Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning

The use of new technologies for the recognition of fruits such as pineapple from image analysis is a current solution to the process of counting fruits that may be within reach of these new forms, for this it was possible to carry out this process using the network artificial neural (ANN), support v...

Full description

Autores:
Riveros Parrado, Julian Mauricio
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/6919
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/6919
Palabra clave:
Piña
RPA
programación
conteo
Pineapple
RPA
programming
counting
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_2eb596e4cf28d5d12cc60de2dd8136c1
oai_identifier_str oai:repositorio.uan.edu.co:123456789/6919
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning
title Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning
spellingShingle Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning
Piña
RPA
programación
conteo
Pineapple
RPA
programming
counting
title_short Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning
title_full Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning
title_fullStr Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning
title_full_unstemmed Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning
title_sort Identificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine Learning
dc.creator.fl_str_mv Riveros Parrado, Julian Mauricio
dc.contributor.advisor.spa.fl_str_mv Cucaita Gómez, Alexander
dc.contributor.author.spa.fl_str_mv Riveros Parrado, Julian Mauricio
dc.subject.es_ES.fl_str_mv Piña
RPA
programación
conteo
topic Piña
RPA
programación
conteo
Pineapple
RPA
programming
counting
dc.subject.keyword.es_ES.fl_str_mv Pineapple
RPA
programming
counting
description The use of new technologies for the recognition of fruits such as pineapple from image analysis is a current solution to the process of counting fruits that may be within reach of these new forms, for this it was possible to carry out this process using the network artificial neural (ANN), support vector machine (SVM), random forest (RF), Naive Bayes (NB), decision trees (DT) and k nearest neighbor (KNN).
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-01T20:49:30Z
dc.date.available.none.fl_str_mv 2022-09-01T20:49:30Z
dc.date.issued.spa.fl_str_mv 2022-06-04
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/6919
dc.identifier.bibliographicCitation.spa.fl_str_mv Al-Zebari, A., & Sengur, A. (2019). Performance comparison of machine learning techniques on diabetes disease detection. 2019 1st International Informatics and Software Engineering Conference (UBMYK), 1–4.
Alzu’bi, R., Anushya, A., Hamed, E., Al Sha’ar, E. A., & Vincy, B. S. A. (2018). Dates fruits classification using SVM. AIP Conference Proceedings, 1952(1), 20078.
Anitha, P., & Chakravarthy, T. (2018). Agricultural Crop Yield Prediction using Artificial Neural Network with Feed Forward Algorithm. International Journal of Computer Sciences and Engineering, 6(11), 178–181. https://doi.org/10.26438/ijcse/v6i11.178181
Arowolo, M. O., Abdulsalam, S. O., Saheed, Y. K., & Salawu, M. D. (2016). A feature selection based on one-way-ANOVA for microarray data classification. Al-Hikmah J Pure Appl Sci, 3, 30–35.
Babikir, H. A., Elaziz, M. A., Elsheikh, A. H., Showaib, E. A., Elhadary, M., Wu, D., & Liu, Y. (2019). Noise prediction of axial piston pump based on different valve materials using a modified artificial neural network model. Alexandria Engineering Journal, 58(3), 1077–1087. https://doi.org/10.1016/j.aej.2019.09.010
Basso, M., & Pignaton de Freitas, E. (2020). A UAV Guidance System Using Crop Row Detection and Line Follower Algorithms. Journal of Intelligent & Robotic Systems, 97(3), 605–621. https://doi.org/10.1007/s10846-019-01006-0
Berrar, D. (2018). Bayes’ theorem and naive Bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 403.
Blok, P. M., Barth, R., & van den Berg, W. (2016). Machine vision for a selective broccoli harvesting robot. IFAC-PapersOnLine, 49(16), 66–71. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.10.013
Calou, V. B. C., Teixeira, A. dos S., Moreira, L. C. J., Lima, C. S., de Oliveira, J. B., & de Oliveira, M. R. R. (2020). The use of UAVs in monitoring yellow sigatoka in banana. Biosystems Engineering, 193, 115–125.
