Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente
The appearance of pharmaceutical compounds both in hospital waters and in the effluents of wastewater treatment plants, and the great potential problems in the environment and in human health that this can generate, has led to the need to propose complementary treatments, mainly tertiaries that are...
- Autores:
-
Siabato Vargas, Cristian Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/1602
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/1602
- Palabra clave:
- Electro-Fenton, Electrodo de sacrificio, Contaminantes de Preocupación Emergente (CPE), Ciprofloxacina, Cálculos in silico.
Electro-Fenton, Sacrificial-electrode, Contaminants of Emerging Concern (CEC), Ciprofloxacin, in silico calculation’s
- Rights
- openAccess
- License
- Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
id |
UAntonioN2_43cd75e34269e853bd5ab0d2439bd50a |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/1602 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente |
title |
Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente |
spellingShingle |
Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente Electro-Fenton, Electrodo de sacrificio, Contaminantes de Preocupación Emergente (CPE), Ciprofloxacina, Cálculos in silico. Electro-Fenton, Sacrificial-electrode, Contaminants of Emerging Concern (CEC), Ciprofloxacin, in silico calculation’s |
title_short |
Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente |
title_full |
Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente |
title_fullStr |
Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente |
title_full_unstemmed |
Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente |
title_sort |
Aplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergente |
dc.creator.fl_str_mv |
Siabato Vargas, Cristian Felipe |
dc.contributor.advisor.spa.fl_str_mv |
Moncayo Lasso, Alejandro |
dc.contributor.author.spa.fl_str_mv |
Siabato Vargas, Cristian Felipe |
dc.subject.es_ES.fl_str_mv |
Electro-Fenton, Electrodo de sacrificio, Contaminantes de Preocupación Emergente (CPE), Ciprofloxacina, Cálculos in silico. |
topic |
Electro-Fenton, Electrodo de sacrificio, Contaminantes de Preocupación Emergente (CPE), Ciprofloxacina, Cálculos in silico. Electro-Fenton, Sacrificial-electrode, Contaminants of Emerging Concern (CEC), Ciprofloxacin, in silico calculation’s |
dc.subject.keyword.es_ES.fl_str_mv |
Electro-Fenton, Sacrificial-electrode, Contaminants of Emerging Concern (CEC), Ciprofloxacin, in silico calculation’s |
description |
The appearance of pharmaceutical compounds both in hospital waters and in the effluents of wastewater treatment plants, and the great potential problems in the environment and in human health that this can generate, has led to the need to propose complementary treatments, mainly tertiaries that are capable of efficiently removing this type of micro-contaminants. Among these treatments, systems based on the Fenton reaction (a type of advanced oxidation process) have been evaluated, which has proven to be efficient in removing a wide variety of contaminants. In this work, the use of an electro-Fenton system was proposed, in which the iron and hydrogen peroxide species, necessary reagents in the Fenton reaction, are electrogenerated. In the first case, from a recycled stainless-steel sacrificial anode (austenitic type - AISI 420 - from a recyclable residue), and in the case of hydrogen peroxide, using a gas diffusion cathode (with fiber of graphite). The system was worked in the presence of citric acid at near-neutral pH value. The results show that when the current density of 0.31 mA/cm2 was applied on the anode, a concentration of 0.07 mM of iron species was generated after 5 minutes, which increases progressively until a maximum of ~ 0.18 mM after 60 min. Initial results showed that electro-generated iron species, in combination with 0.40 mM hydrogen peroxide, was also electro-generated; leads to the complete degradation of ciprofloxacin, CIP (a model compound of contaminants of emerging concern), therefore its antimicrobial activity is expected to decrease as well. Taking into account degradation data (from other authors) of ciprofloxacin using similar electro-Fenton systems, and degradation products detected during treatment, in silico calculations of ThOD, Log P and molecular coupling “Docking” were performed to determine biodegradability and toxicity, both of the original compound (CIP) and the degradation products. The calculations show a tendency to increase the degradability of the intermediates formed and to decrease both toxicity and antimicrobial capacity due to low enzyme inhibition values. Electro-Fenton systems have proven to be efficient in removing this type of compound and tend to be a sustainable system with low energy consumption, when alternatives are used in their implementation, such as the one demonstrated in this work, by using reuse materials. |
publishDate |
2020 |
dc.date.issued.spa.fl_str_mv |
2020-10-04 |
dc.date.accessioned.none.fl_str_mv |
2021-02-22T15:04:58Z |
dc.date.available.none.fl_str_mv |
