Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase
COVID-19 was identified in Wuhan, China in December 2019, and to date, has caused a devastating global pandemic [1]. The pathogen responsible for COVID-19 is mainly transmitted through aerosol droplets exhaled by infected individuals, which can remain suspended in the air of indoor spaces for up to...
- Autores:
-
Quiroga Barrios, Diego Armando
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/8271
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/8271
- Palabra clave:
- Red inalámbrica de sensores,
MQTT,
Calidad del aire interior,
Gotículas,
COVID-19.
574
56.23 Q84i
Wireless sensor network,
MQTT,
Indoor air quality,
Aerosol droplets,
COVID-19
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id |
UAntonioN2_3e88f0c47105dbdc2403f6bb9dbbd598 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/8271 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase |
title |
Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase |
spellingShingle |
Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase Red inalámbrica de sensores, MQTT, Calidad del aire interior, Gotículas, COVID-19. 574 56.23 Q84i Wireless sensor network, MQTT, Indoor air quality, Aerosol droplets, COVID-19 |
title_short |
Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase |
title_full |
Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase |
title_fullStr |
Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase |
title_full_unstemmed |
Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase |
title_sort |
Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de clase |
dc.creator.fl_str_mv |
Quiroga Barrios, Diego Armando |
dc.contributor.advisor.spa.fl_str_mv |
Díaz Salas, Sergio Andrés Fernando Pastrana, Homero |
dc.contributor.author.spa.fl_str_mv |
Quiroga Barrios, Diego Armando |
dc.subject.es_ES.fl_str_mv |
Red inalámbrica de sensores, MQTT, Calidad del aire interior, Gotículas, COVID-19. |
topic |
Red inalámbrica de sensores, MQTT, Calidad del aire interior, Gotículas, COVID-19. 574 56.23 Q84i Wireless sensor network, MQTT, Indoor air quality, Aerosol droplets, COVID-19 |
dc.subject.ddc.es_ES.fl_str_mv |
574 56.23 Q84i |
dc.subject.keyword.es_ES.fl_str_mv |
Wireless sensor network, MQTT, Indoor air quality, Aerosol droplets, COVID-19 |
description |
COVID-19 was identified in Wuhan, China in December 2019, and to date, has caused a devastating global pandemic [1]. The pathogen responsible for COVID-19 is mainly transmitted through aerosol droplets exhaled by infected individuals, which can remain suspended in the air of indoor spaces for up to 8 hours [2]. Therefore, monitoring the air quality in indoor spaces became relevant in order to try to reduce the contagion. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-24T19:46:14Z |
dc.date.available.none.fl_str_mv |
2023-07-24T19:46:14Z |
dc.date.issued.spa.fl_str_mv |
2023-05-31 |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/8271 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
World Health Organization, “Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations,” Geneva World Heal. Organ., no. March, pp. 1–10, 2020, doi: 10.1056/NEJMc2004973.Cheng. M. Z. Bazant, O. Kodio, A. E. Cohen, K. Khan, Z. Gu, and J. W. M. Bush, “Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19,” Flow, vol. 1, no. December 2019, pp. 1–18, 2021, doi: 10.1017/flo.2021. E. C. Riley, G. Murphy, and R. L. Riley, “Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol., vol. 107, no. 5, pp. 421–432, May 1978, doi: 10.1093/oxfordjournals.aje.a112560. M. J. Mendell et al., “Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools,” Indoor Air, vol. 23, no. 6, pp. 515–528, Dec. 2013, doi: 10.1111/ina.12042. L.