Dhalia Sweetlin, J., Nehemiah, H. K., & Kannan, A. (2018). Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization based
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/6919
identifier_str_mv Al-Zebari, A., & Sengur, A. (2019). Performance comparison of machine learning techniques on diabetes disease detection. 2019 1st International Informatics and Software Engineering Conference (UBMYK), 1–4.
Alzu’bi, R., Anushya, A., Hamed, E., Al Sha’ar, E. A., & Vincy, B. S. A. (2018). Dates fruits classification using SVM. AIP Conference Proceedings, 1952(1), 20078.
Anitha, P., & Chakravarthy, T. (2018). Agricultural Crop Yield Prediction using Artificial Neural Network with Feed Forward Algorithm. International Journal of Computer Sciences and Engineering, 6(11), 178–181. https://doi.org/10.26438/ijcse/v6i11.178181
Arowolo, M. O., Abdulsalam, S. O., Saheed, Y. K., & Salawu, M. D. (2016). A feature selection based on one-way-ANOVA for microarray data classification. Al-Hikmah J Pure Appl Sci, 3, 30–35.
Babikir, H. A., Elaziz, M. A., Elsheikh, A. H., Showaib, E. A., Elhadary, M., Wu, D., & Liu, Y. (2019). Noise prediction of axial piston pump based on different valve materials using a modified artificial neural network model. Alexandria Engineering Journal, 58(3), 1077–1087. https://doi.org/10.1016/j.aej.2019.09.010
Basso, M., & Pignaton de Freitas, E. (2020). A UAV Guidance System Using Crop Row Detection and Line Follower Algorithms. Journal of Intelligent & Robotic Systems, 97(3), 605–621. https://doi.org/10.1007/s10846-019-01006-0
Berrar, D. (2018). Bayes’ theorem and naive Bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 403.
Blok, P. M., Barth, R., & van den Berg, W. (2016). Machine vision for a selective broccoli harvesting robot. IFAC-PapersOnLine, 49(16), 66–71. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.10.013
Calou, V. B. C., Teixeira, A. dos S., Moreira, L. C. J., Lima, C. S., de Oliveira, J. B., & de Oliveira, M. R. R. (2020). The use of UAVs in monitoring yellow sigatoka in banana. Biosystems Engineering, 193, 115–125.
Dhalia Sweetlin, J., Nehemiah, H. K., & Kannan, A. (2018). Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization based
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Electromecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Villavicencio
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/7b8fbe3b-d66c-48e8-b16e-24b811895f71/download
https://repositorio.uan.edu.co/bitstreams/a325ea27-cf88-444e-8d20-d34f6c72e749/download
https://repositorio.uan.edu.co/bitstreams/0adc0be0-7b43-4bbb-a25c-00b1d1d83d64/download
https://repositorio.uan.edu.co/bitstreams/e0dbb3ed-3612-4c2a-ad7d-e3d4fd8ccc64/download
https://repositorio.uan.edu.co/bitstreams/b46dc550-563b-4600-9a03-90b4dc846645/download
bitstream.checksum.fl_str_mv b558daafbee4a9cd4c5120bb654bc6bb
77aa0760c4c903244d31f4a739d89bf8
015311d00d3f540e05533862ee74e60b
ad264282ae5c5b44585c4051554d3d82
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300421695471616
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cucaita Gómez, AlexanderRiveros Parrado, Julian Mauricio211314250952022-09-01T20:49:30Z2022-09-01T20:49:30Z2022-06-04http://repositorio.uan.edu.co/handle/123456789/6919Al-Zebari, A., & Sengur, A. (2019). Performance comparison of machine learning techniques on diabetes disease detection. 