2021-02-22T15:04:58Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/1602 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Alós, J. (2015). Resistencia bacteriana a los antibióticos : una crisis global Antibiotic resistance : A global crisis. Enfermedades Infecciosas y Microbiología Clínica, 33(10), 692–699. Abdel-Aziz, A. A. M., Asiri, Y. A., & Al-Agamy, M. H. M. (2011). Design, synthesis and antibacterial activity of fluoroquinolones containing bulky arenesulfonyl fragment: 2D-QSAR and docking study. European Journal of Medicinal Chemistry, 46(11), 5487–5497. Akter, F., Amin, M. R., Osman, K. T., Anwar, M. N., Karim, M. M., & Hossain, M. A. (2012). Ciprofloxacin-resistant Escherichia coli in hospital wastewater of Bangladesh and prediction of its mechanism of resistance. World Journal of Microbiology and Biotechnology, 28(3), 827–834. Aperador, W., Ruiz, J., & Uscátegui, A. (2015). Evaluación de la corrosión-erosión en aceros austeníticos y martensíticos. Ciencia en Desarrollo, 6(1), 17–24. Botero-coy, A. M., Martínez-pachón, D., Boix, C., Rincón, R. J., Castillo, N., & Arias-marín, L. P., Torres-Palma, R., Hernández, F., Moncayo-Lasso, A.(2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Science of the Total Environment, 642, 842–853. Brillas, E., Sire, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry, 109, 6570–6631. Caram, B. F. (2018). Procesos Fenton modificados para la degradación de contaminantes en aguas con valores de pH cercanos a la neutralidad. Estudios cinéticos y mecanísticos. Journal de la société des américanistes. Chávez, Á., Granados, D., & Ospina, É. A. (2009). Una alternativa limpia para el tratamiento de las aguas residuales galvánicas : revisión bibliográfica a clean alternative for galvanic wastewater treatment : literature review. Revista ingenierías universidad de Medellín una, (14), 39–50. Chen, Y., Wang, A., Zhang, Y., Bao, R., Tian, X., & Li, J. (2017). Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): Formation of Fe3+-CIP chelate and its effect on catalytic Delgado, O. (2014). Cálculo de la permeabilidad de un modelo de membrana celular hacia dos agentes antifimicos. Pediatric Physical Therapy, 22(1), 336–349. Dubar, F., Wintjens, R., Martins-Duarte, É. S., Vommaro, R. C., De Souza, W., Dive, D., Biot, C. (2011). Ester prodrugs of ciprofloxacin as DNA-gyrase inhibitors: Synthesis, antiparasitic evaluation and docking studies. MedChemComm, 2(5), Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Vol. 20). Gholami, M., Rahmani, K., Rahmani, A., Rahmani, H., & Esrafili, A. (2016). Oxidative degradation of clindamycin in aqueous solution using nanoscale zero-valent iron/H2O2/US. Desalination and Water Treatment, 57(30), 13878–13886. Guadalupe, M., & Manrique, E. (2015). Tratamiento de aguas residuales contaminadas con Cr ( vi ). 2o Congreso Nacional AMICA 2015, (Vi). Gupta, A., & Garg, A. (2018). Degradation of ciprofloxacin using Fenton’s oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment. Chemosphere, 193, 1181–1188. Hawkey, P. M. (2003). Mechanisms of quinolone action and microbial response. Journal of Antimicrobial Chemotherapy, 51(SUPPL. 1), 29–35. Hernández, F., Ibáñez, M., Botero-Coy, A. M., Bade, R., Bustos-López, M. C., Rincón, J., Bijlsma, L. (2015). LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia. Analytical and Bioanalytical Chemistry, 407(21), 6405–6416. Janet, M., Adriana, G., Soto, M., Iván, J., Omar, U., & Gutiérrez, D. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos, 7(2), 52–73. Jardim, W. F., & Litter, M. I. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes, (May 2014) Kim, Y. C., Sasaki, S., Yano, K., Ikebukuro, K., Hashimoto, K., & Karube, I. (2000). Relationship between theoretical oxygen demand and photocatalytic chemical oxygen demand for specific classes of organic chemicals. Analyst, 125(11), 1915–1918. Kočanová, V., & Dušek, L. (2016). Electrochemical dissolution of steel as a typical catalyst for electro-Fenton oxidation. Monatshefte fur Chemie, 147(5), 935–941. Kurt, A., Mert, B. K., Özengin, N., Sivrioğlu, Ö. & Yonar, T. (2017). Treatment of Antibiotics in Wastewater Using Advanced Oxidation Processes (AOPs). Physico-Chemical Wastewater Treatment and Resource Recovery Leyva, S., & Leyva, E. (2008). Fluoroquinolonas. Mecanismos de acción y resistencia, estructura, síntesis y reacciones fisicoquímicas importantes para propiedades medicinales. Sociedad Química de México, (May), 13. Recuperado de http://www.bsqm.org.mx/PDFS/V2/N1/1. Liu, X., Zhou, Y., Zhang, J., Luo, L., Yang, Y., Huang, H., Mu, Y. (2018). Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps. Chemical Engineering Journal, 347, 379–397. Lomize, A. L., Hage, J. M., Schnitzer, K., Golobokov, K., Lafaive, M. B., Forsyth, A. C., & Pogozheva, I. D. (2019). PerMM: A Web Tool and Database for Analysis of Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling, 59(7), 3094–3099. Brief-report. Lomize, A. L., & Pogozheva, I. D. (2019). Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling, 59(7), 3198–3213. Martínez, D., Espinosa, P., Rincón, J., & Moncayo, A. (2018). Advanced oxidation of antihypertensives losartan and valsartan by photo-electro-Fenton at near-neutral pH using natural organic acids and a dimensional stable anode-gas diffusion electrode (DSA-GDE) system under light emission diode (LED ) lighting. Environmental Science and Pollution Research, Volumen 26, pp 4426–4437. MEJÍA, S. (2005). Tratamiento de efluentes líquidos a través de procesos acoplados de Electrofloculación y generación in situ del Reactivo de Fenton. Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2018). The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. Water Research, 129, 208–230. Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. Mondal, S. K., Saha, A. K., & Sinha, A. (2018). Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. Journal of Cleaner Production, 171, 1203–1214. Morgada, M. E. (2002). Tratamiento de residuos líquidos de descontaminación de centrales nucleares por fotocatálisis heterogénea. Comisión Nacional de Energía Atómica Nidheesh, H., Olvera-Vargas, N., & Oturan Oturan, M. A. (2017). Heterogeneous Electro-Fenton Process : Principles and Applications. CSIR-National Environmental Engineering Research Institute. Padilla, E. D. (1999). Aplicaciones de los aceros inoxidables. Rev. Del Instituto de Investigación (RIIGEO), FIGMMG-UNMSM, 2. Patel, J. B. (2015). M07-A10 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow. Patiño, Y., & Ordóñez, E. (2014). Microcontaminantes emergentes en aguas : tipos y sistemas de tratamiento water. Universidad de Oviedo, Departamento de Ingeniería Química y Tecnología del Medio Ambiente, 5(2), 1–20. PEÑA, C. A. (2015). Estudio computacional de la interacción de antibióticos tipo quinolonas con su enzima blanco ADN girasa y sus implicaciones en la resistencia bacteriana de Pseudomonas aeruginosa. Farmacología molecular y bioquímica, 116. Porras, J., Bedoya, C., Silva-agredo, J., Santamaría, A., Torres-palma, R. A., & Fern, J. J. (2016). Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Research, 94(1–9). Rahmani, A. R., Nematollahi, D., Samarghandi, M. R., Samadi, M. T., & Azarian, G. (2018). A combined advanced oxidation process: Electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution. Journal of Electroanalytical Chemistry, 808 (September 2017), 82–89. Rakhshandehroo, G. R., Salari, M., & Nikoo, M. R. (2018). Optimization of degradation of ciprofloxacin antibiotic and assessment of degradation products using full factorial experimental design by fenton homogenous process. Global Nest Journal, 20(2), 324–332. Ren, J. R., Zhao, H. P., Song, C., Wang, S. L., Li, L., Xu, Y. T., & Gao, H. W. (2010). Comparative transmembrane transports of four typical lipophilic organic chemicals. Bioresource Technology, 101(22), 8632–8638. Ruiz, D. H., Baltazar, E. H., Lara, J. C. E., Martínez, I. de la L., Torres, A. A. B., & Alejo, J. M. M. (2012). Técnicas de complejidad variable para evaluar la absorción de fármacos. Revista Mexicana de Ciencias Farmacéuticas, 43(1), 18–32. Rosales, E., Pazos, M., & Angeles, M. (2018). Current advances and trends in the electro-Fenton process using heterogeneous catalysts, 201. Serna-Galvis, E. A., Isaza-Pineda, L., Moncayo-Lasso, A., Hernández, F., Ibáñez, M., & Torres-Palma, R. A. (2019). Comparative degradation of two highly consumed antihypertensives in water by sonochemical process. Determination of the reaction zone, primary degradation products and theoretical calculations on the oxidative process. Ultrasonics Sonochemistry, 58(June), 104635. Skauge, T., Turel, I., & Sletten, E. (2002). Interaction between ciprofloxacin and DNA mediated by Mg2+-ions. Inorganica Chimica Acta, 339, 239–247. Tejada, C., Quiñonez, E., & Peña, M. (2014). Contaminantes emergentes en aguas: metabolitos de fármacos. Universidad militar nueva granada, 80–101. UNESCO. (2018). Soluciones basadas en la naturaleza para la gestión del agua. Paris. Recuperado de https://unesdoc.unesco.org Wang, D., Ning, Q., Dong, J., Brooks, B. W., & You, J. (2020). Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli. Environmental Pollution (Vol. 262). Elsevier Ltd. Yahya, M. S., Oturan, N., El Kacemi, K., El Karbane, M., Aravindakumar, C. T., & Oturan, M. A. (2014). Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: Kinetics and oxidation products. Chemosphere, 117(1), 447–454. Yang, W., Zhou, M., Oturan, N., & Li, Y. (2019). Electrochimica Acta Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochimica Acta, 305, 285–294. Zhao, Z., Dong, W., Wang, H., Chen, G., Tang, J., & Wu, Y. (2018). Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes. Journal of Hazardous Materials, 350(October 2017), Ziolo, L., Restrepo, L., Agudelo, A., & Gallo, S. (2015). Tecnologías Para La Remoción De Colorantes Y Pigmentos Presentes En Aguas Residuales. Dyna, 82(191), 118–126. |
url |
http://repositorio.uan.edu.co/handle/123456789/1602 |
identifier_str_mv |
Alós, J. (2015). Resistencia bacteriana a los antibióticos : una crisis global Antibiotic resistance : A global crisis. Enfermedades Infecciosas y Microbiología Clínica, 33(10), 692–699. Abdel-Aziz, A. A. M., Asiri, Y. A., & Al-Agamy, M. H. M. (2011). Design, synthesis and antibacterial activity of fluoroquinolones containing bulky arenesulfonyl fragment: 2D-QSAR and docking study. European Journal of Medicinal Chemistry, 46(11), 5487–5497. Akter, F., Amin, M. R., Osman, K. T., Anwar, M. N., Karim, M. M., & Hossain, M. A. (2012). Ciprofloxacin-resistant Escherichia coli in hospital wastewater of Bangladesh and prediction of its mechanism of resistance. World Journal of Microbiology and Biotechnology, 28(3), 827–834. Aperador, W., Ruiz, J., & Uscátegui, A. (2015). Evaluación de la corrosión-erosión en aceros austeníticos y martensíticos. Ciencia en Desarrollo, 6(1), 17–24. Botero-coy, A. M., Martínez-pachón, D., Boix, C., Rincón, R. J., Castillo, N., & Arias-marín, L. P., Torres-Palma, R., Hernández, F., Moncayo-Lasso, A.