp. 4897–4919). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2016.10.004
Anónimo. (2016). La contaminación del río Bogotá impide aprovechar su potencial. Revista Dinero. https://www.dinero.com/economia/articulo/la-contaminacion-del-rio-bogota-impide-aprovechar-su-potencial/226565
Anónimo. (2020). Río Bogotá, un guerrero ancestral que espera su renacer. Revista Semana. https://sostenibilidad.semana.com/actualidad/articulo/rio-bogota-un-guerrero-ancestral-que-espera-su-renacer/49052
Apte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/j.jhazmat.2005.02.010
Artunduaga Cuellar, O. F. (2015). Tratamientos para la remoción de Cromo (VI) presente en aguas residuales. Revista Nova, 1(1). https://doi.org/10.23850/25004476.187
Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010
Rajput, S., Pittman, C. U., & Mohan, D. (2016b). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008
Ray, P. Z., & Shipley, H. J. (2015). Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 5(38), 29885–29907. https://doi.org/10.1039/c5ra02714d
Religa, P., Kowalik, A., & Gierycz, P. (2011). Application of nanofiltration for chromium concentration in the tannery wastewater. Journal of Hazardous Materials, 186(1), 288–292. https://doi.org/10.1016/j.jhazmat.2010.10.112
Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. In Current Opinion in Environmental Science and Health (Vol. 2, pp. 64–74). Elsevier B.V. https://doi.org/10.1016/j.coesh.2018.03.005
Salman, R. H., Hassan, H. A., Abed, K. M., Al-Alawy, A. F., Tuama, D. A., Hussein, K. M., & Jabir, H. A. (2020). Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes. AIP Conference Proceedings, 2213, 020186. https://doi.org/10.1063/5.0000201
Samrot, A. V., Sahithya, C. S., Jenifer Selvarani, A., Pachiyappan, S., & Suresh Kumar, S. U. (2019). Surface-engineered super-paramagnetic iron oxide nanoparticles for chromium removal. International Journal of Nanomedicine, 14, 8105–8119. https://doi.org/10.2147/IJN.S214236
Saxena, G., Chandra, R., & Bharagava, R. N. (2017). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In Reviews of Environmental Contamination and Toxicology (Vol. 240, pp. 31–69). Springer New York LLC. https://doi.org/10.1007/398_2015_5009
Secretaría Distrital de Ambiente Alcaldía de Bogotá. (n.d.). GUÍA CONCEPTUAL SOBRE LA PTAR SALITRE . Retrieved June 2, 2020, from http://www.secretariadeambiente.gov.co/sda/libreria/pdf/riobogota/crono.pdf
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. In Chemosphere (Vol. 178, pp. 513–533). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2017.03.074
Shi, D., Zhang, X., Wang, J., & Fan, J. (2018). Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants. Applied Catalysis B: Environmental, 221, 610–617. https://doi.org/10.1016/j.apcatb.2017.09.057
Sobhanardakani, S., & Zandipak, R. (2017). Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technologies and Environmental Policy, 19(7), 1913–1925. https://doi.org/10.1007/s10098-017-1374-5
Sierra Garcia, S. C. (2018). Environmental Effects Generated By The Discharges Of The Leather Tanning Industries: Implications In The High Basin Of The Bogotá River. https://repository.unimilitar.edu.co/bitstream/handle/10654/17868/SierraGarciaSoniaCarolina2018.pdf?sequence=2&isAllowed=y
Simeonidis, K., Kaprara, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M., & Andritsos, N. (2015). Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI). Science of the Total Environment, 535, 61–68. https://doi.org/10.1016/j.scitotenv.2015.04.033
Thanh Ho, V. T., Hong, N. V. H., Van Nguyen, A., Bach, L. G., & Dinh, T. P. (2018). Core–Shell Fe@SiO 2 Nanoparticles Synthesized via Modified Stober Method for High Activity in Cr(VI) Reduction . Journal of Nanoscience and Nanotechnology, 18(10), 6867–6872. https://doi.org/10.1166/jnn.2018.15721
Thekkudan, V. N., Vaidyanathan, V. K., Ponnusamy, S. K., Charles, C., Sundar, S. L., Vishnu, D., Anbalagan, S., Vaithyanathan, V. K., & Subramanian, S. (2017). Review on nanoadsorbents: A solution for heavy metal removal from wastewater. In IET Nanobiotechnology (Vol. 11, Issue 3, pp. 213–224). Institution of Engineering and Technology. https://doi.org/10.1049/iet-nbt.2015.0114
Vásquez Daza, L. (2012). Las curtiembres en el Barrio San Benito de Bogotá. Un análisis bioético en la perspectiva de Hans Jonas. https://repository.javeriana.edu.co/handle/10554/2144
Wang, F., Yang, W., Zheng, F., & Sun, Y. (2018). Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles. International Journal of Environmental Research and Public Health, 15(10), 2162. https://doi.org/10.3390/ijerph15102162
Wang, X., Liu, X., Xiao, C., Zhao, H., Zhang, M., Zheng, N., Kong, W., Zhang, L., Yuan, H., Zhang, L., & Lu, J. (2020). Triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate. Microporous and Mesoporous Materials, 297, 110041. https://doi.org/10.1016/j.micromeso.2020.110041
Wu, J., Yan, M., Lv, S., Yin, W., Bu, H., Liu, L., Li, P., Deng, H., & Zheng, X. (2021). Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium. Chemosphere, 262, 127733. https://doi.org/10.1016/j.chemosphere.2020.127733
Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 424. https://doi.org/10.3390/nano9030424
Yao, S., Yuan, X., Jiang, L., Xiong, T., & Zhang, J. (2020). Recent Progress on Fullerene-Based Materials :
Zeng, Q., Huang, Y., Huang, L., Hu, L., Xiong, D., Zhong, H., & He, Z. (2020). Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate. Chemical Engineering Journal, 383, 123209. https://doi.org/10.1016/j.cej.2019.123209
Barros, J. (2020). ¿Por qué la cuenca media es la que más contamina al río Bogotá y cómo recuperla? Revista Semana. https://sostenibilidad.semana.com/medio-ambiente/articulo/por-que-la-cuenca-media-es-la-que-mas-contamina-al-rio-bogota-y-como-recuperla/49548
Zhao, Y., Kang, D., Chen, Z., Zhan, J., & Wu, X. (2018). Removal of Chromium Using Electrochemical Approaches: A Review. Int. J. Electrochem. Sci, 13, 1250–1259. https://doi.org/10.20964/2018.02.46
Zhou, L., Li, R., Zhang, G., Wang, D., Cai, D., & Wu, Z. (2018). Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chemical Engineering Journal, 339, 85–96. https://doi.org/10.1016/j.cej.2018.01.132
Bautista Franco, C. L., Moreno Vargas, C. C., & Socha Matiz, A. (2015). Estrategias de responsabilidad social ambiental de las curtiembres en la localidad de Tunjuelito [Universidad Cooperativa de Colombia]. https://repository.ucc.edu.co/bitstream/20.500.12494/10378/1/2015_estrategias_responsabilidad_social.pdf
Belay, A. A. (2010). Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. Journal of Environmental Protection, 1, 53–58. https://doi.org/10.4236/jep.2010.11007
Bhushan, B. (2017). Introduction to nanotechnology. In Springer Handbooks (pp. 1–19). Springer. https://doi.org/10.1007/978-3-662-54357-3_1
Bralower, T., & Bice, D. (2019). Distribution of Water on the Earth’s Surface | EARTH 103: Earth in the Future. https://www.e-education.psu.edu/earth103/node/701
Bravo Gallardo, M. A. (2017). Coagulantes y floculantes naturales usados en la reducción de turbidez, solidos suspendidos, colorantes y metales pesados en aguas residuales. [Universidad Distrital Francisco José Caldas]. http://repository.udistrital.edu.co/bitstream/11349/5609/1/BravoGallardoMonicaAlejandra2017.pdf
Campos, A. F. C., de Oliveira, H. A. L., da Silva, F. N., da Silva, F. G., Coppola, P., Aquino, R., Mezzi, A., & Depeyrot, J. (2019). Core-Shell Bimagnetic Nanoadsorbents for Hexavalent Chromium Removal from Aqueous Solutions. Journal of Hazardous Materials, 362(May 2018), 82–91. https://doi.org/10.1016/j.jhazmat.2018.09.008
CAR. (2018). CAR | Río Bogotá. https://www.car.gov.co/rio_bogota
Cardona Pérez, V. (2018). Plantas de tratamiento de aguas residuales del río Bogotá generan gases de efecto invernadero | Universidad Central. https://www.ucentral.edu.co/noticentral/plantas-tratamiento-aguas-residuales-del-rio-bogota-generan-gases-efecto-invernadero
Carreño Sayago, U. F., Perez, J. J., Cote Montañez, D., & Agatón, A. L. (2016). Modelación de un sistema de lodos activados en el sector de las curtiembres de San Benito Bogotá. Producción + Limpia, 11(2), 9–21. https://doi.org/10.22507/pml.v11n2a1
Chávez Andrade, J. K. (2018). Recuperación de cromo a partir de lodos residuales provenientes del proceso de curtido en la industria de la curtiembre [Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/bitstream/25000/17033/1/T-UCE-0017-IQU-019.pdf
Chen, G., Feng, J., Wang, W., Yin, Y., & Liu, H. (2017). Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Water Research, 108, 383–390. https://doi.org/10.1016/j.watres.2016.11.013
Chen, Q. Y., Murphy, A., Sun, H., & Costa, M. (2019). Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. In Toxicology and Applied Pharmacology (Vol. 377, p. 114636). Academic Press Inc. https://doi.org/10.1016/j.taap.2019.114636
Cristancho Montenegro, D. L., Pinto Hernández, L. M., & Tique Hilarión, J. S. (2019). Evaluación de la eficiencia de un sistema de electrocoagulación en los vertimientos de curtiembres en el sector de Villapinzón (Cundinamarca). MUTIS, 2, 34–48. https://doi.org/10.21789/22561498.1590
De Gisi, S., Casella, P., Cellamare, C. M., Ferraris, M., Petta, L., & Notarnicola, M. (2017). Wastewater Reuse. In Encyclopedia of Sustainable Technologies (pp. 53–68). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10528-7
Ding, G. K. C. (2017). Wastewater Treatment and Reuse-The Future Source of Water Supply. In Encyclopedia of Sustainable Technologies (pp. 43–52). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10170-8
Documentación IDEAM. (n.d.). Retrieved June 2, 2020, from http://documentacion.ideam.gov.co/openbiblio/bvirtual/021318/03TextoCompleto.pdf
Dubey, S., Banerjee, S., Upadhyay, S. N., & Sharma, Y. C. (2017). Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of Molecular Liquids, 240, 656–677. https://doi.org/10.1016/j.molliq.2017.05.107
Ealias, A. M., & P, S. M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application A review on the classification, characterisation, synthesis of nanoparticles and their application Related content Synthesis of Aluminium Nanoparticles in A. IOP Conference Series: Materials Science and Engineering, 263(3). https://doi.org/10.1088/1757-899X/263/3/032019
EPA. (2016). Chromium Compounds. https://www.epa.gov/sites/production/files/2016-09/documents/chromium-compounds.pdf
EPA. (2020). CLU-IN | Contaminants > Chromium VI > Chemistry and Behavior. https://clu-in.org/contaminantfocus/default.focus/sec/chromium_VI/cat/Chemistry_and_Behavior/
Eskin, M. (2016). Chromium: Is It Essential and Is It Safe? Vitam Miner, 5. https://doi.org/10.4172/2376-1318.1000e144
Estupiñan, K. (2018). Curtiembres selladas en San Benito. Alcaldía de Bogotá. https://bogota.gov.co/mi-ciudad/ambiente/curtiembres-selladas-en-san-benito
Ezzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. In Chemical Engineering Journal (Vol. 312, pp. 336–350). Elsevier B.V. https://doi.org/10.1016/j.cej.2016.11.154
Ferroudj, N., Nzimoto, J., Davidson, A., Talbot, D., Briot, E., Dupuis, V., Bée, A., Medjram, M. S., & Abramson, S. (2013). Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Applied Catalysis B: Environmental, 136–137, 9–18. https://doi.org/10.1016/j.apcatb.2013.01.046
Franco González, N. G., Clavijo Rios, C., Niño García, S. L., & Salazar Neira, J. C. (2017). Boletin del índice de calidad del agua en corrientes superficiales “ica” 2017 - ii. https://www.car.gov.co/uploads/files/5ada16a46c9f6.pdf
Fu, F., Ma, J., Xie, L., Tang, B., Han, W., & Lin, S. (2013). Chromium removal using resin supported nanoscale zero-valent iron. Journal of Environmental Management, 128, 822–827. https://doi.org/10.1016/j.jenvman.2013.06.044
García Muñoz, O. E., & Ramirez Rodriguez, L. N. (2019). Evaluación de una propuesta para el sistema de tratamiento de aguas residuales de curtiembre y marroquinería f.b [Fundación Universidad de America]. http://repository.uamerica.edu.co/bitstream/20.500.11839/7378/1/6132093-2019-1-IQ.pdf
Gómez, S. (2016). Características tecnológicas del cuero napa de ovino adulto, mediante los métodos de curtido wet- blue y wet. 132.
González Pachón, L. A. (2019). Gestión para mitigar los impactos ambientales generados por las curtiembres de bogotá con el fin de concientizar sobre el cambio climático [Universidad Militar Nueva Granada]. https://repository.unimilitar.edu.co/bitstream/handle/10654/21130/GonzalezPachonLuzAngelica2019.pdf?sequence=1&isAllowed=y
GracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. S. (2019). A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. Journal of Cleaner Production, 228, 580–593. https://doi.org/10.1016/j.jclepro.2019.04.117
Hasan, S. (2015). A Review on Nanoparticles: Their Synthesis and Types. In Research Journal of Recent Sciences (Vol. 4). www.isca.me
Hernandez, E. (2018). Criterios de Implementación ISO 14001: 2015. Caso de estudio Sector Curtiembres. https://repository.unad.edu.co/bitstream/handle/10596/19108/80245223.pdf?sequence=1&isAllowed=y
Hossain, M., Hossain, M., Begum, M., Shahjahan, M., Islam, M., & Saha, B. (2018). Magnetite (Fe3O4) nanoparticles for chromium removal. Bangladesh Journal of Scientific and Industrial Research, 53(3), 219–224. https://doi.org/10.3329/bjsir.v53i3.3826
Islam, J. B., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2019). Photocatalytic Reduction of Hexavalent Chromium with Nanosized TiO2 in Presence of Formic Acid. ChemEngineering, 3(2), 33. https://doi.org/10.3390/chemengineering3020033
Jin, W., Du, H., Zheng, S., & Zhang, Y. (2016). Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta, 191, 1044–1055. https://doi.org/10.1016/J.ELECTACTA.2016.01.130
Justin, C., Philip, S. A., & Samrot, A. V. (2017). Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience (Switzerland), 7(7), 463–475. https://doi.org/10.1007/s13204-017-0583-x
Kahrizi, H., Bafkar, A., & Farasati, M. (2016). Effect of nanotechnology on heavy metal removal from aqueous solution. Journal of Central South University, 23(10), 2526–2535. https://doi.org/10.1007/s11771-016-3313-8
Kalidhasan, S., Santhana Krishna Kumar, A., Rajesh, V., & Rajesh, N. (2016). The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. In Coordination Chemistry Reviews (Vol. 317, pp. 157–166). Elsevier. https://doi.org/10.1016/j.ccr.2016.03.004
Kamegawa, T., Ishiguro, Y., Magatani, Y., & Yamashita, H. (2016). Spherical TiO2/Mesoporous SiO2 core/shell type photocatalyst for water purification. Journal of Nanoscience and Nanotechnology, 16(9), 9273–9277. https://doi.org/10.1166/jnn.2016.12894
Kan, C. C., Ibe, A. H., Rivera, K. K. P., Arazo, R. O., & de Luna, M. D. G. (2017). Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research, 27(4), 163–171. https://doi.org/10.1016/j.serj.2017.04.001
Kaushal, A., & Singh, S. K. (2017). Removal of heavy metals by nanoadsorbents: A review. Journal of Environment and Biotechnology Research. www.vinanie.com/jebr
Kazemi, M., Jahanshahi, M., & Peyravi, M. (2018). Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate. Journal of Hazardous Materials, 344, 12–22. https://doi.org/10.1016/j.jhazmat.2017.09.059
Khan, F. S. A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Mazari, S. A., Nizamuddin, S., & Karri, R. R. (2020). Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environmental Science and Pollution Research, 27(19), 24342–24356. https://doi.org/10.1007/s11356-020-08711-6
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. In Arabian Journal of Chemistry (Vol. 12, Issue 7, pp. 908–931). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2017.05.011
Koei, N. (2011). Car alternativas para el manejo y disposicion de biosolidos Producto Final-Anexo No. 20 Alternativas para el Manejo y Disposición de Biosólidos de la PTAR Salitre.
Lakherwal, D. (2014). Adsorption of Heavy Metals: A Review. In International Journal of Environmental Research and Development (Vol. 4, Issue 1). http://www.ripublication.com/ijerd.htm
Latorre Torres, D. F. (2014). Diagnóstico ambiental y programa de control y seguimiento al sector curtiembres del barrio San Benito de la ciudad de Bogotá [Universidad de La Salle]. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1010&context=maest_ingenieria
Lim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. Journal of Industrial and Engineering Chemistry, 66, 29–44. https://doi.org/10.1016/J.JIEC.2018.05.028
Lisjak, D., & Mertelj, A. (2018). Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. In Progress in Materials Science (Vol. 95, pp. 286–328). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2018.03.003
Liu, L., Luo, X.-B., Ding, L., & Luo, S.-L. (2019). Application of Nanotechnology in the Removal of Heavy Metal From Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814837-2.00004-4
Maitlo, H. A., Kim, K. H., Kumar, V., Kim, S., & Park, J. W. (2019). Nanomaterials-based treatment options for chromium in aqueous environments. In Environment International (Vol. 130, p. 104748). Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.04.020
Marín, J. (2019). RÍO BOGOTÁ: Donde nace, su historia, recorrido y más. https://conocelosrios.com/c-colombia/rio-bogota/
Martinez Buitrago, S. Y., & Romero Coca, J. A. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Revista Facultad de Ciencias Económicas, 26(1), 113–124. https://doi.org/10.18359/rfce.2357
Miguel Córdova Bravo, H., Vargas Parker, R., Téllez Monzón, L., Flor Cesare Coral, M., Becker, R., & Visitación Figueroa, L. (2013). Influencia del uso de acomplejantes en el baño de curtido sobre la calidad final del cuero. In Rev Soc Quím Perú (Vol. 79, Issue 4). www.tanquimica.com.br,
Ministerio de Ambiente y Desarrollo Sostenible. (2015). Resolución 631 de 2015 Ministerio de Ambiente y Desarrollo Sostenible. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=70346&dt=S
Mitra, S., Sarkar, A., & Sen, S. (2017). Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnology for Environmental Engineering, 2(1), 1–14. https://doi.org/10.1007/s41204-017-0022-y
Mnif, A., Bejaoui, I., Mouelhi, M., & Hamrouni, B. (2017). Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane. International Journal of Analytical Chemistry, 2017. https://doi.org/10.1155/2017/7415708
Nam, A., Choi, U. S., Yun, S. T., Choi, J. W., Park, J. A., & Lee, S. H. (2018). Evaluation of amine-functionalized acrylic ion exchange fiber for chromium(VI) removal using flow-through experiments modeling and real wastewater. Journal of Industrial and Engineering Chemistry, 66, 187–195. https://doi.org/10.1016/j.jiec.2018.05.029
Nawaz, T., Zulfiqar, S., Sarwar, M. I., & Iqbal, M. (2020). Synthesis of diglycolic acid functionalized core-shell silica coated Fe3O4 nanomaterials for magnetic extraction of Pb(II) and Cr(VI) ions. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-67168-2
Nematollahzadeh, A., Seraj, S., & Mirzayi, B. (2015). Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chemical Engineering Journal, 277, 21–29. https://doi.org/10.1016/j.cej.2015.04.135
Nogueira, V., Lopes, I., Rocha-Santos, T., Gonçalves, F., & Pereira, R. (2015). Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquatic Toxicology, 165, 172–178. https://doi.org/10.1016/j.aquatox.2015.05.021
Ojemaye, M. O., Okoh, O. O., & Okoh, A. I. (2017). Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI) in Aqueous Solutions. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/5264910
Okaiyeto, K., Nwodo, U. U., Okoli, S. A., Mabinya, L. V., & Okoh, A. I. (2016). Implications for public health demands alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. In MicrobiologyOpen (Vol. 5, Issue 2, pp. 177–211). Blackwell Publishing Ltd. https://doi.org/10.1002/mbo3.334