-J. S. Liu et al., “Investigation of the Concentration of Bacteria and Their Cell Envelope Components in Indoor Air in Two Elementary Schools,” J. Air Waste Manage. Assoc., vol. 50, no. 11, pp. 1957–1967, Nov. 2000, doi: 10.1080/10473289.2000.10464225 A. Eykelbosh, “Indoor CO2 sensors for COVID-19 risk mitigation: Currentguidance and limitations,” Natl. Collab. Cent. Enviromental Heal., pp. 1–13, 2021. A. Di Gilio et al., “CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission,” Environ. Res., vol. 202, no. July, p. 111560, 2021, doi: 10.1016/j.envres.2021.111560. C. V. M. Vouriot, H. C. Burridge, C. J. Noakes, and P. F. Linden, “Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide,” Indoor Air, vol. 31, no. 4, pp. 1154–1163, 2021, doi: 10.1111/ina.12818. F. Villanueva, A. Notario, B. Cabañas, P. Martín, S. Salgado, and M. F. Gabriel, “Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain,” Environ. Res., vol. 197, no. January, 2021, doi: 10.1016/j.envres.2021.111092. A. Alonso, J. Llanos, R. Escandón, and J. J. Sendra, “Effects of the covid-19 pandemic on indoor air quality and thermal comfort of primary schools in winter in a mediterranean climate,” Sustain., vol. 13, no. 5, pp. 1–17, 2021, doi: 10.3390/su13052699. |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/8271 |
identifier_str_mv |
World Health Organization, “Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations,” Geneva World Heal. Organ., no. March, pp. 1–10, 2020, doi: 10.1056/NEJMc2004973.Cheng. M. Z. Bazant, O. Kodio, A. E. Cohen, K. Khan, Z. Gu, and J. W. M. Bush, “Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19,” Flow, vol. 1, no. December 2019, pp. 1–18, 2021, doi: 10.1017/flo.2021. E. C. Riley, G. Murphy, and R. L. Riley, “Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol., vol. 107, no. 5, pp. 421–432, May 1978, doi: 10.1093/oxfordjournals.aje.a112560. M. J. Mendell et al., “Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools,” Indoor Air, vol. 23, no. 6, pp. 515–528, Dec. 2013, doi: 10.1111/ina.12042. L.-J. S. Liu et al., “Investigation of the Concentration of Bacteria and Their Cell Envelope Components in Indoor Air in Two Elementary Schools,” J. Air Waste Manage. Assoc., vol. 50, no. 11, pp. 1957–1967, Nov. 2000, doi: 10.1080/10473289.2000.10464225 A. Eykelbosh, “Indoor CO2 sensors for COVID-19 risk mitigation: Currentguidance and limitations,” Natl. Collab. Cent. Enviromental Heal., pp. 1–13, 2021. A. Di Gilio et al., “CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission,” Environ. Res., vol. 202, no. July, p. 111560, 2021, doi: 10.1016/j.envres.2021.111560. C. V. M. Vouriot, H. C. Burridge, C. J. Noakes, and P. F. Linden, “Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide,” Indoor Air, vol. 31, no. 4, pp. 1154–1163, 2021, doi: 10.1111/ina.12818. F. Villanueva, A. Notario, B. Cabañas, P. Martín, S. Salgado, and M. F. Gabriel, “Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain,” Environ. Res., vol. 197, no. January, 2021, doi: 10.1016/j.envres.2021.111092. A. Alonso, J. Llanos, R. Escandón, and J. J. Sendra, “Effects of the covid-19 pandemic on indoor air quality and thermal comfort of primary schools in winter in a mediterranean climate,” Sustain., vol. 13, no. 5, pp. 1–17, 2021, doi: 10.3390/su13052699. instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Acceso abierto https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Biomédica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica, Electrónica y Biomédica |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Sur |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/b9c4e2dd-3179-4d2e-8dcc-75a3b4256cd3/download https://repositorio.uan.edu.co/bitstreams/e67eb4ba-2fad-4865-b699-661d7a9cfff8/download https://repositorio.uan.edu.co/bitstreams/d31adf20-0098-4c5b-8296-777221baf92e/download https://repositorio.uan.edu.co/bitstreams/e2847287-9d2c-42fa-ad07-92f75c09a849/download |
bitstream.checksum.fl_str_mv |
401a26413d4da5f302f6117f44c66770 349271698ee06ef9c7bbd7e102ea310d e1acbb62aaf46bf04be73e10793decb9 9868ccc48a14c8d591352b6eaf7f6239 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300360721825792 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz Salas, Sergio AndrésFernando Pastrana, HomeroQuiroga Barrios, Diego Armando105618230312023-07-24T19:46:14Z2023-07-24T19:46:14Z2023-05-31http://repositorio.uan.edu.co/handle/123456789/8271World Health Organization, “Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations,” Geneva World Heal. Organ., no. March, pp. 1–10, 2020, doi: 10.1056/NEJMc2004973.Cheng.M. Z. Bazant, O. Kodio, A. E. Cohen, K. Khan, Z. Gu, and J. W. M. Bush, “Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19,” Flow, vol. 1, no. December 2019, pp. 1–18, 2021, doi: 10.1017/flo.2021.E. C. Riley, G. Murphy, and R. L. Riley, “Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol., vol. 107, no. 5, pp. 421–432, May 1978, doi: 10.1093/oxfordjournals.aje.a112560.M. J. Mendell et al., “Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools,” Indoor Air, vol. 23, no. 6, pp. 515–528, Dec. 2013, doi: 10.1111/ina.12042.L.