(2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Science of the Total Environment, 642, 842–853. Brillas, E., Sire, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry, 109, 6570–6631. Caram, B. F. (2018). Procesos Fenton modificados para la degradación de contaminantes en aguas con valores de pH cercanos a la neutralidad. Estudios cinéticos y mecanísticos. Journal de la société des américanistes. Chávez, Á., Granados, D., & Ospina, É. A. (2009). Una alternativa limpia para el tratamiento de las aguas residuales galvánicas : revisión bibliográfica a clean alternative for galvanic wastewater treatment : literature review. Revista ingenierías universidad de Medellín una, (14), 39–50. Chen, Y., Wang, A., Zhang, Y., Bao, R., Tian, X., & Li, J. (2017). Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): Formation of Fe3+-CIP chelate and its effect on catalytic Delgado, O. (2014). Cálculo de la permeabilidad de un modelo de membrana celular hacia dos agentes antifimicos. Pediatric Physical Therapy, 22(1), 336–349. Dubar, F., Wintjens, R., Martins-Duarte, É. S., Vommaro, R. C., De Souza, W., Dive, D., Biot, C. (2011). Ester prodrugs of ciprofloxacin as DNA-gyrase inhibitors: Synthesis, antiparasitic evaluation and docking studies. MedChemComm, 2(5), Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Vol. 20). Gholami, M., Rahmani, K., Rahmani, A., Rahmani, H., & Esrafili, A. (2016). Oxidative degradation of clindamycin in aqueous solution using nanoscale zero-valent iron/H2O2/US. Desalination and Water Treatment, 57(30), 13878–13886. Guadalupe, M., & Manrique, E. (2015). Tratamiento de aguas residuales contaminadas con Cr ( vi ). 2o Congreso Nacional AMICA 2015, (Vi). Gupta, A., & Garg, A. (2018). Degradation of ciprofloxacin using Fenton’s oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment. Chemosphere, 193, 1181–1188. Hawkey, P. M. (2003). Mechanisms of quinolone action and microbial response. Journal of Antimicrobial Chemotherapy, 51(SUPPL. 1), 29–35. Hernández, F., Ibáñez, M., Botero-Coy, A. M., Bade, R., Bustos-López, M. C., Rincón, J., Bijlsma, L. (2015). LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia. Analytical and Bioanalytical Chemistry, 407(21), 6405–6416. Janet, M., Adriana, G., Soto, M., Iván, J., Omar, U., & Gutiérrez, D. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos, 7(2), 52–73. Jardim, W. F., & Litter, M. I. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes, (May 2014) Kim, Y. C., Sasaki, S., Yano, K., Ikebukuro, K., Hashimoto, K., & Karube, I. (2000). Relationship between theoretical oxygen demand and photocatalytic chemical oxygen demand for specific classes of organic chemicals. Analyst, 125(11), 1915–1918. Kočanová, V., & Dušek, L. (2016). Electrochemical dissolution of steel as a typical catalyst for electro-Fenton oxidation. Monatshefte fur Chemie, 147(5), 935–941. Kurt, A., Mert, B. K., Özengin, N., Sivrioğlu, Ö. & Yonar, T. (2017). Treatment of Antibiotics in Wastewater Using Advanced Oxidation Processes (AOPs). Physico-Chemical Wastewater Treatment and Resource Recovery Leyva, S., & Leyva, E. (2008). Fluoroquinolonas. Mecanismos de acción y resistencia, estructura, síntesis y reacciones fisicoquímicas importantes para propiedades medicinales. Sociedad Química de México, (May), 13. Recuperado de http://www.bsqm.org.mx/PDFS/V2/N1/1. Liu, X., Zhou, Y., Zhang, J., Luo, L., Yang, Y., Huang, H., Mu, Y. (2018). Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps. Chemical Engineering Journal, 347, 379–397. Lomize, A. L., Hage, J. M., Schnitzer, K., Golobokov, K., Lafaive, M. B., Forsyth, A. C., & Pogozheva, I. D. (2019). PerMM: A Web Tool and Database for Analysis of Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling, 59(7), 3094–3099. Brief-report. Lomize, A. L., & Pogozheva, I. D. (2019). Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling, 59(7), 3198–3213. Martínez, D., Espinosa, P., Rincón, J., & Moncayo, A. (2018). Advanced oxidation of antihypertensives losartan and valsartan by photo-electro-Fenton at near-neutral pH using natural organic acids and a dimensional stable anode-gas diffusion electrode (DSA-GDE) system under light emission diode (LED ) lighting. Environmental Science and Pollution Research, Volumen 26, pp 4426–4437. MEJÍA, S. (2005). Tratamiento de efluentes líquidos a través de procesos acoplados de Electrofloculación y generación in situ del Reactivo de Fenton. Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2018). The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. Water Research, 129, 208–230. Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131. Mondal, S. K., Saha, A. K., & Sinha, A. (2018). Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. Journal of Cleaner Production, 171, 1203–1214. Morgada, M. E. (2002). Tratamiento de residuos líquidos de descontaminación de centrales nucleares por fotocatálisis heterogénea. Comisión Nacional de Energía Atómica Nidheesh, H., Olvera-Vargas, N., & Oturan Oturan, M. A. (2017). Heterogeneous Electro-Fenton Process : Principles and Applications. CSIR-National Environmental Engineering Research Institute. Padilla, E. D. (1999). Aplicaciones de los aceros inoxidables. Rev. Del Instituto de Investigación (RIIGEO), FIGMMG-UNMSM, 2. Patel, J. B. (2015). M07-A10 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow. Patiño, Y., & Ordóñez, E. (2014). Microcontaminantes emergentes en aguas : tipos y sistemas de tratamiento water. Universidad de Oviedo, Departamento de Ingeniería Química y Tecnología del Medio Ambiente, 5(2), 1–20. PEÑA, C. A. (2015). Estudio computacional de la interacción de antibióticos tipo quinolonas con su enzima blanco ADN girasa y sus implicaciones en la resistencia bacteriana de Pseudomonas aeruginosa. Farmacología molecular y bioquímica, 116. Porras, J., Bedoya, C., Silva-agredo, J., Santamaría, A., Torres-palma, R. A., & Fern, J. J. (2016). Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Research, 94(1–9). Rahmani, A. R., Nematollahi, D., Samarghandi, M. R., Samadi, M. T., & Azarian, G. (2018). A combined advanced oxidation process: Electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution. Journal of Electroanalytical Chemistry, 808 (September 2017), 82–89. Rakhshandehroo, G. R., Salari, M., & Nikoo, M. R. (2018). Optimization of degradation of ciprofloxacin antibiotic and assessment of degradation products using full factorial experimental design by fenton homogenous process. Global Nest Journal, 20(2), 324–332. Ren, J. R., Zhao, H. P., Song, C., Wang, S. L., Li, L., Xu, Y. T., & Gao, H. W. (2010). Comparative transmembrane transports of four typical lipophilic organic chemicals. Bioresource Technology, 101(22), 8632–8638. Ruiz, D. H., Baltazar, E. H., Lara, J. C. E., Martínez, I. de la L., Torres, A. A. B., & Alejo, J. M. M. (2012). Técnicas de complejidad variable para evaluar la absorción de fármacos. Revista Mexicana de Ciencias Farmacéuticas, 43(1), 18–32. Rosales, E., Pazos, M., & Angeles, M. (2018). Current advances and trends in the electro-Fenton process using heterogeneous catalysts, 201. Serna-Galvis, E. A., Isaza-Pineda, L., Moncayo-Lasso, A., Hernández, F., Ibáñez, M., & Torres-Palma, R. A. (2019). Comparative degradation of two highly consumed antihypertensives in water by sonochemical process. Determination of the reaction zone, primary degradation products and theoretical calculations on the oxidative process. Ultrasonics Sonochemistry, 58(June), 104635. Skauge, T., Turel, I., & Sletten, E. (2002). Interaction between ciprofloxacin and DNA mediated by Mg2+-ions. Inorganica Chimica Acta, 339, 239–247. Tejada, C., Quiñonez, E., & Peña, M. (2014). Contaminantes emergentes en aguas: metabolitos de fármacos. Universidad militar nueva granada, 80–101. UNESCO. (2018). Soluciones basadas en la naturaleza para la gestión del agua. Paris. Recuperado de https://unesdoc.unesco.org Wang, D., Ning, Q., Dong, J., Brooks, B. W., & You, J. (2020). Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli. Environmental Pollution (Vol. 262). Elsevier Ltd. Yahya, M. S., Oturan, N., El Kacemi, K., El Karbane, M., Aravindakumar, C. T., & Oturan, M. A. (2014). Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: Kinetics and oxidation products. Chemosphere, 117(1), 447–454. Yang, W., Zhou, M., Oturan, N., & Li, Y. (2019). Electrochimica Acta Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochimica Acta, 305, 285–294. Zhao, Z., Dong, W., Wang, H., Chen, G., Tang, J., & Wu, Y. (2018). Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes. Journal of Hazardous Materials, 350(October 2017), Ziolo, L., Restrepo, L., Agudelo, A., & Gallo, S. (2015). Tecnologías Para La Remoción De Colorantes Y Pigmentos Presentes En Aguas Residuales. Dyna, 82(191), 118–126. |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) Acceso abierto https://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Circunvalar |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/8b04e13c-aa67-439f-8098-edcf611120c7/download https://repositorio.uan.edu.co/bitstreams/07c60d98-c144-43c0-8abc-5b8ff760ed92/download https://repositorio.uan.edu.co/bitstreams/2fe19c40-2c42-4784-85ae-f014e741c70a/download https://repositorio.uan.edu.co/bitstreams/447e9724-f471-485a-b34f-e940fb49a912/download |
bitstream.checksum.fl_str_mv |
f786f0cf8810ee6e5cd2506dc51f0539 63feb50a97c0ed1371ac647e527e3adf 5812a2eee99d5585fc0c26f0033099bb 2e388663398085f69421c9e4c5fcf235 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300394492264448 |
spelling |
Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moncayo Lasso, AlejandroSiabato Vargas, Cristian Felipe2021-02-22T15:04:58Z2021-02-22T15:04:58Z2020-10-04http://repositorio.uan.edu.co/handle/123456789/1602Alós, J. (2015). Resistencia bacteriana a los antibióticos : una crisis global Antibiotic resistance : A global crisis. Enfermedades Infecciosas y Microbiología Clínica, 33(10), 692–699.Abdel-Aziz, A. A. M., Asiri, Y. A., & Al-Agamy, M. H. M. (2011). Design, synthesis and antibacterial activity of fluoroquinolones containing bulky arenesulfonyl fragment: 2D-QSAR and docking study. European Journal of Medicinal Chemistry, 46(11), 5487–5497.Akter, F., Amin, M. R., Osman, K. T., Anwar, M. N., Karim, M. M., & Hossain, M. A. (2012). Ciprofloxacin-resistant Escherichia coli in hospital wastewater of Bangladesh and prediction of its mechanism of resistance. World Journal of Microbiology and Biotechnology, 28(3), 827–834.Aperador, W., Ruiz, J., & Uscátegui, A. (2015). Evaluación de la corrosión-erosión en aceros austeníticos y martensíticos. Ciencia en Desarrollo, 6(1), 17–24.Botero-coy, A. M., Martínez-pachón, D., Boix, C., Rincón, R. J., Castillo, N., & Arias-marín, L. P., Torres-Palma, R., Hernández, F., Moncayo-Lasso, A.(2018). An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Science of the Total Environment, 642, 842–853.Brillas, E., Sire, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry, 109, 6570–6631.Caram, B. F. (2018). Procesos Fenton modificados para la degradación de contaminantes en aguas con valores de pH cercanos a la neutralidad. Estudios cinéticos y mecanísticos. Journal de la société des américanistes.Chávez, Á., Granados, D., & Ospina, É. A. (2009). Una alternativa limpia para el tratamiento de las aguas residuales galvánicas : revisión bibliográfica a clean alternative for galvanic wastewater treatment : literature review. Revista ingenierías universidad de Medellín una, (14), 39–50.Chen, Y., Wang, A., Zhang, Y., Bao, R., Tian, X., & Li, J. (2017). Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): Formation of Fe3+-CIP chelate and its effect on catalyticDelgado, O. (2014). Cálculo de la permeabilidad de un modelo de membrana celular hacia dos agentes antifimicos. Pediatric Physical Therapy, 22(1), 336–349.Dubar, F., Wintjens, R., Martins-Duarte, É. S., Vommaro, R. C., De Souza, W., Dive, D., Biot, C. (2011). Ester prodrugs of ciprofloxacin as DNA-gyrase inhibitors: Synthesis, antiparasitic evaluation and docking studies. MedChemComm, 2(5),Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Vol. 20).Gholami, M., Rahmani, K., Rahmani, A., Rahmani, H., & Esrafili, A. (2016). Oxidative degradation of clindamycin in aqueous solution using nanoscale zero-valent iron/H2O2/US. Desalination and Water Treatment, 57(30), 13878–13886.Guadalupe, M., & Manrique, E. (2015). Tratamiento de aguas residuales contaminadas con Cr ( vi ). 2o Congreso Nacional AMICA 2015, (Vi).Gupta, A., & Garg, A. (2018). Degradation of ciprofloxacin using Fenton’s oxidation: Effect of operating parameters, identification of oxidized by-products and toxicity assessment. Chemosphere, 193, 1181–1188.Hawkey, P. M. (2003). Mechanisms of quinolone action and microbial response. Journal of Antimicrobial Chemotherapy, 51(SUPPL. 1), 29–35.Hernández, F., Ibáñez, M., Botero-Coy, A. M., Bade, R., Bustos-López, M. C., Rincón, J., Bijlsma, L. (2015). LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia. Analytical and Bioanalytical Chemistry, 407(21), 6405–6416.Janet, M., Adriana, G., Soto, M., Iván, J., Omar, U., & Gutiérrez, D. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos, 7(2), 52–73.Jardim, W. F., & Litter, M. I. (2004). Procesos avanzados de oxidación para la eliminación de contaminantes, (May 2014)Kim, Y. C., Sasaki, S., Yano, K., Ikebukuro, K., Hashimoto, K., & Karube, I. (2000). Relationship between theoretical oxygen demand and photocatalytic chemical oxygen demand for specific classes of organic chemicals. Analyst, 125(11), 1915–1918.Kočanová, V., & Dušek, L. (2016). Electrochemical dissolution of steel as a typical catalyst for electro-Fenton oxidation. Monatshefte fur Chemie, 147(5), 935–941.Kurt, A., Mert, B. K., Özengin, N., Sivrioğlu, Ö. & Yonar, T. (2017). Treatment of Antibiotics in Wastewater Using Advanced Oxidation Processes (AOPs). Physico-Chemical Wastewater Treatment and Resource RecoveryLeyva, S., & Leyva, E. (2008). Fluoroquinolonas. Mecanismos de acción y resistencia, estructura, síntesis y reacciones fisicoquímicas importantes para propiedades medicinales. Sociedad Química de México, (May), 13. Recuperado de http://www.bsqm.org.mx/PDFS/V2/N1/1.Liu, X., Zhou, Y., Zhang, J., Luo, L., Yang, Y., Huang, H., Mu, Y. (2018). Insight into electro-Fenton and photo-Fenton for the degradation of antibiotics: Mechanism study and research gaps. Chemical Engineering Journal, 347, 379–397.Lomize, A. L., Hage, J. M., Schnitzer, K., Golobokov, K., Lafaive, M. B., Forsyth, A. C., & Pogozheva, I. D. (2019). PerMM: A Web Tool and Database for Analysis of Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling, 59(7), 3094–3099. Brief-report.Lomize, A. L., & Pogozheva, I. D. (2019). Physics-Based Method for Modeling Passive Membrane Permeability and Translocation Pathways of Bioactive Molecules. Journal of Chemical Information and Modeling, 59(7), 3198–3213.Martínez, D., Espinosa, P., Rincón, J., & Moncayo, A. (2018). Advanced oxidation of antihypertensives losartan and valsartan by photo-electro-Fenton at near-neutral pH using natural organic acids and a dimensional stable anode-gas diffusion electrode (DSA-GDE) system under light emission diode (LED ) lighting. Environmental Science and Pollution Research, Volumen 26, pp 4426–4437.MEJÍA, S. (2005). Tratamiento de efluentes líquidos a través de procesos acoplados de Electrofloculación y generación in situ del Reactivo de Fenton.Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2018). The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. Water Research, 129, 208–230.Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118–131.Mondal, S. K., Saha, A. K., & Sinha, A. (2018). Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. Journal of Cleaner Production, 171, 1203–1214.Morgada, M. E. (2002). Tratamiento de residuos líquidos de descontaminación de centrales nucleares por fotocatálisis heterogénea. Comisión Nacional de Energía AtómicaNidheesh, H., Olvera-Vargas, N., & Oturan Oturan, M. A. (2017). Heterogeneous Electro-Fenton Process : Principles and Applications. CSIR-National Environmental Engineering Research Institute.Padilla, E. D. (1999). Aplicaciones de los aceros inoxidables. Rev. Del Instituto de Investigación (RIIGEO), FIGMMG-UNMSM, 2.Patel, J. B. (2015). M07-A10 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow.Patiño, Y., & Ordóñez, E. (2014). Microcontaminantes emergentes en aguas : tipos y sistemas de tratamiento water. Universidad de Oviedo, Departamento de Ingeniería Química y Tecnología del Medio Ambiente, 5(2), 1–20.PEÑA, C. A. (2015). Estudio computacional de la interacción de antibióticos tipo quinolonas con su enzima blanco ADN girasa y sus implicaciones en la resistencia bacteriana de Pseudomonas aeruginosa. Farmacología molecular y bioquímica, 116.Porras, J., Bedoya, C., Silva-agredo, J., Santamaría, A., Torres-palma, R. A., & Fern, J. J. (2016). Role of humic substances in the degradation pathways and residual antibacterial activity during the photodecomposition of the antibiotic ciprofloxacin in water. Water Research, 94(1–9).Rahmani, A. R., Nematollahi, D., Samarghandi, M. R., Samadi, M. T., & Azarian, G. (2018). A combined advanced oxidation process: Electrooxidation-ozonation for antibiotic ciprofloxacin removal from aqueous solution. Journal of Electroanalytical Chemistry, 808 (September 2017), 82–89.Rakhshandehroo, G. R., Salari, M., & Nikoo, M. R. (2018). Optimization of degradation of ciprofloxacin antibiotic and assessment of degradation products using full factorial experimental design by fenton homogenous process. Global Nest Journal, 20(2), 324–332.Ren, J. R., Zhao, H. P., Song, C., Wang, S. L., Li, L., Xu, Y. T., & Gao, H. W. (2010). Comparative transmembrane transports of four typical lipophilic organic chemicals. Bioresource Technology, 101(22), 8632–8638.Ruiz, D. H., Baltazar, E. H., Lara, J. C. E., Martínez, I. de la L., Torres, A. A. B., & Alejo, J. M. M. (2012). Técnicas de complejidad variable para evaluar la absorción de fármacos. Revista Mexicana de Ciencias Farmacéuticas, 43(1), 18–32.Rosales, E., Pazos, M., & Angeles, M. (2018). Current advances and trends in the electro-Fenton process using heterogeneous catalysts, 201.Serna-Galvis, E. A., Isaza-Pineda, L., Moncayo-Lasso, A., Hernández, F., Ibáñez, M., & Torres-Palma, R. A. (2019). Comparative degradation of two highly consumed antihypertensives in water by sonochemical process. Determination of the reaction zone, primary degradation products and theoretical calculations on the oxidative process. Ultrasonics Sonochemistry, 58(June), 104635.Skauge, T., Turel, I., & Sletten, E. (2002). Interaction between ciprofloxacin and DNA mediated by Mg2+-ions. Inorganica Chimica Acta, 339, 239–247.Tejada, C., Quiñonez, E., & Peña, M. (2014). Contaminantes emergentes en aguas: metabolitos de fármacos. Universidad militar nueva granada, 80–101.UNESCO. (2018). Soluciones basadas en la naturaleza para la gestión del agua. Paris. Recuperado de https://unesdoc.unesco.orgWang, D., Ning, Q., Dong, J., Brooks, B. W., & You, J. (2020). Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli. Environmental Pollution (Vol. 262). Elsevier Ltd.Yahya, M. S., Oturan, N., El Kacemi, K., El Karbane, M., Aravindakumar, C. T., & Oturan, M. A. (2014). Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-fenton process: Kinetics and oxidation products. Chemosphere, 117(1), 447–454.Yang, W., Zhou, M., Oturan, N., & Li, Y. (2019). Electrochimica Acta Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode. Electrochimica Acta, 305, 285–294.Zhao, Z., Dong, W., Wang, H., Chen, G., Tang, J., & Wu, Y. (2018). Simultaneous decomplexation in blended Cu(II)/Ni(II)-EDTA systems by electro-Fenton process using iron sacrificing electrodes. Journal of Hazardous Materials, 350(October 2017),Ziolo, L., Restrepo, L., Agudelo, A., & Gallo, S. (2015). Tecnologías Para La Remoción De Colorantes Y Pigmentos Presentes En Aguas Residuales. Dyna, 82(191), 118–126.The appearance of pharmaceutical compounds both in hospital waters and in the effluents of wastewater treatment plants, and the great potential problems in the environment and in human health that this can generate, has led to the need to propose complementary treatments, mainly tertiaries that are capable of efficiently removing this type of micro-contaminants. Among these treatments, systems based on the Fenton reaction (a type of advanced oxidation process) have been evaluated, which has proven to be efficient in removing a wide variety of contaminants. In this work, the use of an electro-Fenton system was proposed, in which the iron and hydrogen peroxide species, necessary reagents in the Fenton reaction, are electrogenerated. In the first case, from a recycled stainless-steel sacrificial anode (austenitic type - AISI 420 - from a recyclable residue), and in the case of hydrogen peroxide, using a gas diffusion cathode (with fiber of graphite). The system was worked in the presence of citric acid at near-neutral pH value. The results show that when the current density of 0.31 mA/cm2 was applied on the anode, a concentration of 0.07 mM of iron species was generated after 5 minutes, which increases