Oliveira, H. (2012). Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. Journal of Botany, 2012, 1–8. https://doi.org/10.1155/2012/375843
Ortiz, N. E., & Carmona, J. C. (2015). Aprovechamiento De Cromo Eliminado En Aguas Residuales De Curtiembres (San Benito, Bogotá), Mediante Tratamiento Con Sulfato De Sodio. Revista Luna Azul, 40(Enero-Junio), 117–126. https://doi.org/10.17151/luaz.2015.40.9
Ortiz Penagos, N. E. (2013). Recuperación Y Reutilización De Cromo De Las Aguas Residuales Del Proceso De Curtido De Curtiembres De San Benito (Bogotá), Mediante Un Proceso Sostenible Y Viable Tecnológicamente [Universidad De Manizales]. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/1076/Ortiz_Penagos_Nidia_Elena_2013.pdf?sequence=1
Pakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. In RSC Advances (Vol. 9, Issue 45, pp. 26142–26164). Royal Society of Chemistry. https://doi.org/10.1039/c9ra05188k
Panda, H., Tiadi, N., Mohanty, M., & Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23, 132–138. https://doi.org/10.1016/j.sajce.2017.05.002
Paul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015a). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-y
Paul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015b). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-y
Peng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. In Environmental Chemistry Letters (Vol. 1, p. 3). Springer. https://doi.org/10.1007/s10311-020-01058-x
Peng, H., Guo, J., Li, B., Liu, Z., & Tao, C. (2018). High-efficient recovery of chromium (VI) with lead sulfate. Journal of the Taiwan Institute of Chemical Engineers, 85, 149–154. https://doi.org/10.1016/j.jtice.2018.01.028
Peng, H., Leng, Y., & Guo, J. (2019). Electrochemical Removal of Chromium (VI) from Wastewater. Applied Sciences, 9(6), 1156. https://doi.org/10.3390/app9061156
Pinilla Arbeláez, D. E. (2014). Precipitación De Cromo Y Reutilización Del Agua De Vertimientos De Curtiembres De San Benito (Bogotá). Http://Repository.Usta.Edu.Co/Bitstream/Handle/11634/2647/2014danielpinilla.Pdf?Sequence=4&Isallowed=Y
Predescu, A., Matei, E., Predescu, A., Berbecaru, A., Sohaciu, M., & Predescu, C. (2016). REMOVAL OF HEXAVALENT CHROMIUM FROM WATERS BY MEANS OF A TiO2-Fe3O4 NANOCOMPOSITE (Vol. 15, Issue 5). http://omicron.ch.tuiasi.ro/EEMJ/
Rajput, S., Pittman, C. U., & Mohan, D. (2016a). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/1493
identifier_str_mv AFIRM GROUP. (2019). Documento informativo sobre sustancias químicas: Cromo VI. https://echa.europa.eu/substances-restricted-under-
Ahamed, M. I. N., Rajeshkumar, S., Ragul, V., Anand, S., & Kaviyarasu, K. (2018). Chromium remediation and toxicity assessment of nano zerovalent iron against contaminated lake water sample (Puliyanthangal Lake, Tamilnadu, India). South African Journal of Chemical Engineering, 25, 128–132. https://doi.org/10.1016/j.sajce.2018.04.004
Alcaldía de Bogotá. (2015). Guía de producción más limpia para el sector curtiembres de Bogotá Enfoque en vertimientos y residuos. http://www.ambientebogota.gov.co/web/sda/search?p_auth=cpOG8bqA&p_p_auth=y3HWCdzt&p_p_id=20&p_p_lifecycle=1&p_p_state=exclusive&p_p_mode=view&_20_struts_action=%2Fdocument_library%2Fget_file&_20_groupId=24732&_20_folderId=3987253&_20_name=21215
Almeida, J. C., Cardoso, C. E. D., Tavares, D. S., Freitas, R., Trindade, T., Vale, C., & Pereira, E. (2019). Chromium removal from contaminated waters using nanomaterials – A review. TrAC - Trends in Analytical Chemistry, 118, 277–291. https://doi.org/10.1016/j.trac.2019.05.005
Anastopoulos, I., Anagnostopoulos, V. A., Bhatnagar, A., Mitropoulos, A. C., & Kyzas, G. Z. (2017). A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 33(6), 572–588. https://doi.org/10.1080/02757540.2017.1328503
Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. In Arabian Journal of Chemistry (Vol. 12, Issue 8, pp. 4897–4919). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2016.10.004
Anónimo. (2016). La contaminación del río Bogotá impide aprovechar su potencial. Revista Dinero. https://www.dinero.com/economia/articulo/la-contaminacion-del-rio-bogota-impide-aprovechar-su-potencial/226565
Anónimo. (2020). Río Bogotá, un guerrero ancestral que espera su renacer. Revista Semana. https://sostenibilidad.semana.com/actualidad/articulo/rio-bogota-un-guerrero-ancestral-que-espera-su-renacer/49052
Apte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/j.jhazmat.2005.02.010
Artunduaga Cuellar, O. F. (2015). Tratamientos para la remoción de Cromo (VI) presente en aguas residuales. Revista Nova, 1(1). https://doi.org/10.23850/25004476.187
Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010
Rajput, S., Pittman, C. U., & Mohan, D. (2016b). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008
Ray, P. Z., & Shipley, H. J. (2015). Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 5(38), 29885–29907. https://doi.org/10.1039/c5ra02714d
Religa, P., Kowalik, A., & Gierycz, P. (2011). Application of nanofiltration for chromium concentration in the tannery wastewater. Journal of Hazardous Materials, 186(1), 288–292. https://doi.org/10.1016/j.jhazmat.2010.10.112
Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. In Current Opinion in Environmental Science and Health (Vol. 2, pp. 64–74). Elsevier B.V. https://doi.org/10.1016/j.coesh.2018.03.005
Salman, R. H., Hassan, H. A., Abed, K. M., Al-Alawy, A. F., Tuama, D. A., Hussein, K. M., & Jabir, H. A. (2020). Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes. AIP Conference Proceedings, 2213, 020186. https://doi.org/10.1063/5.0000201
Samrot, A. V., Sahithya, C. S., Jenifer Selvarani, A., Pachiyappan, S., & Suresh Kumar, S. U. (2019). Surface-engineered super-paramagnetic iron oxide nanoparticles for chromium removal. International Journal of Nanomedicine, 14, 8105–8119. https://doi.org/10.2147/IJN.S214236
Saxena, G., Chandra, R., & Bharagava, R. N. (2017). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In Reviews of Environmental Contamination and Toxicology (Vol. 240, pp. 31–69). Springer New York LLC. https://doi.org/10.1007/398_2015_5009
Secretaría Distrital de Ambiente Alcaldía de Bogotá. (n.d.). GUÍA CONCEPTUAL SOBRE LA PTAR SALITRE . Retrieved June 2, 2020, from http://www.secretariadeambiente.gov.co/sda/libreria/pdf/riobogota/crono.pdf
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. In Chemosphere (Vol. 178, pp. 513–533). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2017.03.074
Shi, D., Zhang, X., Wang, J., & Fan, J. (2018). Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants. Applied Catalysis B: Environmental, 221, 610–617. https://doi.org/10.1016/j.apcatb.2017.09.057
Sobhanardakani, S., & Zandipak, R. (2017). Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technologies and Environmental Policy, 19(7), 1913–1925. https://doi.org/10.1007/s10098-017-1374-5
Sierra Garcia, S. C. (2018). Environmental Effects Generated By The Discharges Of The Leather Tanning Industries: Implications In The High Basin Of The Bogotá River. https://repository.unimilitar.edu.co/bitstream/handle/10654/17868/SierraGarciaSoniaCarolina2018.pdf?sequence=2&isAllowed=y
Simeonidis, K., Kaprara, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M., & Andritsos, N. (2015). Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI). Science of the Total Environment, 535, 61–68. https://doi.org/10.1016/j.scitotenv.2015.04.033
Thanh Ho, V. T., Hong, N. V. H., Van Nguyen, A., Bach, L. G., & Dinh, T. P. (2018). Core–Shell Fe@SiO 2 Nanoparticles Synthesized via Modified Stober Method for High Activity in Cr(VI) Reduction . Journal of Nanoscience and Nanotechnology, 18(10), 6867–6872. https://doi.org/10.1166/jnn.2018.15721
Thekkudan, V. N., Vaidyanathan, V. K., Ponnusamy, S. K., Charles, C., Sundar, S. L., Vishnu, D., Anbalagan, S., Vaithyanathan, V. K., & Subramanian, S. (2017). Review on nanoadsorbents: A solution for heavy metal removal from wastewater. In IET Nanobiotechnology (Vol. 11, Issue 3, pp. 213–224). Institution of Engineering and Technology. https://doi.org/10.1049/iet-nbt.2015.0114
Vásquez Daza, L. (2012). Las curtiembres en el Barrio San Benito de Bogotá. Un análisis bioético en la perspectiva de Hans Jonas. https://repository.javeriana.edu.co/handle/10554/2144
Wang, F., Yang, W., Zheng, F., & Sun, Y. (2018). Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles. International Journal of Environmental Research and Public Health, 15(10), 2162. https://doi.org/10.3390/ijerph15102162
Wang, X., Liu, X., Xiao, C., Zhao, H., Zhang, M., Zheng, N., Kong, W., Zhang, L., Yuan, H., Zhang, L., & Lu, J. (2020). Triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate. Microporous and Mesoporous Materials, 297, 110041. https://doi.org/10.1016/j.micromeso.2020.110041
Wu, J., Yan, M., Lv, S., Yin, W., Bu, H., Liu, L., Li, P., Deng, H., & Zheng, X. (2021). Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium. Chemosphere, 262, 127733. https://doi.org/10.1016/j.chemosphere.2020.127733
Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 424. https://doi.org/10.3390/nano9030424
Yao, S., Yuan, X., Jiang, L., Xiong, T., & Zhang, J. (2020). Recent Progress on Fullerene-Based Materials :
Zeng, Q., Huang, Y., Huang, L., Hu, L., Xiong, D., Zhong, H., & He, Z. (2020). Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate. Chemical Engineering Journal, 383, 123209. https://doi.org/10.1016/j.cej.2019.123209
Barros, J. (2020). ¿Por qué la cuenca media es la que más contamina al río Bogotá y cómo recuperla? Revista Semana. https://sostenibilidad.semana.com/medio-ambiente/articulo/por-que-la-cuenca-media-es-la-que-mas-contamina-al-rio-bogota-y-como-recuperla/49548
Zhao, Y., Kang, D., Chen, Z., Zhan, J., & Wu, X. (2018). Removal of Chromium Using Electrochemical Approaches: A Review. Int. J. Electrochem. Sci, 13, 1250–1259. https://doi.org/10.20964/2018.02.46
