Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase

COVID-19 was identified in Wuhan, China in December 2019, and to date, has caused a devastating global pandemic [1]. The pathogen responsible for COVID-19 is mainly transmitted through aerosol droplets exhaled by infected individuals, which can remain suspended in the air of indoor spaces for up to...

Full description

Autores:
Quiroga Barrios, Diego Armando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/8271
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/8271
Palabra clave:
Red inalámbrica de sensores,
MQTT,
Calidad del aire interior,
Gotículas,
COVID-19.
574
56.23 Q84i
Wireless sensor network,
MQTT,
Indoor air quality,
Aerosol droplets,
COVID-19
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_3e88f0c47105dbdc2403f6bb9dbbd598
oai_identifier_str oai:repositorio.uan.edu.co:123456789/8271
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase
title Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase
spellingShingle Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase
Red inalámbrica de sensores,
MQTT,
Calidad del aire interior,
Gotículas,
COVID-19.
574
56.23 Q84i
Wireless sensor network,
MQTT,
Indoor air quality,
Aerosol droplets,
COVID-19
title_short Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase
title_full Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase
title_fullStr Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase
title_full_unstemmed Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase
title_sort Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de clase
dc.creator.fl_str_mv Quiroga Barrios, Diego Armando
dc.contributor.advisor.spa.fl_str_mv Díaz Salas, Sergio Andrés
Fernando Pastrana, Homero
dc.contributor.author.spa.fl_str_mv Quiroga Barrios, Diego Armando
dc.subject.es_ES.fl_str_mv Red inalámbrica de sensores,
MQTT,
Calidad del aire interior,
Gotículas,
COVID-19.
topic Red inalámbrica de sensores,
MQTT,
Calidad del aire interior,
Gotículas,
COVID-19.
574
56.23 Q84i
Wireless sensor network,
MQTT,
Indoor air quality,
Aerosol droplets,
COVID-19
dc.subject.ddc.es_ES.fl_str_mv 574
56.23 Q84i
dc.subject.keyword.es_ES.fl_str_mv Wireless sensor network,
MQTT,
Indoor air quality,
Aerosol droplets,
COVID-19
description COVID-19 was identified in Wuhan, China in December 2019, and to date, has caused a devastating global pandemic [1]. The pathogen responsible for COVID-19 is mainly transmitted through aerosol droplets exhaled by infected individuals, which can remain suspended in the air of indoor spaces for up to 8 hours [2]. Therefore, monitoring the air quality in indoor spaces became relevant in order to try to reduce the contagion.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-24T19:46:14Z
dc.date.available.none.fl_str_mv 2023-07-24T19:46:14Z
dc.date.issued.spa.fl_str_mv 2023-05-31
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/8271
dc.identifier.bibliographicCitation.spa.fl_str_mv World Health Organization, “Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations,” Geneva World Heal. Organ., no. March, pp. 1–10, 2020, doi: 10.1056/NEJMc2004973.Cheng.
M. Z. Bazant, O. Kodio, A. E. Cohen, K. Khan, Z. Gu, and J. W. M. Bush, “Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19,” Flow, vol. 1, no. December 2019, pp. 1–18, 2021, doi: 10.1017/flo.2021.
E. C. Riley, G. Murphy, and R. L. Riley, “Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol., vol. 107, no. 5, pp. 421–432, May 1978, doi: 10.1093/oxfordjournals.aje.a112560.
M. J. Mendell et al., “Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools,” Indoor Air, vol. 23, no. 6, pp. 515–528, Dec. 2013, doi: 10.1111/ina.12042.
L.-J. S. Liu et al., “Investigation of the Concentration of Bacteria and Their Cell Envelope Components in Indoor Air in Two Elementary Schools,” J. Air Waste Manage. Assoc., vol. 50, no. 11, pp. 1957–1967, Nov. 2000, doi: 10.1080/10473289.2000.10464225
A. Eykelbosh, “Indoor CO2 sensors for COVID-19 risk mitigation: Currentguidance and limitations,” Natl. Collab. Cent. Enviromental Heal., pp. 1–13, 2021.
A. Di Gilio et al., “CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission,” Environ. Res., vol. 202, no. July, p. 111560, 2021, doi: 10.1016/j.envres.2021.111560.
C. V. M. Vouriot, H. C. Burridge, C. J. Noakes, and P. F. Linden, “Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide,” Indoor Air, vol. 31, no. 4, pp. 1154–1163, 2021, doi: 10.1111/ina.12818.