-J. S. Liu et al., “Investigation of the Concentration of Bacteria and Their Cell Envelope Components in Indoor Air in Two Elementary Schools,” J. Air Waste Manage. Assoc., vol. 50, no. 11, pp. 1957–1967, Nov. 2000, doi: 10.1080/10473289.2000.10464225A. Eykelbosh, “Indoor CO2 sensors for COVID-19 risk mitigation: Currentguidance and limitations,” Natl. Collab. Cent. Enviromental Heal., pp. 1–13, 2021.A. Di Gilio et al., “CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission,” Environ. Res., vol. 202, no. July, p. 111560, 2021, doi: 10.1016/j.envres.2021.111560.C. V. M. Vouriot, H. C. Burridge, C. J. Noakes, and P. F. Linden, “Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide,” Indoor Air, vol. 31, no. 4, pp. 1154–1163, 2021, doi: 10.1111/ina.12818.F. Villanueva, A. Notario, B. Cabañas, P. Martín, S. Salgado, and M. F. Gabriel, “Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain,” Environ. Res., vol. 197, no. January, 2021, doi: 10.1016/j.envres.2021.111092.A. Alonso, J. Llanos, R. Escandón, and J. J. Sendra, “Effects of the covid-19 pandemic on indoor air quality and thermal comfort of primary schools in winter in a mediterranean climate,” Sustain., vol. 13, no. 5, pp. 1–17, 2021, doi: 10.3390/su13052699.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/COVID-19 was identified in Wuhan, China in December 2019, and to date, has caused a devastating global pandemic [1]. The pathogen responsible for COVID-19 is mainly transmitted through aerosol droplets exhaled by infected individuals, which can remain suspended in the air of indoor spaces for up to 8 hours [2]. Therefore, monitoring the air quality in indoor spaces became relevant in order to try to reduce the contagion.La COVID-19 fue identificada en Wuhan, China en diciembre de 2019, y a la fecha, ha causado una pandemia global devastadora [1] El patógeno responsable de la Covid-19 es transmitido principalmente a través de gotículas de aerosol exhaladas por individuos infectados, las cuales permanecen suspendidas en el aire de los espacios cerrados hasta por 8 horas [2]. Por lo tanto, el monitoreo de la calidad del aire en espacios cerrados cobró relevancia con el fin de intentar reducir el contagio.Ingeniero(a) Biomédico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoIngeniería BiomédicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaBogotá - SurRed inalámbrica de sensores,MQTT,Calidad del aire interior,Gotículas,COVID-19.57456.23 Q84iWireless sensor network,MQTT,Indoor air quality,Aerosol droplets,COVID-19Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid19 en aulas de claseTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85GeneralORIGINAL2023_DiegoArmandoQuirogaBarrios_Acta.pdf2023_DiegoArmandoQuirogaBarrios_Acta.pdfActa de sustentaciónapplication/pdf104349https://repositorio.uan.edu.co/bitstreams/b9c4e2dd-3179-4d2e-8dcc-75a3b4256cd3/download401a26413d4da5f302f6117f44c66770MD512023_DiegoArmandoQuirogaBarrios_Autorización.pdf2023_DiegoArmandoQuirogaBarrios_Autorización.pdfAutorización de autoresapplication/pdf1177095https://repositorio.uan.edu.co/bitstreams/e67eb4ba-2fad-4865-b699-661d7a9cfff8/download349271698ee06ef9c7bbd7e102ea310dMD522023_DiegoArmandoQuirogaBarrios.pdf2023_DiegoArmandoQuirogaBarrios.pdfTrabajo de gradoapplication/pdf3011651https://repositorio.uan.edu.co/bitstreams/d31adf20-0098-4c5b-8296-777221baf92e/downloade1acbb62aaf46bf04be73e10793decb9MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/e2847287-9d2c-42fa-ad07-92f75c09a849/download9868ccc48a14c8d591352b6eaf7f6239MD54123456789/8271oai:repositorio.uan.edu.co:123456789/82712024-10-09 22:55:49.445https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |