Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre

In Colombia in 2015, 406,078 tons of hazardous waste were produced, of which about 28% were discarded untreated. In this sense, the tannery sector uses chromium salts to stabilize the collagen fibers, adding chromium to the process effluent. Chromium is a heavy metal, which due to its bioaccumulatio...

Full description

Autores:
Hernandez Peña, Sergio Andres
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/7397
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/7397
Palabra clave:
remediación
metales pesados
fotocatalisis
cromo
nanoparticulas
oxido de hierro.
572
remediation
heavy metals
photocatalysis
chromium
nanoparticles, iron oxide.
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_296856eef42cf6b9314fcacbeb1ab329
oai_identifier_str oai:repositorio.uan.edu.co:123456789/7397
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
title Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
spellingShingle Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
remediación
metales pesados
fotocatalisis
cromo
nanoparticulas
oxido de hierro.
572
remediation
heavy metals
photocatalysis
chromium
nanoparticles, iron oxide.
title_short Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
title_full Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
title_fullStr Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
title_full_unstemmed Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
title_sort Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
dc.creator.fl_str_mv Hernandez Peña, Sergio Andres
dc.contributor.advisor.spa.fl_str_mv Rincón, Javier
dc.contributor.author.spa.fl_str_mv Hernandez Peña, Sergio Andres
dc.subject.es_ES.fl_str_mv remediación
metales pesados
fotocatalisis
cromo
nanoparticulas
oxido de hierro.
topic remediación
metales pesados
fotocatalisis
cromo
nanoparticulas
oxido de hierro.
572
remediation
heavy metals
photocatalysis
chromium
nanoparticles, iron oxide.
dc.subject.ddc.es_ES.fl_str_mv 572
dc.subject.keyword.es_ES.fl_str_mv remediation
heavy metals
photocatalysis
chromium
nanoparticles, iron oxide.
description In Colombia in 2015, 406,078 tons of hazardous waste were produced, of which about 28% were discarded untreated. In this sense, the tannery sector uses chromium salts to stabilize the collagen fibers, adding chromium to the process effluent. Chromium is a heavy metal, which due to its bioaccumulation and persistence in water generates environmental and health problems. For this reason, a nanocomposite with reduced toxicity and low cost, with an iron oxide core coated with titanium oxide was developed to remove chromium from effluents.
publishDate 2022
dc.date.issued.spa.fl_str_mv 2022-12-13
dc.date.accessioned.none.fl_str_mv 2023-01-25T17:20:01Z
dc.date.available.none.fl_str_mv 2023-01-25T17:20:01Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/7397
dc.identifier.bibliographicCitation.spa.fl_str_mv Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006
Américo-Pinheiro, J. H. P., Bellatto, L. C., Mansano, C. F. M., da Silva Vilar, D., Ferreira, L. F. R., Torres, N. H., Bilal, M., & Iqbal, H. M. N. (2021). Monitoring microbial contamination of antibiotic resistant Escherichia coli isolated from the surface water of urban park in southeastern Brazil. Environmental Nanotechnology, Monitoring and Management, 15(June 2020). https://doi.org/10.1016/j.enmm.2021.100438
Antonio Ramón, J., David Amaya, J., & Manrique Losada, L. (2013). Photocatalytic Degradation of Congo Red in a Parabolic Solar Collector and Titanium Dioxide in Suspension. Revista de Investigaciones -Universidad Del Quindio, 24(August 2013), 71–83. http://blade1.uniquindio.edu.co/uniquindio/revistainvestigaciones/adjuntos/pdf/4b0b_ Art 7. Galera.pdf
Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10(February), 100262. https://doi.org/10.1016/j.ceja.2022.100262
Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147(3), 752–758. https://doi.org/10.1016/j.jhazmat.2007.01.120
Bhateria, R., & Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31(May), 100845. https://doi.org/10.1016/j.jwpe.2019.100845