F. Villanueva, A. Notario, B. Cabañas, P. Martín, S. Salgado, and M. F. Gabriel, “Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain,” Environ. Res., vol. 197, no. January, 2021, doi: 10.1016/j.envres.2021.111092.
A. Alonso, J. Llanos, R. Escandón, and J. J. Sendra, “Effects of the covid-19 pandemic on indoor air quality and thermal comfort of primary schools in winter in a mediterranean climate,” Sustain., vol. 13, no. 5, pp. 1–17, 2021, doi: 10.3390/su13052699.
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/8271
identifier_str_mv World Health Organization, “Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations,” Geneva World Heal. Organ., no. March, pp. 1–10, 2020, doi: 10.1056/NEJMc2004973.Cheng.
M. Z. Bazant, O. Kodio, A. E. Cohen, K. Khan, Z. Gu, and J. W. M. Bush, “Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19,” Flow, vol. 1, no. December 2019, pp. 1–18, 2021, doi: 10.1017/flo.2021.
E. C. Riley, G. Murphy, and R. L. Riley, “Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol., vol. 107, no. 5, pp. 421–432, May 1978, doi: 10.1093/oxfordjournals.aje.a112560.
M. J. Mendell et al., “Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools,” Indoor Air, vol. 23, no. 6, pp. 515–528, Dec. 2013, doi: 10.1111/ina.12042.
L.-J. S. Liu et al., “Investigation of the Concentration of Bacteria and Their Cell Envelope Components in Indoor Air in Two Elementary Schools,” J. Air Waste Manage. Assoc., vol. 50, no. 11, pp. 1957–1967, Nov. 2000, doi: 10.1080/10473289.2000.10464225
A. Eykelbosh, “Indoor CO2 sensors for COVID-19 risk mitigation: Currentguidance and limitations,” Natl. Collab. Cent. Enviromental Heal., pp. 1–13, 2021.
A. Di Gilio et al., “CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission,” Environ. Res., vol. 202, no. July, p. 111560, 2021, doi: 10.1016/j.envres.2021.111560.
C. V. M. Vouriot, H. C. Burridge, C. J. Noakes, and P. F. Linden, “Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide,” Indoor Air, vol. 31, no. 4, pp. 1154–1163, 2021, doi: 10.1111/ina.12818.
F. Villanueva, A. Notario, B. Cabañas, P. Martín, S. Salgado, and M. F. Gabriel, “Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain,” Environ. Res., vol. 197, no. January, 2021, doi: 10.1016/j.envres.2021.111092.
A. Alonso, J. Llanos, R. Escandón, and J. J. Sendra, “Effects of the covid-19 pandemic on indoor air quality and thermal comfort of primary schools in winter in a mediterranean climate,” Sustain., vol. 13, no. 5, pp. 1–17, 2021, doi: 10.3390/su13052699.
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Biomédica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Bogotá - Sur
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/b9c4e2dd-3179-4d2e-8dcc-75a3b4256cd3/download
https://repositorio.uan.edu.co/bitstreams/e67eb4ba-2fad-4865-b699-661d7a9cfff8/download
https://repositorio.uan.edu.co/bitstreams/d31adf20-0098-4c5b-8296-777221baf92e/download
https://repositorio.uan.edu.co/bitstreams/e2847287-9d2c-42fa-ad07-92f75c09a849/download
bitstream.checksum.fl_str_mv 401a26413d4da5f302f6117f44c66770
349271698ee06ef9c7bbd7e102ea310d
e1acbb62aaf46bf04be73e10793decb9
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928333074137088
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz Salas, Sergio AndrésFernando Pastrana, HomeroQuiroga Barrios, Diego Armando105618230312023-07-24T19:46:14Z2023-07-24T19:46:14Z2023-05-31http://repositorio.uan.edu.co/handle/123456789/8271World Health Organization, “Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations,” Geneva World Heal. Organ., no. March, pp. 1–10, 2020, doi: 10.1056/NEJMc2004973.Cheng.M. Z. Bazant, O. Kodio, A. E. Cohen, K. Khan, Z. Gu, and J. W. M. Bush, “Monitoring carbon dioxide to quantify the risk of indoor airborne transmission of COVID-19,” Flow, vol. 1, no. December 2019, pp. 1–18, 2021, doi: 10.1017/flo.2021.E. C. Riley, G. Murphy, and R. L. Riley, “Airborne spread of measles in a suburban elementary school,” Am. J. Epidemiol., vol. 107, no. 5, pp. 421–432, May 1978, doi: 10.1093/oxfordjournals.aje.a112560.M. J. Mendell et al., “Association of classroom ventilation with reduced illness absence: a prospective study in California elementary schools,” Indoor Air, vol. 23, no. 6, pp. 515–528, Dec. 2013, doi: 10.1111/ina.12042.L.-J. S. Liu et al., “Investigation of the Concentration of Bacteria and Their Cell Envelope Components in Indoor Air in Two Elementary Schools,” J. Air Waste Manage. Assoc., vol. 50, no. 11, pp. 1957–1967, Nov. 2000, doi: 10.1080/10473289.2000.10464225A. Eykelbosh, “Indoor CO2 sensors for COVID-19 risk mitigation: Currentguidance and limitations,” Natl. Collab. Cent. Enviromental Heal., pp. 1–13, 2021.A. Di Gilio et al., “CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission,” Environ. Res., vol. 202, no. July, p. 111560, 2021, doi: 10.1016/j.envres.2021.111560.C. V. M. Vouriot, H. C. Burridge, C. J. Noakes, and P. F. Linden, “Seasonal variation in airborne infection risk in schools due to changes in ventilation inferred from monitored carbon dioxide,” Indoor Air, vol. 31, no. 4, pp. 1154–1163, 2021, doi: 10.1111/ina.12818.F. Villanueva, A. Notario, B. Cabañas, P. Martín, S. Salgado, and M. F. Gabriel, “Assessment of CO2 and aerosol (PM2.5, PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in Central-Southern Spain,” Environ. Res., vol. 197, no. January, 2021, doi: 10.1016/j.envres.2021.111092.A. Alonso, J. Llanos, R. Escandón, and J. J. Sendra, “Effects of the covid-19 pandemic on indoor air quality and thermal comfort of primary schools in winter in a mediterranean climate,” Sustain., vol. 13, no. 5, pp. 1–17, 2021, doi: 10.3390/su13052699.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/COVID-19 was identified in Wuhan, China in December 2019, and to date, has caused a devastating global pandemic [1]. The pathogen responsible for COVID-19 is mainly transmitted through aerosol droplets exhaled by infected individuals, which can remain suspended in the air of indoor spaces for up to 8 hours [2]. Therefore, monitoring the air quality in indoor spaces became relevant in order to try to reduce the contagion.La COVID-19 fue identificada en Wuhan, China en diciembre de 2019, y a la fecha, ha causado una pandemia global devastadora [1] El patógeno responsable de la Covid-19 es transmitido principalmente a través de gotículas de aerosol exhaladas por individuos infectados, las cuales permanecen suspendidas en el aire de los espacios cerrados hasta por 8 horas [2]. Por lo tanto, el monitoreo de la calidad del aire en espacios cerrados cobró relevancia con el fin de intentar reducir el contagio.Ingeniero(a) Biomédico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoIngeniería BiomédicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaBogotá - SurRed inalámbrica de sensores,MQTT,Calidad del aire interior,Gotículas,COVID-19.57456.23 Q84iWireless sensor network,MQTT,Indoor air quality,Aerosol droplets,COVID-19Implementación de una red inalámbrica de sensores de CO2 usando IoT como sistema de alerta ante una ventilación deficiente frente al Covid­19 en aulas de claseTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85GeneralORIGINAL2023_DiegoArmandoQuirogaBarrios_Acta.pdf2023_DiegoArmandoQuirogaBarrios_Acta.pdfActa de sustentaciónapplication/pdf104349https://repositorio.uan.edu.co/bitstreams/b9c4e2dd-3179-4d2e-8dcc-75a3b4256cd3/download401a26413d4da5f302f6117f44c66770MD512023_DiegoArmandoQuirogaBarrios_Autorización.pdf2023_DiegoArmandoQuirogaBarrios_Autorización.pdfAutorización de autoresapplication/pdf1177095https://repositorio.uan.edu.co/bitstreams/e67eb4ba-2fad-4865-b699-661d7a9cfff8/download349271698ee06ef9c7bbd7e102ea310dMD522023_DiegoArmandoQuirogaBarrios.pdf2023_DiegoArmandoQuirogaBarrios.pdfTrabajo de gradoapplication/pdf3011651https://repositorio.uan.edu.co/bitstreams/d31adf20-0098-4c5b-8296-777221baf92e/downloade1acbb62aaf46bf04be73e10793decb9MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/e2847287-9d2c-42fa-ad07-92f75c09a849/download9868ccc48a14c8d591352b6eaf7f6239MD54123456789/8271oai:repositorio.uan.edu.co:123456789/82712024-10-09 22:55:49.445https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co