Zhou, L., Li, R., Zhang, G., Wang, D., Cai, D., & Wu, Z. (2018). Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chemical Engineering Journal, 339, 85–96. https://doi.org/10.1016/j.cej.2018.01.132
Bautista Franco, C. L., Moreno Vargas, C. C., & Socha Matiz, A. (2015). Estrategias de responsabilidad social ambiental de las curtiembres en la localidad de Tunjuelito [Universidad Cooperativa de Colombia]. https://repository.ucc.edu.co/bitstream/20.500.12494/10378/1/2015_estrategias_responsabilidad_social.pdf
Belay, A. A. (2010). Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. Journal of Environmental Protection, 1, 53–58. https://doi.org/10.4236/jep.2010.11007
Bhushan, B. (2017). Introduction to nanotechnology. In Springer Handbooks (pp. 1–19). Springer. https://doi.org/10.1007/978-3-662-54357-3_1
Bralower, T., & Bice, D. (2019). Distribution of Water on the Earth’s Surface | EARTH 103: Earth in the Future. https://www.e-education.psu.edu/earth103/node/701
Bravo Gallardo, M. A. (2017). Coagulantes y floculantes naturales usados en la reducción de turbidez, solidos suspendidos, colorantes y metales pesados en aguas residuales. [Universidad Distrital Francisco José Caldas]. http://repository.udistrital.edu.co/bitstream/11349/5609/1/BravoGallardoMonicaAlejandra2017.pdf
Campos, A. F. C., de Oliveira, H. A. L., da Silva, F. N., da Silva, F. G., Coppola, P., Aquino, R., Mezzi, A., & Depeyrot, J. (2019). Core-Shell Bimagnetic Nanoadsorbents for Hexavalent Chromium Removal from Aqueous Solutions. Journal of Hazardous Materials, 362(May 2018), 82–91. https://doi.org/10.1016/j.jhazmat.2018.09.008
CAR. (2018). CAR | Río Bogotá. https://www.car.gov.co/rio_bogota
Cardona Pérez, V. (2018). Plantas de tratamiento de aguas residuales del río Bogotá generan gases de efecto invernadero | Universidad Central. https://www.ucentral.edu.co/noticentral/plantas-tratamiento-aguas-residuales-del-rio-bogota-generan-gases-efecto-invernadero
Carreño Sayago, U. F., Perez, J. J., Cote Montañez, D., & Agatón, A. L. (2016). Modelación de un sistema de lodos activados en el sector de las curtiembres de San Benito Bogotá. Producción + Limpia, 11(2), 9–21. https://doi.org/10.22507/pml.v11n2a1
Chávez Andrade, J. K. (2018). Recuperación de cromo a partir de lodos residuales provenientes del proceso de curtido en la industria de la curtiembre [Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/bitstream/25000/17033/1/T-UCE-0017-IQU-019.pdf
Chen, G., Feng, J., Wang, W., Yin, Y., & Liu, H. (2017). Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Water Research, 108, 383–390. https://doi.org/10.1016/j.watres.2016.11.013
Chen, Q. Y., Murphy, A., Sun, H., & Costa, M. (2019). Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. In Toxicology and Applied Pharmacology (Vol. 377, p. 114636). Academic Press Inc. https://doi.org/10.1016/j.taap.2019.114636
Cristancho Montenegro, D. L., Pinto Hernández, L. M., & Tique Hilarión, J. S. (2019). Evaluación de la eficiencia de un sistema de electrocoagulación en los vertimientos de curtiembres en el sector de Villapinzón (Cundinamarca). MUTIS, 2, 34–48. https://doi.org/10.21789/22561498.1590
De Gisi, S., Casella, P., Cellamare, C. M., Ferraris, M., Petta, L., & Notarnicola, M. (2017). Wastewater Reuse. In Encyclopedia of Sustainable Technologies (pp. 53–68). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10528-7
Ding, G. K. C. (2017). Wastewater Treatment and Reuse-The Future Source of Water Supply. In Encyclopedia of Sustainable Technologies (pp. 43–52). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10170-8
Documentación IDEAM. (n.d.). Retrieved June 2, 2020, from http://documentacion.ideam.gov.co/openbiblio/bvirtual/021318/03TextoCompleto.pdf
Dubey, S., Banerjee, S., Upadhyay, S. N., & Sharma, Y. C. (2017). Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of Molecular Liquids, 240, 656–677. https://doi.org/10.1016/j.molliq.2017.05.107
Ealias, A. M., & P, S. M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application A review on the classification, characterisation, synthesis of nanoparticles and their application Related content Synthesis of Aluminium Nanoparticles in A. IOP Conference Series: Materials Science and Engineering, 263(3). https://doi.org/10.1088/1757-899X/263/3/032019
EPA. (2016). Chromium Compounds. https://www.epa.gov/sites/production/files/2016-09/documents/chromium-compounds.pdf
EPA. (2020). CLU-IN | Contaminants > Chromium VI > Chemistry and Behavior. https://clu-in.org/contaminantfocus/default.focus/sec/chromium_VI/cat/Chemistry_and_Behavior/
Eskin, M. (2016). Chromium: Is It Essential and Is It Safe? Vitam Miner, 5. https://doi.org/10.4172/2376-1318.1000e144
Estupiñan, K. (2018). Curtiembres selladas en San Benito. Alcaldía de Bogotá. https://bogota.gov.co/mi-ciudad/ambiente/curtiembres-selladas-en-san-benito
Ezzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. In Chemical Engineering Journal (Vol. 312, pp. 336–350). Elsevier B.V. https://doi.org/10.1016/j.cej.2016.11.154
Ferroudj, N., Nzimoto, J., Davidson, A., Talbot, D., Briot, E., Dupuis, V., Bée, A., Medjram, M. S., & Abramson, S. (2013). Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Applied Catalysis B: Environmental, 136–137, 9–18. https://doi.org/10.1016/j.apcatb.2013.01.046
Franco González, N. G., Clavijo Rios, C., Niño García, S. L., & Salazar Neira, J. C. (2017). Boletin del índice de calidad del agua en corrientes superficiales “ica” 2017 - ii. https://www.car.gov.co/uploads/files/5ada16a46c9f6.pdf
Fu, F., Ma, J., Xie, L., Tang, B., Han, W., & Lin, S. (2013). Chromium removal using resin supported nanoscale zero-valent iron. Journal of Environmental Management, 128, 822–827. https://doi.org/10.1016/j.jenvman.2013.06.044
García Muñoz, O. E., & Ramirez Rodriguez, L. N. (2019). Evaluación de una propuesta para el sistema de tratamiento de aguas residuales de curtiembre y marroquinería f.b [Fundación Universidad de America]. http://repository.uamerica.edu.co/bitstream/20.500.11839/7378/1/6132093-2019-1-IQ.pdf
Gómez, S. (2016). Características tecnológicas del cuero napa de ovino adulto, mediante los métodos de curtido wet- blue y wet. 132.
González Pachón, L. A. (2019). Gestión para mitigar los impactos ambientales generados por las curtiembres de bogotá con el fin de concientizar sobre el cambio climático [Universidad Militar Nueva Granada]. https://repository.unimilitar.edu.co/bitstream/handle/10654/21130/GonzalezPachonLuzAngelica2019.pdf?sequence=1&isAllowed=y
GracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. S. (2019). A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. Journal of Cleaner Production, 228, 580–593. https://doi.org/10.1016/j.jclepro.2019.04.117
Hasan, S. (2015). A Review on Nanoparticles: Their Synthesis and Types. In Research Journal of Recent Sciences (Vol. 4). www.isca.me
Hernandez, E. (2018). Criterios de Implementación ISO 14001: 2015. Caso de estudio Sector Curtiembres. https://repository.unad.edu.co/bitstream/handle/10596/19108/80245223.pdf?sequence=1&isAllowed=y
Hossain, M., Hossain, M., Begum, M., Shahjahan, M., Islam, M., & Saha, B. (2018). Magnetite (Fe3O4) nanoparticles for chromium removal. Bangladesh Journal of Scientific and Industrial Research, 53(3), 219–224. https://doi.org/10.3329/bjsir.v53i3.3826
Islam, J. B., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2019). Photocatalytic Reduction of Hexavalent Chromium with Nanosized TiO2 in Presence of Formic Acid. ChemEngineering, 3(2), 33. https://doi.org/10.3390/chemengineering3020033
Jin, W., Du, H., Zheng, S., & Zhang, Y. (2016). Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta, 191, 1044–1055. https://doi.org/10.1016/J.ELECTACTA.2016.01.130
Justin, C., Philip, S. A., & Samrot, A. V. (2017). Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience (Switzerland), 7(7), 463–475. https://doi.org/10.1007/s13204-017-0583-x
Kahrizi, H., Bafkar, A., & Farasati, M. (2016). Effect of nanotechnology on heavy metal removal from aqueous solution. Journal of Central South University, 23(10), 2526–2535. https://doi.org/10.1007/s11771-016-3313-8
Kalidhasan, S., Santhana Krishna Kumar, A., Rajesh, V., & Rajesh, N. (2016). The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. In Coordination Chemistry Reviews (Vol. 317, pp. 157–166). Elsevier. https://doi.org/10.1016/j.ccr.2016.03.004
Kamegawa, T., Ishiguro, Y., Magatani, Y., & Yamashita, H. (2016). Spherical TiO2/Mesoporous SiO2 core/shell type photocatalyst for water purification. Journal of Nanoscience and Nanotechnology, 16(9), 9273–9277. https://doi.org/10.1166/jnn.2016.12894
Kan, C. C., Ibe, A. H., Rivera, K. K. P., Arazo, R. O., & de Luna, M. D. G. (2017). Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research, 27(4), 163–171. https://doi.org/10.1016/j.serj.2017.04.001
Kaushal, A., & Singh, S. K. (2017). Removal of heavy metals by nanoadsorbents: A review. Journal of Environment and Biotechnology Research. www.vinanie.com/jebr
Kazemi, M., Jahanshahi, M., & Peyravi, M. (2018). Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate. Journal of Hazardous Materials, 344, 12–22. https://doi.org/10.1016/j.jhazmat.2017.09.059
Khan, F. S. A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Mazari, S. A., Nizamuddin, S., & Karri, R. R. (2020). Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environmental Science and Pollution Research, 27(19), 24342–24356. https://doi.org/10.1007/s11356-020-08711-6
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. In Arabian Journal of Chemistry (Vol. 12, Issue 7, pp. 908–931). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2017.05.011
Koei, N. (2011). Car alternativas para el manejo y disposicion de biosolidos Producto Final-Anexo No. 20 Alternativas para el Manejo y Disposición de Biosólidos de la PTAR Salitre.