Dasque, A., Gressier, M., Taberna, P. L., & Menu, M. J. (2021). Characterization of chromium (III)-glycine complexes in an acidic medium by UV-visible spectrophotometry and capillary electrophoresis. Results in Chemistry, 3, 3–11. https://doi.org/10.1016/j.rechem.2021.100207
Departamento administrativo de la Función Pública. (2015). Decreto 1076 de 2015 Sector Ambiente y Desarrollo Sostenible - EVA - Función Pública. Diario Oficial No. 49.523 de 26 de Mayo de 2015, 1–920. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153
DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14(Iii), 1–7. https://doi.org/10.1016/j.cotox.2019.05.003
Dey, M., Akter, A., Islam, S., Chandra Dey, S., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon, 7(12), e08625. https://doi.org/10.1016/j.heliyon.2021.e08625
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/7397
identifier_str_mv Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006
Américo-Pinheiro, J. H. P., Bellatto, L. C., Mansano, C. F. M., da Silva Vilar, D., Ferreira, L. F. R., Torres, N. H., Bilal, M., & Iqbal, H. M. N. (2021). Monitoring microbial contamination of antibiotic resistant Escherichia coli isolated from the surface water of urban park in southeastern Brazil. Environmental Nanotechnology, Monitoring and Management, 15(June 2020). https://doi.org/10.1016/j.enmm.2021.100438
Antonio Ramón, J., David Amaya, J., & Manrique Losada, L. (2013). Photocatalytic Degradation of Congo Red in a Parabolic Solar Collector and Titanium Dioxide in Suspension. Revista de Investigaciones -Universidad Del Quindio, 24(August 2013), 71–83. http://blade1.uniquindio.edu.co/uniquindio/revistainvestigaciones/adjuntos/pdf/4b0b_ Art 7. Galera.pdf
Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10(February), 100262. https://doi.org/10.1016/j.ceja.2022.100262
Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147(3), 752–758. https://doi.org/10.1016/j.jhazmat.2007.01.120
Bhateria, R., & Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31(May), 100845. https://doi.org/10.1016/j.jwpe.2019.100845
Dasque, A., Gressier, M., Taberna, P. L., & Menu, M. J. (2021). Characterization of chromium (III)-glycine complexes in an acidic medium by UV-visible spectrophotometry and capillary electrophoresis. Results in Chemistry, 3, 3–11. https://doi.org/10.1016/j.rechem.2021.100207
Departamento administrativo de la Función Pública. (2015). Decreto 1076 de 2015 Sector Ambiente y Desarrollo Sostenible - EVA - Función Pública. Diario Oficial No. 49.523 de 26 de Mayo de 2015, 1–920. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153
DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14(Iii), 1–7. https://doi.org/10.1016/j.cotox.2019.05.003
Dey, M., Akter, A., Islam, S., Chandra Dey, S., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon, 7(12), e08625. https://doi.org/10.1016/j.heliyon.2021.e08625
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/c1f49db3-8579-46e9-b7b8-f23a4cf6f0d8/download
https://repositorio.uan.edu.co/bitstreams/5c736c05-9d64-419b-ae7d-f790306b34cf/download
https://repositorio.uan.edu.co/bitstreams/b54464aa-185a-4e62-9e91-1643e7df1aa4/download
https://repositorio.uan.edu.co/bitstreams/1cf49895-2ae3-4a64-8016-27e852ef5a5c/download
bitstream.checksum.fl_str_mv 116c9bf8225629f36d453ceef73a4ffd
db24b0c0a927bd350c1a56ae3d355758
68480cb317f9122869275a082f034d16
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928308655947776
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rincón, JavierHernandez Peña, Sergio Andres118217157622023-01-25T17:20:01Z2023-01-25T17:20:01Z2022-12-13http://repositorio.uan.edu.co/handle/123456789/7397Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006Américo-Pinheiro, J. H. P., Bellatto, L. C., Mansano, C. F. M., da Silva Vilar, D., Ferreira, L. F. R., Torres, N. H., Bilal, M., & Iqbal, H. M. N. (2021). Monitoring microbial contamination of antibiotic resistant Escherichia coli isolated from the surface water of urban park in southeastern Brazil. Environmental Nanotechnology, Monitoring and Management, 15(June 2020). https://doi.org/10.1016/j.enmm.2021.100438Antonio