progressively until a maximum of ~ 0.18 mM after 60 min. Initial results showed that electro-generated iron species, in combination with 0.40 mM hydrogen peroxide, was also electro-generated; leads to the complete degradation of ciprofloxacin, CIP (a model compound of contaminants of emerging concern), therefore its antimicrobial activity is expected to decrease as well. Taking into account degradation data (from other authors) of ciprofloxacin using similar electro-Fenton systems, and degradation products detected during treatment, in silico calculations of ThOD, Log P and molecular coupling “Docking” were performed to determine biodegradability and toxicity, both of the original compound (CIP) and the degradation products. The calculations show a tendency to increase the degradability of the intermediates formed and to decrease both toxicity and antimicrobial capacity due to low enzyme inhibition values. Electro-Fenton systems have proven to be efficient in removing this type of compound and tend to be a sustainable system with low energy consumption, when alternatives are used in their implementation, such as the one demonstrated in this work, by using reuse materials.La aparición de compuestos farmacéuticos tanto en aguas hospitalarias como en los efluentes de las plantas de tratamiento de aguas residuales y los grandes problemas potenciales que esto puede generar en el medioambiente y en la salud humana , ha llevado a la necesidad de plantear tratamientos complementarios, principalmente terciarios que sean capaces de remover eficientemente este tipo de micro-contaminantes. Dentro de esos tratamientos están los sistemas basados en la reacción Fenton, un tipo de proceso avanzado de oxidación, el cual ha demostrado ser eficiente en la remoción de una gran variedad de contaminantes. En este trabajo se planteó el uso de un sistema electro-Fenton en el que las especies de hierro y el peróxido de hidrógeno, reactivos necesarios en la reacción Fenton, son electro-generados, en el primer caso, a partir de un ánodo de sacrificio de acero inoxidable reciclado (tipo austenítico - AISI 420 - proveniente de un residuo reciclable), y en el caso del peróxido de hidrógeno, empleando un cátodo de difusión de gas (con fibra de grafito). El sistema se utilizó sin modificación de pH, en presencia de ácido cítrico. Los resultados muestran que al aplicar una densidad de corriente de 0.31 mA/cm2 sobre el ánodo, se generó una concentración de 0.07 mM después de 5 minutos de haber encendido el sistema y que aumenta progresivamente con el tiempo hasta un máximo de 0.18 mM después de 60 min. Resultados iniciales mostraron que el hierro electro-generado, en combinación con el peróxido de hidrógeno 0.40 mM, también electro-generado; conllevan a la degradación completa de la ciprofloxacina CPF (un compuesto modelo de contaminantes de preocupación emergente), por lo que se espera que disminuya también su actividad antimicrobiana. Teniendo en cuenta datos de degradación de la ciprofloxacina mediante sistemas electro-Fenton similares y productos de degradación detectados durante el tratamiento, se realizaron cálculos in silico de ThOD, Log P y acoplamiento molecular “Docking” para determinar la biodegradabilidad, la toxicidad y actividad antimicrobiana, respectivamente, tanto del compuesto original (CIP) como de los productos de degradación. Los cálculos mostraron una tendencia a aumentar la degradabilidad de los intermediarios formados y a disminuir tanto la toxicidad como la capacidad antimicrobiana debido a los bajos valores de inhibición enzimática. Los sistemas electro-Fenton han demostrado ser eficientes en la remoción de este tipo de compuestos y tienden a ser sistemas sustentables y de bajo consumo energético, cuando se emplean alternativas en su implementación como la demostrada en éste trabajo, al emplear materiales de reúso.Bioquímico(a)PregradoPresencialspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarElectro-Fenton, Electrodo de sacrificio, Contaminantes de Preocupación Emergente (CPE), Ciprofloxacina, Cálculos in silico.Electro-Fenton, Sacrificial-electrode, Contaminants of Emerging Concern (CEC), Ciprofloxacin, in silico calculation’sAplicación de un sistema electro-fenton con un ánodo de sacrificio de acero y un cátodo de difusión de gas como alternativa para la remoción de contaminantes de preocupación emergenteTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020AutorizaciondeAutores.pdf2020AutorizaciondeAutores.pdfAutorizaciondeAutoresapplication/pdf680556https://repositorio.uan.edu.co/bitstreams/8b04e13c-aa67-439f-8098-edcf611120c7/downloadf786f0cf8810ee6e5cd2506dc51f0539MD512020CristianFelipeSiabatoVargas.pdf2020CristianFelipeSiabatoVargas.pdfTrabajo de gradoapplication/pdf1555193https://repositorio.uan.edu.co/bitstreams/07c60d98-c144-43c0-8abc-5b8ff760ed92/download63feb50a97c0ed1371ac647e527e3adfMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uan.edu.co/bitstreams/2fe19c40-2c42-4784-85ae-f014e741c70a/download5812a2eee99d5585fc0c26f0033099bbMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/447e9724-f471-485a-b34f-e940fb49a912/download2e388663398085f69421c9e4c5fcf235MD54123456789/1602oai:repositorio.uan.edu.co:123456789/16022024-10-09 23:07:15.623https://creativecommons.org/licenses/by-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg== |