2019 1st International Informatics and Software Engineering Conference (UBMYK), 1–4.Alzu’bi, R., Anushya, A., Hamed, E., Al Sha’ar, E. A., & Vincy, B. S. A. (2018). Dates fruits classification using SVM. AIP Conference Proceedings, 1952(1), 20078.Anitha, P., & Chakravarthy, T. (2018). Agricultural Crop Yield Prediction using Artificial Neural Network with Feed Forward Algorithm. International Journal of Computer Sciences and Engineering, 6(11), 178–181. https://doi.org/10.26438/ijcse/v6i11.178181Arowolo, M. O., Abdulsalam, S. O., Saheed, Y. K., & Salawu, M. D. (2016). A feature selection based on one-way-ANOVA for microarray data classification. Al-Hikmah J Pure Appl Sci, 3, 30–35.Babikir, H. A., Elaziz, M. A., Elsheikh, A. H., Showaib, E. A., Elhadary, M., Wu, D., & Liu, Y. (2019). Noise prediction of axial piston pump based on different valve materials using a modified artificial neural network model. Alexandria Engineering Journal, 58(3), 1077–1087. https://doi.org/10.1016/j.aej.2019.09.010Basso, M., & Pignaton de Freitas, E. (2020). A UAV Guidance System Using Crop Row Detection and Line Follower Algorithms. Journal of Intelligent & Robotic Systems, 97(3), 605–621. https://doi.org/10.1007/s10846-019-01006-0Berrar, D. (2018). Bayes’ theorem and naive Bayes classifier. Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, 403.Blok, P. M., Barth, R., & van den Berg, W. (2016). Machine vision for a selective broccoli harvesting robot. IFAC-PapersOnLine, 49(16), 66–71. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.10.013Calou, V. B. C., Teixeira, A. dos S., Moreira, L. C. J., Lima, C. S., de Oliveira, J. B., & de Oliveira, M. R. R. (2020). The use of UAVs in monitoring yellow sigatoka in banana. Biosystems Engineering, 193, 115–125.Dhalia Sweetlin, J., Nehemiah, H. K., & Kannan, A. (2018). Computer aided diagnosis of pulmonary hamartoma from CT scan images using ant colony optimization basedinstname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/The use of new technologies for the recognition of fruits such as pineapple from image analysis is a current solution to the process of counting fruits that may be within reach of these new forms, for this it was possible to carry out this process using the network artificial neural (ANN), support vector machine (SVM), random forest (RF), Naive Bayes (NB), decision trees (DT) and k nearest neighbor (KNN).El uso de nuevas tecnologías para el reconocimiento de frutas como la piña a partir del analisis de imágenes, es una solucón actual al proceso de conteo de frutos que puede haber al alcance de estas nuevas formas, para ello se logró realizar este proceso usando la red neuronal artificial (ANN), máquina de vectores de soporte(SVM), bosque aleatorio (RF), Naive Bayes (NB), árboles de decisión (DT) y k vecino más cercanos (KNN).Ingeniero(a) Electromecánico(a)PregradoDistanciaProyectospaUniversidad Antonio NariñoIngeniería ElectromecánicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaVillavicencioPiñaRPAprogramaciónconteoPineappleRPAprogrammingcountingIdentificación automatizada de imágenes, detección y recuento de piña usando vista superior mediante Machine LearningTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2022_RiverosParradoJoséMauricio2022_RiverosParradoJoséMauricioREV. tURNITINapplication/pdf3862767https://repositorio.uan.edu.co/bitstreams/7b8fbe3b-d66c-48e8-b16e-24b811895f71/downloadb558daafbee4a9cd4c5120bb654bc6bbMD512022_RiverosParradoJoséMauricio2022_RiverosParradoJoséMauricioProyecto finalapplication/pdf3835139https://repositorio.uan.edu.co/bitstreams/a325ea27-cf88-444e-8d20-d34f6c72e749/download77aa0760c4c903244d31f4a739d89bf8MD522022_RiverosParradoJoséMauricio _Autorización2022_RiverosParradoJoséMauricio _AutorizaciónAutorización de autoresapplication/pdf1252562https://repositorio.uan.edu.co/bitstreams/0adc0be0-7b43-4bbb-a25c-00b1d1d83d64/download015311d00d3f540e05533862ee74e60bMD532022_RiverosParradoJoséMauricio _Acta2022_RiverosParradoJoséMauricio _ActaActa de sustentaciónapplication/pdf654059https://repositorio.uan.edu.co/bitstreams/e0dbb3ed-3612-4c2a-ad7d-e3d4fd8ccc64/downloadad264282ae5c5b44585c4051554d3d82MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/b46dc550-563b-4600-9a03-90b4dc846645/download9868ccc48a14c8d591352b6eaf7f6239MD55123456789/6919oai:repositorio.uan.edu.co:123456789/69192024-10-09 23:17:25.518https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co