Ramón, J., David Amaya, J., & Manrique Losada, L. (2013). Photocatalytic Degradation of Congo Red in a Parabolic Solar Collector and Titanium Dioxide in Suspension. Revista de Investigaciones -Universidad Del Quindio, 24(August 2013), 71–83. http://blade1.uniquindio.edu.co/uniquindio/revistainvestigaciones/adjuntos/pdf/4b0b_ Art 7. Galera.pdfAnucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10(February), 100262. https://doi.org/10.1016/j.ceja.2022.100262Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147(3), 752–758. https://doi.org/10.1016/j.jhazmat.2007.01.120Bhateria, R., & Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31(May), 100845. https://doi.org/10.1016/j.jwpe.2019.100845Dasque, A., Gressier, M., Taberna, P. L., & Menu, M. J. (2021). Characterization of chromium (III)-glycine complexes in an acidic medium by UV-visible spectrophotometry and capillary electrophoresis. Results in Chemistry, 3, 3–11. https://doi.org/10.1016/j.rechem.2021.100207Departamento administrativo de la Función Pública. (2015). Decreto 1076 de 2015 Sector Ambiente y Desarrollo Sostenible - EVA - Función Pública. Diario Oficial No. 49.523 de 26 de Mayo de 2015, 1–920. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14(Iii), 1–7. https://doi.org/10.1016/j.cotox.2019.05.003Dey, M., Akter, A., Islam, S., Chandra Dey, S., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon, 7(12), e08625. https://doi.org/10.1016/j.heliyon.2021.e08625instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/In Colombia in 2015, 406,078 tons of hazardous waste were produced, of which about 28% were discarded untreated. In this sense, the tannery sector uses chromium salts to stabilize the collagen fibers, adding chromium to the process effluent. Chromium is a heavy metal, which due to its bioaccumulation and persistence in water generates environmental and health problems. For this reason, a nanocomposite with reduced toxicity and low cost, with an iron oxide core coated with titanium oxide was developed to remove chromium from effluents.En Colombia en 2015 se produjeron 406.078 toneladas de residuos peligrosos, de los cuales alrededor del 28% fueron desechados sin tratar. En este sentido, el sector de curtiembres emplea sales de cromo para estabilizar las fibras de colágeno, añadiendo cromo al efluente del proceso. El cromo es un metal pesado, que debido a su bioacumulación y persistencia en el agua genera problemas ambientales y de salud. Por esta razón, se desarrolló un nanocompuesto con toxicidad reducida y bajo costo, con un núcleo de óxido de hierro recubierto con óxido de titanio para eliminar el cromo de los efluentes. Las nanopartículas de hierro se sintetizaron a través de una vía directa de coprecipitación asistida por ultrasonidos y luego se recubrieron con isopropóxido de titanio como precursor de la Titania.Bioquímico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - Circunvalarremediaciónmetales pesadosfotocatalisiscromonanoparticulasoxido de hierro.572remediationheavy metalsphotocatalysischromiumnanoparticles, iron oxide.Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembreTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_SergioHernandezPeña.pdf2023_SergioHernandezPeña.pdfapplication/pdf819519https://repositorio.uan.edu.co/bitstreams/c1f49db3-8579-46e9-b7b8-f23a4cf6f0d8/download116c9bf8225629f36d453ceef73a4ffdMD512023_SergioHernandezPeña_Autorización.pdf2023_SergioHernandezPeña_Autorización.pdfapplication/pdf2119635https://repositorio.uan.edu.co/bitstreams/5c736c05-9d64-419b-ae7d-f790306b34cf/downloaddb24b0c0a927bd350c1a56ae3d355758MD542023_SergioAndresHernandez_Acta.pdf2023_SergioAndresHernandez_Acta.pdfapplication/pdf2320528https://repositorio.uan.edu.co/bitstreams/b54464aa-185a-4e62-9e91-1643e7df1aa4/download68480cb317f9122869275a082f034d16MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/1cf49895-2ae3-4a64-8016-27e852ef5a5c/download9868ccc48a14c8d591352b6eaf7f6239MD55123456789/7397oai:repositorio.uan.edu.co:123456789/73972024-10-09 22:41:33.201https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co