Lakherwal, D. (2014). Adsorption of Heavy Metals: A Review. In International Journal of Environmental Research and Development (Vol. 4, Issue 1). http://www.ripublication.com/ijerd.htm
Latorre Torres, D. F. (2014). Diagnóstico ambiental y programa de control y seguimiento al sector curtiembres del barrio San Benito de la ciudad de Bogotá [Universidad de La Salle]. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1010&context=maest_ingenieria
Lim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. Journal of Industrial and Engineering Chemistry, 66, 29–44. https://doi.org/10.1016/J.JIEC.2018.05.028
Lisjak, D., & Mertelj, A. (2018). Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. In Progress in Materials Science (Vol. 95, pp. 286–328). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2018.03.003
Liu, L., Luo, X.-B., Ding, L., & Luo, S.-L. (2019). Application of Nanotechnology in the Removal of Heavy Metal From Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814837-2.00004-4
Maitlo, H. A., Kim, K. H., Kumar, V., Kim, S., & Park, J. W. (2019). Nanomaterials-based treatment options for chromium in aqueous environments. In Environment International (Vol. 130, p. 104748). Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.04.020
Marín, J. (2019). RÍO BOGOTÁ: Donde nace, su historia, recorrido y más. https://conocelosrios.com/c-colombia/rio-bogota/
Martinez Buitrago, S. Y., & Romero Coca, J. A. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Revista Facultad de Ciencias Económicas, 26(1), 113–124. https://doi.org/10.18359/rfce.2357
Miguel Córdova Bravo, H., Vargas Parker, R., Téllez Monzón, L., Flor Cesare Coral, M., Becker, R., & Visitación Figueroa, L. (2013). Influencia del uso de acomplejantes en el baño de curtido sobre la calidad final del cuero. In Rev Soc Quím Perú (Vol. 79, Issue 4). www.tanquimica.com.br,
Ministerio de Ambiente y Desarrollo Sostenible. (2015). Resolución 631 de 2015 Ministerio de Ambiente y Desarrollo Sostenible. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=70346&dt=S
Mitra, S., Sarkar, A., & Sen, S. (2017). Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnology for Environmental Engineering, 2(1), 1–14. https://doi.org/10.1007/s41204-017-0022-y
Mnif, A., Bejaoui, I., Mouelhi, M., & Hamrouni, B. (2017). Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane. International Journal of Analytical Chemistry, 2017. https://doi.org/10.1155/2017/7415708
Nam, A., Choi, U. S., Yun, S. T., Choi, J. W., Park, J. A., & Lee, S. H. (2018). Evaluation of amine-functionalized acrylic ion exchange fiber for chromium(VI) removal using flow-through experiments modeling and real wastewater. Journal of Industrial and Engineering Chemistry, 66, 187–195. https://doi.org/10.1016/j.jiec.2018.05.029
Nawaz, T., Zulfiqar, S., Sarwar, M. I., & Iqbal, M. (2020). Synthesis of diglycolic acid functionalized core-shell silica coated Fe3O4 nanomaterials for magnetic extraction of Pb(II) and Cr(VI) ions. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-67168-2
Nematollahzadeh, A., Seraj, S., & Mirzayi, B. (2015). Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chemical Engineering Journal, 277, 21–29. https://doi.org/10.1016/j.cej.2015.04.135
Nogueira, V., Lopes, I., Rocha-Santos, T., Gonçalves, F., & Pereira, R. (2015). Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquatic Toxicology, 165, 172–178. https://doi.org/10.1016/j.aquatox.2015.05.021
Ojemaye, M. O., Okoh, O. O., & Okoh, A. I. (2017). Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI) in Aqueous Solutions. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/5264910
Okaiyeto, K., Nwodo, U. U., Okoli, S. A., Mabinya, L. V., & Okoh, A. I. (2016). Implications for public health demands alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. In MicrobiologyOpen (Vol. 5, Issue 2, pp. 177–211). Blackwell Publishing Ltd. https://doi.org/10.1002/mbo3.334
Oliveira, H. (2012). Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. Journal of Botany, 2012, 1–8. https://doi.org/10.1155/2012/375843
Ortiz, N. E., & Carmona, J. C. (2015). Aprovechamiento De Cromo Eliminado En Aguas Residuales De Curtiembres (San Benito, Bogotá), Mediante Tratamiento Con Sulfato De Sodio. Revista Luna Azul, 40(Enero-Junio), 117–126. https://doi.org/10.17151/luaz.2015.40.9
Ortiz Penagos, N. E. (2013). Recuperación Y Reutilización De Cromo De Las Aguas Residuales Del Proceso De Curtido De Curtiembres De San Benito (Bogotá), Mediante Un Proceso Sostenible Y Viable Tecnológicamente [Universidad De Manizales]. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/1076/Ortiz_Penagos_Nidia_Elena_2013.pdf?sequence=1
Pakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. In RSC Advances (Vol. 9, Issue 45, pp. 26142–26164). Royal Society of Chemistry. https://doi.org/10.1039/c9ra05188k
Panda, H., Tiadi, N., Mohanty, M., & Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23, 132–138. https://doi.org/10.1016/j.sajce.2017.05.002
Paul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015a). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-y
Paul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015b). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-y
Peng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. In Environmental Chemistry Letters (Vol. 1, p. 3). Springer. https://doi.org/10.1007/s10311-020-01058-x
Peng, H., Guo, J., Li, B., Liu, Z., & Tao, C. (2018). High-efficient recovery of chromium (VI) with lead sulfate. Journal of the Taiwan Institute of Chemical Engineers, 85, 149–154. https://doi.org/10.1016/j.jtice.2018.01.028
Peng, H., Leng, Y., & Guo, J. (2019). Electrochemical Removal of Chromium (VI) from Wastewater. Applied Sciences, 9(6), 1156. https://doi.org/10.3390/app9061156
Pinilla Arbeláez, D. E. (2014). Precipitación De Cromo Y Reutilización Del Agua De Vertimientos De Curtiembres De San Benito (Bogotá). Http://Repository.Usta.Edu.Co/Bitstream/Handle/11634/2647/2014danielpinilla.Pdf?Sequence=4&Isallowed=Y
Predescu, A., Matei, E., Predescu, A., Berbecaru, A., Sohaciu, M., & Predescu, C. (2016). REMOVAL OF HEXAVALENT CHROMIUM FROM WATERS BY MEANS OF A TiO2-Fe3O4 NANOCOMPOSITE (Vol. 15, Issue 5). http://omicron.ch.tuiasi.ro/EEMJ/
Rajput, S., Pittman, C. U., & Mohan, D. (2016a). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution 4.0 International (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International (CC BY 4.0)
Acceso abierto
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/9b2ba33f-21fd-4b75-80f6-27d0e2830440/download
https://repositorio.uan.edu.co/bitstreams/f05ba731-6507-4cc4-99b5-98cc29dceeb5/download
https://repositorio.uan.edu.co/bitstreams/1644e986-5bc6-4782-8b27-e1aa49577c93/download
https://repositorio.uan.edu.co/bitstreams/777c6dc6-21bf-4b4e-978a-6df6bed1dfb6/download
bitstream.checksum.fl_str_mv 9d2f6651dd5b5a423ee499e9481233c1
6a0a49b69908093be4fa91e5dd3f8837
2b2ab6ec8a6a222739b9c0e57c635c2e
2e388663398085f69421c9e4c5fcf235
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300309777809408
spelling Attribution 4.0 International (CC BY 4.0)Acceso abiertohttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rincón Ortiz, Rolando JavierCastiblanco Ramirez, Diego Andreshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=000166525910136636492021-02-18T17:57:14Z2021-02-18T17:57:14Z2020-11-19http://repositorio.uan.edu.co/handle/123456789/1493AFIRM GROUP. (2019). Documento informativo sobre sustancias químicas: Cromo VI. https://echa.europa.eu/substances-restricted-under-Ahamed, M. I. N., Rajeshkumar, S., Ragul, V., Anand, S., & Kaviyarasu, K. (2018). Chromium remediation and toxicity assessment of nano zerovalent iron against contaminated lake water sample (Puliyanthangal Lake, Tamilnadu, India). South African Journal of Chemical Engineering, 25, 128–132. https://doi.org/10.1016/j.sajce.2018.04.004Alcaldía de Bogotá. (2015). Guía de producción más limpia para el sector curtiembres de Bogotá Enfoque en vertimientos y residuos. http://www.ambientebogota.gov.co/web/sda/search?p_auth=cpOG8bqA&p_p_auth=y3HWCdzt&p_p_id=20&p_p_lifecycle=1&p_p_state=exclusive&p_p_mode=view&_20_struts_action=%2Fdocument_library%2Fget_file&_20_groupId=24732&_20_folderId=3987253&_20_name=21215Almeida, J. C., Cardoso, C. E. D., Tavares, D. S., Freitas, R., Trindade, T., Vale, C., & Pereira, E. (2019). Chromium removal from contaminated waters using nanomaterials – A review. TrAC - Trends in Analytical Chemistry, 118, 277–291. https://doi.org/10.1016/j.trac.2019.05.005Anastopoulos, I., Anagnostopoulos, V. A., Bhatnagar, A., Mitropoulos, A. C., & Kyzas, G. Z. (2017). A review for chromium removal by carbon nanotubes. Chemistry and Ecology, 33(6), 572–588. https://doi.org/10.1080/02757540.2017.1328503Anjum, M., Miandad, R., Waqas, M., Gehany, F., & Barakat, M. A. (2019). Remediation of wastewater using various nano-materials. In Arabian Journal of Chemistry (Vol. 12, Issue 8, pp. 4897–4919). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2016.10.004Anónimo. (2016). La contaminación del río Bogotá impide aprovechar su potencial. Revista Dinero. https://www.dinero.com/economia/articulo/la-contaminacion-del-rio-bogota-impide-aprovechar-su-potencial/226565Anónimo. (2020). Río Bogotá, un guerrero ancestral que espera su renacer. Revista Semana. https://sostenibilidad.semana.com/actualidad/articulo/rio-bogota-un-guerrero-ancestral-que-espera-su-renacer/49052Apte, A. D., Verma, S., Tare, V., & Bose, P. (2005). Oxidation of Cr(III) in tannery sludge to Cr(VI): Field observations and theoretical assessment. Journal of Hazardous Materials, 121(1–3), 215–222. https://doi.org/10.1016/j.jhazmat.2005.02.010Artunduaga Cuellar, O. F. (2015). Tratamientos para la remoción de Cromo (VI) presente en aguas residuales. Revista Nova, 1(1). https://doi.org/10.23850/25004476.187Azimi, A., Azari, A., Rezakazemi, M., & Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4(1), 37–59. https://doi.org/10.1002/cben.201600010Rajput, S., Pittman, C. U., & Mohan, D. (2016b). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008Ray, P. Z., & Shipley, H. J. (2015). Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 5(38), 29885–29907. https://doi.org/10.1039/c5ra02714dReliga, P., Kowalik, A., & Gierycz, P. (2011). Application of nanofiltration for chromium concentration in the tannery wastewater. Journal of Hazardous Materials, 186(1), 288–292. https://doi.org/10.1016/j.jhazmat.2010.10.112Salgot, M., & Folch, M. (2018). Wastewater treatment and water reuse. In Current Opinion in Environmental Science and Health (Vol. 2, pp. 64–74). Elsevier B.V. https://doi.org/10.1016/j.coesh.2018.03.005Salman, R. H., Hassan, H. A., Abed, K. M., Al-Alawy, A. F., Tuama, D. A., Hussein, K. M., & Jabir, H. A. (2020). Removal of chromium ions from a real wastewater of leather industry using electrocoagulation and reverse osmosis processes. AIP Conference Proceedings, 2213, 020186. https://doi.org/10.1063/5.0000201Samrot, A. V., Sahithya, C. S., Jenifer Selvarani, A., Pachiyappan, S., & Suresh Kumar, S. U. (2019). Surface-engineered super-paramagnetic iron oxide nanoparticles for chromium removal. International Journal of Nanomedicine, 14, 8105–8119. https://doi.org/10.2147/IJN.S214236Saxena, G., Chandra, R., & Bharagava, R. N. (2017). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. In Reviews of Environmental Contamination and Toxicology (Vol. 240, pp. 31–69). Springer New York LLC. https://doi.org/10.1007/398_2015_5009Secretaría Distrital de Ambiente Alcaldía de Bogotá. (n.d.). GUÍA CONCEPTUAL SOBRE LA PTAR SALITRE . Retrieved June 2, 2020, from http://www.secretariadeambiente.gov.co/sda/libreria/pdf/riobogota/crono.pdfShahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., Dumat, C., & Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. In Chemosphere (Vol. 178, pp. 513–533). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2017.03.074Shi, D., Zhang, X., Wang, J., & Fan, J. (2018). Highly reactive and stable nanoscale zero-valent iron prepared within vesicles and its high-performance removal of water pollutants. Applied Catalysis B: Environmental, 221, 610–617. https://doi.org/10.1016/j.apcatb.2017.09.057Sobhanardakani, S., & Zandipak, R. (2017). Synthesis and application of TiO2/SiO2/Fe3O4 nanoparticles as novel adsorbent for removal of Cd(II), Hg(II) and Ni(II) ions from water samples. Clean Technologies and Environmental Policy, 19(7), 1913–1925. https://doi.org/10.1007/s10098-017-1374-5Sierra Garcia, S. C. (2018). Environmental Effects Generated By The Discharges Of The Leather Tanning Industries: Implications In The High Basin Of The Bogotá River. https://repository.unimilitar.edu.co/bitstream/handle/10654/17868/SierraGarciaSoniaCarolina2018.pdf?sequence=2&isAllowed=ySimeonidis, K., Kaprara, E., Samaras, T., Angelakeris, M., Pliatsikas, N., Vourlias, G., Mitrakas, M., & Andritsos, N. (2015). Optimizing magnetic nanoparticles for drinking water technology: The case of Cr(VI). Science of the Total Environment, 535, 61–68. https://doi.org/10.1016/j.scitotenv.2015.04.033Thanh Ho, V. T., Hong, N. V. H., Van Nguyen, A., Bach, L. G., & Dinh, T. P. (2018). Core–Shell Fe@SiO 2 Nanoparticles Synthesized via Modified Stober Method for High Activity in Cr(VI) Reduction . Journal of Nanoscience and Nanotechnology, 18(10), 6867–6872. https://doi.org/10.1166/jnn.2018.15721Thekkudan, V. N., Vaidyanathan, V. K., Ponnusamy, S. K., Charles, C., Sundar, S. L., Vishnu, D., Anbalagan, S., Vaithyanathan, V. K., & Subramanian, S. (2017). Review on nanoadsorbents: A solution for heavy metal removal from wastewater. In IET Nanobiotechnology (Vol. 11, Issue 3, pp. 213–224). Institution of Engineering and Technology. https://doi.org/10.1049/iet-nbt.2015.0114Vásquez Daza, L. (2012). Las curtiembres en el Barrio San Benito de Bogotá. Un análisis bioético en la perspectiva de Hans Jonas. https://repository.javeriana.edu.co/handle/10554/2144Wang, F., Yang, W., Zheng, F., & Sun, Y. (2018). Removal of Cr (VI) from Simulated and Leachate Wastewaters by Bentonite-Supported Zero-Valent Iron Nanoparticles. International Journal of Environmental Research and Public Health, 15(10), 2162. https://doi.org/10.3390/ijerph15102162Wang, X., Liu, X., Xiao, C., Zhao, H., Zhang, M., Zheng, N., Kong, W., Zhang, L., Yuan, H., Zhang, L., & Lu, J. (2020). Triethylenetetramine-modified hollow Fe3O4/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate. Microporous and Mesoporous Materials, 297, 110041. https://doi.org/10.1016/j.micromeso.2020.110041Wu, J., Yan, M., Lv, S., Yin, W., Bu, H., Liu, L., Li, P., Deng, H., & Zheng, X. (2021). Preparation of highly dispersive and antioxidative nano zero-valent iron for the removal of hexavalent chromium. Chemosphere, 262, 127733. https://doi.org/10.1016/j.chemosphere.2020.127733Yang, J., Hou, B., Wang, J., Tian, B., Bi, J., Wang, N., Li, X., & Huang, X. (2019). Nanomaterials for the Removal of Heavy Metals from Wastewater. Nanomaterials, 9(3), 424. https://doi.org/10.3390/nano9030424Yao, S., Yuan, X., Jiang, L., Xiong, T., & Zhang, J. (2020). Recent Progress on Fullerene-Based Materials :Zeng, Q., Huang, Y., Huang, L., Hu, L., Xiong, D., Zhong, H., & He, Z. (2020). Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate. Chemical Engineering Journal, 383, 123209. https://doi.org/10.1016/j.cej.2019.123209Barros, J. (2020). ¿Por qué la cuenca media es la que más contamina al río Bogotá y cómo recuperla? Revista Semana. https://sostenibilidad.semana.com/medio-ambiente/articulo/por-que-la-cuenca-media-es-la-que-mas-contamina-al-rio-bogota-y-como-recuperla/49548Zhao, Y., Kang, D., Chen, Z., Zhan, J., & Wu, X. (2018). Removal of Chromium Using Electrochemical Approaches: A Review. Int. J. Electrochem. Sci, 13, 1250–1259. https://doi.org/10.20964/2018.02.46Zhou, L., Li, R., Zhang, G., Wang, D., Cai, D., & Wu, Z. (2018). Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chemical Engineering Journal, 339, 85–96. https://doi.org/10.1016/j.cej.2018.01.132Bautista Franco, C. L., Moreno Vargas, C. C., & Socha Matiz, A. (2015). Estrategias de responsabilidad social ambiental de las curtiembres en la localidad de Tunjuelito [Universidad Cooperativa de Colombia]. https://repository.ucc.edu.co/bitstream/20.500.12494/10378/1/2015_estrategias_responsabilidad_social.pdfBelay, A. A. (2010). Impacts of Chromium from Tannery Effluent and Evaluation of Alternative Treatment Options. Journal of Environmental Protection, 1, 53–58. https://doi.org/10.4236/jep.2010.11007Bhushan, B. (2017). Introduction to nanotechnology. In Springer Handbooks (pp. 1–19). Springer. https://doi.org/10.1007/978-3-662-54357-3_1Bralower, T., & Bice, D. (2019). Distribution of Water on the Earth’s Surface | EARTH 103: Earth in the Future. https://www.e-education.psu.edu/earth103/node/701Bravo Gallardo, M. A. (2017). Coagulantes y floculantes naturales usados en la reducción de turbidez, solidos suspendidos, colorantes y metales pesados en aguas residuales. [Universidad Distrital Francisco José Caldas]. http://repository.udistrital.edu.co/bitstream/11349/5609/1/BravoGallardoMonicaAlejandra2017.pdfCampos, A. F. C., de Oliveira, H. A. L., da Silva, F. N., da Silva, F. G., Coppola, P., Aquino, R., Mezzi, A., & Depeyrot, J. (2019). Core-Shell Bimagnetic Nanoadsorbents for Hexavalent Chromium Removal from Aqueous Solutions. Journal of Hazardous Materials, 362(May 2018), 82–91. https://doi.org/10.1016/j.jhazmat.2018.09.008CAR. (2018). CAR | Río Bogotá. https://www.car.gov.co/rio_bogotaCardona Pérez, V. (2018). Plantas de tratamiento de aguas residuales del río Bogotá generan gases de efecto invernadero | Universidad Central. https://www.ucentral.edu.co/noticentral/plantas-tratamiento-aguas-residuales-del-rio-bogota-generan-gases-efecto-invernaderoCarreño Sayago, U. F., Perez, J. J., Cote Montañez, D., & Agatón, A. L. (2016). Modelación de un sistema de lodos activados en el sector de las curtiembres de San Benito Bogotá. Producción + Limpia, 11(2), 9–21. https://doi.org/10.22507/pml.v11n2a1Chávez Andrade, J. K. (2018). Recuperación de cromo a partir de lodos residuales provenientes del proceso de curtido en la industria de la curtiembre [Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/bitstream/25000/17033/1/T-UCE-0017-IQU-019.pdfChen, G., Feng, J., Wang, W., Yin, Y., & Liu, H. (2017). Photocatalytic removal of hexavalent chromium by newly designed and highly reductive TiO2 nanocrystals. Water Research, 108, 383–390. https://doi.org/10.1016/j.watres.2016.11.013Chen, Q. Y., Murphy, A., Sun, H., & Costa, M. (2019). Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. In Toxicology and Applied Pharmacology (Vol. 377, p. 114636). Academic Press Inc. https://doi.org/10.1016/j.taap.2019.114636Cristancho Montenegro, D. L., Pinto Hernández, L. M., & Tique Hilarión, J. S. (2019). Evaluación de la eficiencia de un sistema de electrocoagulación en los vertimientos de curtiembres en el sector de Villapinzón (Cundinamarca). MUTIS, 2, 34–48. https://doi.org/10.21789/22561498.1590De Gisi, S., Casella, P., Cellamare, C. M., Ferraris, M., Petta, L., & Notarnicola, M. (2017). Wastewater Reuse. In Encyclopedia of Sustainable Technologies (pp. 53–68). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10528-7Ding, G. K. C. (2017). Wastewater Treatment and Reuse-The Future Source of Water Supply. In Encyclopedia of Sustainable Technologies (pp. 43–52). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10170-8Documentación IDEAM. (n.d.). Retrieved June 2, 2020, from http://documentacion.ideam.gov.co/openbiblio/bvirtual/021318/03TextoCompleto.pdfDubey, S., Banerjee, S., Upadhyay, S. N., & Sharma, Y. C. (2017). Application of common nano-materials for removal of selected metallic species from water and wastewaters: A critical review. Journal of Molecular Liquids, 240, 656–677. https://doi.org/10.1016/j.molliq.2017.05.107Ealias, A. M., & P, S. M. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application A review on the classification, characterisation, synthesis of nanoparticles and their application Related content Synthesis of Aluminium Nanoparticles in A. IOP Conference Series: Materials Science and Engineering, 263(3). https://doi.org/10.1088/1757-899X/263/3/032019EPA. (2016). Chromium Compounds. https://www.epa.gov/sites/production/files/2016-09/documents/chromium-compounds.pdfEPA. (2020). CLU-IN | Contaminants > Chromium VI > Chemistry and Behavior. https://clu-in.org/contaminantfocus/default.focus/sec/chromium_VI/cat/Chemistry_and_Behavior/Eskin, M. (2016). Chromium: Is It Essential and Is It Safe? Vitam Miner, 5. https://doi.org/10.4172/2376-1318.1000e144Estupiñan, K. (2018). Curtiembres selladas en San Benito. Alcaldía de Bogotá. https://bogota.gov.co/mi-ciudad/ambiente/curtiembres-selladas-en-san-benitoEzzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: A review. In Chemical Engineering Journal (Vol. 312, pp. 336–350). Elsevier B.V. https://doi.org/10.1016/j.cej.2016.11.154Ferroudj, N., Nzimoto, J., Davidson, A., Talbot, D., Briot, E., Dupuis, V., Bée, A., Medjram, M. S., & Abramson, S. (2013). Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Applied Catalysis B: Environmental, 136–137, 9–18. https://doi.org/10.1016/j.apcatb.2013.01.046Franco González, N. G., Clavijo Rios, C., Niño García, S. L., & Salazar Neira, J. C. (2017). Boletin del índice de calidad del agua en corrientes superficiales “ica” 2017 - ii. https://www.car.gov.co/uploads/files/5ada16a46c9f6.pdfFu, F., Ma, J., Xie, L., Tang, B., Han, W., & Lin, S. (2013). Chromium removal using resin supported nanoscale zero-valent iron. Journal of Environmental Management, 128, 822–827. https://doi.org/10.1016/j.jenvman.2013.06.044García Muñoz, O. E., & Ramirez Rodriguez, L. N. (2019). Evaluación de una propuesta para el sistema de tratamiento de aguas residuales de curtiembre y marroquinería f.b [Fundación Universidad de America]. http://repository.uamerica.edu.co/bitstream/20.500.11839/7378/1/6132093-2019-1-IQ.pdfGómez, S. (2016). Características tecnológicas del cuero napa de ovino adulto, mediante los métodos de curtido wet- blue y wet. 132.González Pachón, L. A. (2019). Gestión para mitigar los impactos ambientales generados por las curtiembres de bogotá con el fin de concientizar sobre el cambio climático [Universidad Militar Nueva Granada]. https://repository.unimilitar.edu.co/bitstream/handle/10654/21130/GonzalezPachonLuzAngelica2019.pdf?sequence=1&isAllowed=yGracePavithra, K., Jaikumar, V., Kumar, P. S., & SundarRajan, P. S. (2019). A review on cleaner strategies for chromium industrial wastewater: Present research and future perspective. Journal of Cleaner Production, 228, 580–593. https://doi.org/10.1016/j.jclepro.2019.04.117Hasan, S. (2015). A Review on Nanoparticles: Their Synthesis and Types. In Research Journal of Recent Sciences (Vol. 4). www.isca.meHernandez, E. (2018). Criterios de Implementación ISO 14001: 2015. Caso de estudio Sector Curtiembres. https://repository.unad.edu.co/bitstream/handle/10596/19108/80245223.pdf?sequence=1&isAllowed=yHossain, M., Hossain, M., Begum, M., Shahjahan, M., Islam, M., & Saha, B. (2018). Magnetite (Fe3O4) nanoparticles for chromium removal. Bangladesh Journal of Scientific and Industrial Research, 53(3), 219–224. https://doi.org/10.3329/bjsir.v53i3.3826Islam, J. B., Furukawa, M., Tateishi, I., Katsumata, H., & Kaneco, S. (2019). Photocatalytic Reduction of Hexavalent Chromium with Nanosized TiO2 in Presence of Formic Acid. ChemEngineering, 3(2), 33. https://doi.org/10.3390/chemengineering3020033Jin, W., Du, H., Zheng, S., & Zhang, Y. (2016). Electrochemical processes for the environmental remediation of toxic Cr(VI): A review. Electrochimica Acta, 191, 1044–1055. https://doi.org/10.1016/J.ELECTACTA.2016.01.130Justin, C., Philip, S. A., & Samrot, A. V. (2017). Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Applied Nanoscience (Switzerland), 7(7), 463–475. https://doi.org/10.1007/s13204-017-0583-xKahrizi, H., Bafkar, A., & Farasati, M. (2016). Effect of nanotechnology on heavy metal removal from aqueous solution. Journal of Central South University, 23(10), 2526–2535. https://doi.org/10.1007/s11771-016-3313-8Kalidhasan, S., Santhana Krishna Kumar, A., Rajesh, V., & Rajesh, N. (2016). The journey traversed in the remediation of hexavalent chromium and the road ahead toward greener alternatives-A perspective. In Coordination Chemistry Reviews (Vol. 317, pp. 157–166). Elsevier. https://doi.org/10.1016/j.ccr.2016.03.004Kamegawa, T., Ishiguro, Y., Magatani, Y., & Yamashita, H. (2016). Spherical TiO2/Mesoporous SiO2 core/shell type photocatalyst for water purification. Journal of Nanoscience and Nanotechnology, 16(9), 9273–9277. https://doi.org/10.1166/jnn.2016.12894Kan, C. C., Ibe, A. H., Rivera, K. K. P., Arazo, R. O., & de Luna, M. D. G. (2017). Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research, 27(4), 163–171. https://doi.org/10.1016/j.serj.2017.04.001Kaushal, A., & Singh, S. K. (2017). Removal of heavy metals by nanoadsorbents: A review. Journal of Environment and Biotechnology Research. www.vinanie.com/jebrKazemi, M., Jahanshahi, M., & Peyravi, M. (2018). Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate. Journal of Hazardous Materials, 344, 12–22. https://doi.org/10.1016/j.jhazmat.2017.09.059Khan, F. S. A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Mazari, S. A., Nizamuddin, S., & Karri, R. R. (2020). Magnetic nanoadsorbents’ potential route for heavy metals removal—a review. Environmental Science and Pollution Research, 27(19), 24342–24356. https://doi.org/10.1007/s11356-020-08711-6Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. In Arabian Journal of Chemistry (Vol. 12, Issue 7, pp. 908–931). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2017.05.011Koei, N. (2011). Car alternativas para el manejo y disposicion de biosolidos Producto Final-Anexo No. 20 Alternativas para el Manejo y Disposición de Biosólidos de la PTAR Salitre.Lakherwal, D. (2014). Adsorption of Heavy Metals: A Review. In International Journal of Environmental Research and Development (Vol. 4, Issue 1). http://www.ripublication.com/ijerd.htmLatorre Torres, D. F. (2014). Diagnóstico ambiental y programa de control y seguimiento al sector curtiembres del barrio San Benito de la ciudad de Bogotá [Universidad de La Salle]. https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1010&context=maest_ingenieriaLim, J. Y., Mubarak, N. M., Abdullah, E. C., Nizamuddin, S., Khalid, M., & Inamuddin. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. Journal of Industrial and Engineering Chemistry, 66, 29–44. https://doi.org/10.1016/J.JIEC.2018.05.028Lisjak, D., & Mertelj, A. (2018). Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications. In Progress in Materials Science (Vol. 95, pp. 286–328). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2018.03.003Liu, L., Luo, X.-B., Ding, L., & Luo, S.-L. (2019). Application of Nanotechnology in the Removal of Heavy Metal From Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier Inc. https://doi.org/10.1016/b978-0-12-814837-2.00004-4Maitlo, H. A., Kim, K. H., Kumar, V., Kim, S., & Park, J. W. (2019). Nanomaterials-based treatment options for chromium in aqueous environments. In Environment International (Vol. 130, p. 104748). Elsevier Ltd. https://doi.org/10.1016/j.envint.2019.04.020Marín, J. (2019). RÍO BOGOTÁ: Donde nace, su historia, recorrido y más. https://conocelosrios.com/c-colombia/rio-bogota/Martinez Buitrago, S. Y., & Romero Coca, J. A. (2018). Revisión del estado actual de la industria de las curtiembres en sus procesos y productos: un análisis de su competitividad. Revista Facultad de Ciencias Económicas, 26(1), 113–124. https://doi.org/10.18359/rfce.2357Miguel Córdova Bravo, H., Vargas Parker, R., Téllez Monzón, L., Flor Cesare Coral, M., Becker, R., & Visitación Figueroa, L. (2013). Influencia del uso de acomplejantes en el baño de curtido sobre la calidad final del cuero. In Rev Soc Quím Perú (Vol. 79, Issue 4). www.tanquimica.com.br,Ministerio de Ambiente y Desarrollo Sostenible. (2015). Resolución 631 de 2015 Ministerio de Ambiente y Desarrollo Sostenible. https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=70346&dt=SMitra, S., Sarkar, A., & Sen, S. (2017). Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnology for Environmental Engineering, 2(1), 1–14. https://doi.org/10.1007/s41204-017-0022-yMnif, A., Bejaoui, I., Mouelhi, M., & Hamrouni, B. (2017). Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane. International Journal of Analytical Chemistry, 2017. https://doi.org/10.1155/2017/7415708Nam, A., Choi, U. S., Yun, S. T., Choi, J. W., Park, J. A., & Lee, S. H. (2018). Evaluation of amine-functionalized acrylic ion exchange fiber for chromium(VI) removal using flow-through experiments modeling and real wastewater. Journal of Industrial and Engineering Chemistry, 66, 187–195. https://doi.org/10.1016/j.jiec.2018.05.029Nawaz, T., Zulfiqar, S., Sarwar, M. I., & Iqbal, M. (2020). Synthesis of diglycolic acid functionalized core-shell silica coated Fe3O4 nanomaterials for magnetic extraction of Pb(II) and Cr(VI) ions. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-67168-2Nematollahzadeh, A., Seraj, S., & Mirzayi, B. (2015). Catecholamine coated maghemite nanoparticles for the environmental remediation: Hexavalent chromium ions removal. Chemical Engineering Journal, 277, 21–29. https://doi.org/10.1016/j.cej.2015.04.135Nogueira, V., Lopes, I., Rocha-Santos, T., Gonçalves, F., & Pereira, R. (2015). Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquatic Toxicology, 165, 172–178. https://doi.org/10.1016/j.aquatox.2015.05.021Ojemaye, M. O., Okoh, O. O., & Okoh, A. I. (2017). Performance of NiFe2O4-SiO2-TiO2 Magnetic Photocatalyst for the Effective Photocatalytic Reduction of Cr(VI) in Aqueous Solutions. Journal of Nanomaterials, 2017. https://doi.org/10.1155/2017/5264910Okaiyeto, K., Nwodo, U. U., Okoli, S. A., Mabinya, L. V., & Okoh, A. I. (2016). Implications for public health demands alternatives to inorganic and synthetic flocculants: Bioflocculants as important candidates. In MicrobiologyOpen (Vol. 5, Issue 2, pp. 177–211). Blackwell Publishing Ltd. https://doi.org/10.1002/mbo3.334Oliveira, H. (2012). Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity. Journal of Botany, 2012, 1–8. https://doi.org/10.1155/2012/375843Ortiz, N. E., & Carmona, J. C. (2015). Aprovechamiento De Cromo Eliminado En Aguas Residuales De Curtiembres (San Benito, Bogotá), Mediante Tratamiento Con Sulfato De Sodio. Revista Luna Azul, 40(Enero-Junio), 117–126. https://doi.org/10.17151/luaz.2015.40.9Ortiz Penagos, N. E. (2013). Recuperación Y Reutilización De Cromo De Las Aguas Residuales Del Proceso De Curtido De Curtiembres De San Benito (Bogotá), Mediante Un Proceso Sostenible Y Viable Tecnológicamente [Universidad De Manizales]. http://ridum.umanizales.edu.co:8080/xmlui/bitstream/handle/6789/1076/Ortiz_Penagos_Nidia_Elena_2013.pdf?sequence=1Pakade, V. E., Tavengwa, N. T., & Madikizela, L. M. (2019). Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. In RSC Advances (Vol. 9, Issue 45, pp. 26142–26164). Royal Society of Chemistry. https://doi.org/10.1039/c9ra05188kPanda, H., Tiadi, N., Mohanty, M., & Mohanty, C. R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23, 132–138. https://doi.org/10.1016/j.sajce.2017.05.002Paul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015a). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-yPaul, M. L., Samuel, J., Roy, R., Chandrasekaran, N., & Mukherjee, A. (2015b). Studies on Cr(VI) removal from aqueous solutions by nanotitania under visible light and dark conditions. Bulletin of Materials Science, 38(2), 393–400. https://doi.org/10.1007/s12034-015-0879-yPeng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. In Environmental Chemistry Letters (Vol. 1, p. 3). Springer. https://doi.org/10.1007/s10311-020-01058-xPeng, H., Guo, J., Li, B., Liu, Z., & Tao, C. (2018). High-efficient recovery of chromium (VI) with lead sulfate. Journal of the Taiwan Institute of Chemical Engineers, 85, 149–154. https://doi.org/10.1016/j.jtice.2018.01.028Peng, H., Leng, Y., & Guo, J. (2019). Electrochemical Removal of Chromium (VI) from Wastewater. Applied Sciences, 9(6), 1156. https://doi.org/10.3390/app9061156Pinilla Arbeláez, D. E. (2014). Precipitación De Cromo Y Reutilización Del Agua De Vertimientos De Curtiembres De San Benito (Bogotá). Http://Repository.Usta.Edu.Co/Bitstream/Handle/11634/2647/2014danielpinilla.Pdf?Sequence=4&Isallowed=YPredescu, A., Matei, E., Predescu, A., Berbecaru, A., Sohaciu, M., & Predescu, C. (2016). REMOVAL OF HEXAVALENT CHROMIUM FROM WATERS BY MEANS OF A TiO2-Fe3O4 NANOCOMPOSITE (Vol. 15, Issue 5). http://omicron.ch.tuiasi.ro/EEMJ/Rajput, S., Pittman, C. U., & Mohan, D. (2016a). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of Colloid and Interface Science, 468, 334–346. https://doi.org/10.1016/J.JCIS.2015.12.008instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/PropiaThe leather tanning sector is one of the most representative industrial activities in the Colombian economy, with a share of 2.17% in the manufacturing GDP, mostly grouped into SMEs through the export of wet-blue type leather generating revenue of $ 70 million a year. However, an undue exploitation of the activity, as well as manufacturing practices that are not very aware of the environmental impact generated mainly by hexavalent chromium, generates concern both for the environmental effects and for the harmful effects on the health of the population of Bogotaná. The present article establishes through a literature review the conventional and future treatments for the removal of heavy metals, taking hexavalent chromium as a model, proposing a nanomaterial that solves the problem in wastewater.El sector de curtido de pieles es una de las actividades industriales más representativas en la economía colombiana, con una participación del 2,17% en el PIB manufacturero, agrupados en su mayoría en PYMES por medio de la exportación del cuero tipo wet-blue generando ingresos de 70 millones de dólares al año. Sin embargo, una explotación indebida de la actividad, así como prácticas manufactureras poco conscientes del impacto ambiental generado principalmente por el Cromo hexavalente, genera una preocupación tanto a los efectos ambientales como a los efectos nocivos para la salud de la población Bogotaná. El presente artículo establece mediante una revisión de literatura los tratamientos convencionales y futuros para la remoción de metales pesados tomando como modelo el cromo hexavalente, proponiendo un nanomaterial que solvente la problemática en las aguas residuales.OtroBioquímico(a)PregradoPresencialspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarTratamientoNanomaterialCurtiembresCromo HexavalenteTannerieshexavalent chromiumtreatmentnanomaterialAproximación a la remediación de efluentes industriales provenientes de sector curtiembres en Bogotá a través de una solución nanotecnológicaTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020AutorizacionesdeAutores.pdf2020AutorizacionesdeAutores.pdfAutorización de Autoresapplication/pdf774458https://repositorio.uan.edu.co/bitstreams/9b2ba33f-21fd-4b75-80f6-27d0e2830440/download9d2f6651dd5b5a423ee499e9481233c1MD512020DiegoAndresCastiblancoRamirez.pdf2020DiegoAndresCastiblancoRamirez.pdfTrabajo de Gradoapplication/pdf1183963https://repositorio.uan.edu.co/bitstreams/f05ba731-6507-4cc4-99b5-98cc29dceeb5/download6a0a49b69908093be4fa91e5dd3f8837MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uan.edu.co/bitstreams/1644e986-5bc6-4782-8b27-e1aa49577c93/download2b2ab6ec8a6a222739b9c0e57c635c2eMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/777c6dc6-21bf-4b4e-978a-6df6bed1dfb6/download2e388663398085f69421c9e4c5fcf235MD54123456789/1493oai:repositorio.uan.edu.co:123456789/14932024-10-09 22:40:45.473https://creativecommons.org/licenses/by/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==