Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre
In Colombia in 2015, 406,078 tons of hazardous waste were produced, of which about 28% were discarded untreated. In this sense, the tannery sector uses chromium salts to stabilize the collagen fibers, adding chromium to the process effluent. Chromium is a heavy metal, which due to its bioaccumulatio...
- Autores:
-
Hernandez Peña, Sergio Andres
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/7397
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/7397
- Palabra clave:
- remediación
metales pesados
fotocatalisis
cromo
nanoparticulas
oxido de hierro.
572
remediation
heavy metals
photocatalysis
chromium
nanoparticles, iron oxide.
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id |
UAntonioN2_296856eef42cf6b9314fcacbeb1ab329 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/7397 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre |
title |
Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre |
spellingShingle |
Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre remediación metales pesados fotocatalisis cromo nanoparticulas oxido de hierro. 572 remediation heavy metals photocatalysis chromium nanoparticles, iron oxide. |
title_short |
Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre |
title_full |
Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre |
title_fullStr |
Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre |
title_full_unstemmed |
Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre |
title_sort |
Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembre |
dc.creator.fl_str_mv |
Hernandez Peña, Sergio Andres |
dc.contributor.advisor.spa.fl_str_mv |
Rincón, Javier |
dc.contributor.author.spa.fl_str_mv |
Hernandez Peña, Sergio Andres |
dc.subject.es_ES.fl_str_mv |
remediación metales pesados fotocatalisis cromo nanoparticulas oxido de hierro. |
topic |
remediación metales pesados fotocatalisis cromo nanoparticulas oxido de hierro. 572 remediation heavy metals photocatalysis chromium nanoparticles, iron oxide. |
dc.subject.ddc.es_ES.fl_str_mv |
572 |
dc.subject.keyword.es_ES.fl_str_mv |
remediation heavy metals photocatalysis chromium nanoparticles, iron oxide. |
description |
In Colombia in 2015, 406,078 tons of hazardous waste were produced, of which about 28% were discarded untreated. In this sense, the tannery sector uses chromium salts to stabilize the collagen fibers, adding chromium to the process effluent. Chromium is a heavy metal, which due to its bioaccumulation and persistence in water generates environmental and health problems. For this reason, a nanocomposite with reduced toxicity and low cost, with an iron oxide core coated with titanium oxide was developed to remove chromium from effluents. |
publishDate |
2022 |
dc.date.issued.spa.fl_str_mv |
2022-12-13 |
dc.date.accessioned.none.fl_str_mv |
2023-01-25T17:20:01Z |
dc.date.available.none.fl_str_mv |
2023-01-25T17:20:01Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/7397 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006 Américo-Pinheiro, J. H. P., Bellatto, L. C., Mansano, C. F. M., da Silva Vilar, D., Ferreira, L. F. R., Torres, N. H., Bilal, M., & Iqbal, H. M. N. (2021). Monitoring microbial contamination of antibiotic resistant Escherichia coli isolated from the surface water of urban park in southeastern Brazil. Environmental Nanotechnology, Monitoring and Management, 15(June 2020). https://doi.org/10.1016/j.enmm.2021.100438 Antonio Ramón, J., David Amaya, J., & Manrique Losada, L. (2013). Photocatalytic Degradation of Congo Red in a Parabolic Solar Collector and Titanium Dioxide in Suspension. Revista de Investigaciones -Universidad Del Quindio, 24(August 2013), 71–83. http://blade1.uniquindio.edu.co/uniquindio/revistainvestigaciones/adjuntos/pdf/4b0b_ Art 7. Galera.pdf Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10(February), 100262. https://doi.org/10.1016/j.ceja.2022.100262 Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147(3), 752–758. https://doi.org/10.1016/j.jhazmat.2007.01.120 Bhateria, R., & Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31(May), 100845. https://doi.org/10.1016/j.jwpe.2019.100845 Dasque, A., Gressier, M., Taberna, P. L., & Menu, M. J. (2021). Characterization of chromium (III)-glycine complexes in an acidic medium by UV-visible spectrophotometry and capillary electrophoresis. Results in Chemistry, 3, 3–11. https://doi.org/10.1016/j.rechem.2021.100207 Departamento administrativo de la Función Pública. (2015). Decreto 1076 de 2015 Sector Ambiente y Desarrollo Sostenible - EVA - Función Pública. Diario Oficial No. 49.523 de 26 de Mayo de 2015, 1–920. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153 DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14(Iii), 1–7. https://doi.org/10.1016/j.cotox.2019.05.003 Dey, M., Akter, A., Islam, S., Chandra Dey, S., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon, 7(12), e08625. https://doi.org/10.1016/j.heliyon.2021.e08625 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/7397 |
identifier_str_mv |
Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006 Américo-Pinheiro, J. H. P., Bellatto, L. C., Mansano, C. F. M., da Silva Vilar, D., Ferreira, L. F. R., Torres, N. H., Bilal, M., & Iqbal, H. M. N. (2021). Monitoring microbial contamination of antibiotic resistant Escherichia coli isolated from the surface water of urban park in southeastern Brazil. Environmental Nanotechnology, Monitoring and Management, 15(June 2020). https://doi.org/10.1016/j.enmm.2021.100438 Antonio Ramón, J., David Amaya, J., & Manrique Losada, L. (2013). Photocatalytic Degradation of Congo Red in a Parabolic Solar Collector and Titanium Dioxide in Suspension. Revista de Investigaciones -Universidad Del Quindio, 24(August 2013), 71–83. http://blade1.uniquindio.edu.co/uniquindio/revistainvestigaciones/adjuntos/pdf/4b0b_ Art 7. Galera.pdf Anucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10(February), 100262. https://doi.org/10.1016/j.ceja.2022.100262 Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147(3), 752–758. https://doi.org/10.1016/j.jhazmat.2007.01.120 Bhateria, R., & Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31(May), 100845. https://doi.org/10.1016/j.jwpe.2019.100845 Dasque, A., Gressier, M., Taberna, P. L., & Menu, M. J. (2021). Characterization of chromium (III)-glycine complexes in an acidic medium by UV-visible spectrophotometry and capillary electrophoresis. Results in Chemistry, 3, 3–11. https://doi.org/10.1016/j.rechem.2021.100207 Departamento administrativo de la Función Pública. (2015). Decreto 1076 de 2015 Sector Ambiente y Desarrollo Sostenible - EVA - Función Pública. Diario Oficial No. 49.523 de 26 de Mayo de 2015, 1–920. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153 DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14(Iii), 1–7. https://doi.org/10.1016/j.cotox.2019.05.003 Dey, M., Akter, A., Islam, S., Chandra Dey, S., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon, 7(12), e08625. https://doi.org/10.1016/j.heliyon.2021.e08625 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Acceso abierto https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Circunvalar |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/c1f49db3-8579-46e9-b7b8-f23a4cf6f0d8/download https://repositorio.uan.edu.co/bitstreams/5c736c05-9d64-419b-ae7d-f790306b34cf/download https://repositorio.uan.edu.co/bitstreams/b54464aa-185a-4e62-9e91-1643e7df1aa4/download https://repositorio.uan.edu.co/bitstreams/1cf49895-2ae3-4a64-8016-27e852ef5a5c/download |
bitstream.checksum.fl_str_mv |
116c9bf8225629f36d453ceef73a4ffd db24b0c0a927bd350c1a56ae3d355758 68480cb317f9122869275a082f034d16 9868ccc48a14c8d591352b6eaf7f6239 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300312496766976 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rincón, JavierHernandez Peña, Sergio Andres118217157622023-01-25T17:20:01Z2023-01-25T17:20:01Z2022-12-13http://repositorio.uan.edu.co/handle/123456789/7397Alyüz, B., & Veli, S. (2009). Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins. Journal of Hazardous Materials, 167(1–3), 482–488. https://doi.org/10.1016/j.jhazmat.2009.01.006Américo-Pinheiro, J. H. P., Bellatto, L. C., Mansano, C. F. M., da Silva Vilar, D., Ferreira, L. F. R., Torres, N. H., Bilal, M., & Iqbal, H. M. N. (2021). Monitoring microbial contamination of antibiotic resistant Escherichia coli isolated from the surface water of urban park in southeastern Brazil. Environmental Nanotechnology, Monitoring and Management, 15(June 2020). https://doi.org/10.1016/j.enmm.2021.100438Antonio Ramón, J., David Amaya, J., & Manrique Losada, L. (2013). Photocatalytic Degradation of Congo Red in a Parabolic Solar Collector and Titanium Dioxide in Suspension. Revista de Investigaciones -Universidad Del Quindio, 24(August 2013), 71–83. http://blade1.uniquindio.edu.co/uniquindio/revistainvestigaciones/adjuntos/pdf/4b0b_ Art 7. Galera.pdfAnucha, C. B., Altin, I., Bacaksiz, E., & Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10(February), 100262. https://doi.org/10.1016/j.ceja.2022.100262Aroua, M. K., Zuki, F. M., & Sulaiman, N. M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147(3), 752–758. https://doi.org/10.1016/j.jhazmat.2007.01.120Bhateria, R., & Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31(May), 100845. https://doi.org/10.1016/j.jwpe.2019.100845Dasque, A., Gressier, M., Taberna, P. L., & Menu, M. J. (2021). Characterization of chromium (III)-glycine complexes in an acidic medium by UV-visible spectrophotometry and capillary electrophoresis. Results in Chemistry, 3, 3–11. https://doi.org/10.1016/j.rechem.2021.100207Departamento administrativo de la Función Pública. (2015). Decreto 1076 de 2015 Sector Ambiente y Desarrollo Sostenible - EVA - Función Pública. Diario Oficial No. 49.523 de 26 de Mayo de 2015, 1–920. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=78153DesMarias, T. L., & Costa, M. (2019). Mechanisms of chromium-induced toxicity. Current Opinion in Toxicology, 14(Iii), 1–7. https://doi.org/10.1016/j.cotox.2019.05.003Dey, M., Akter, A., Islam, S., Chandra Dey, S., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon, 7(12), e08625. https://doi.org/10.1016/j.heliyon.2021.e08625instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/In Colombia in 2015, 406,078 tons of hazardous waste were produced, of which about 28% were discarded untreated. In this sense, the tannery sector uses chromium salts to stabilize the collagen fibers, adding chromium to the process effluent. Chromium is a heavy metal, which due to its bioaccumulation and persistence in water generates environmental and health problems. For this reason, a nanocomposite with reduced toxicity and low cost, with an iron oxide core coated with titanium oxide was developed to remove chromium from effluents.En Colombia en 2015 se produjeron 406.078 toneladas de residuos peligrosos, de los cuales alrededor del 28% fueron desechados sin tratar. En este sentido, el sector de curtiembres emplea sales de cromo para estabilizar las fibras de colágeno, añadiendo cromo al efluente del proceso. El cromo es un metal pesado, que debido a su bioacumulación y persistencia en el agua genera problemas ambientales y de salud. Por esta razón, se desarrolló un nanocompuesto con toxicidad reducida y bajo costo, con un núcleo de óxido de hierro recubierto con óxido de titanio para eliminar el cromo de los efluentes. Las nanopartículas de hierro se sintetizaron a través de una vía directa de coprecipitación asistida por ultrasonidos y luego se recubrieron con isopropóxido de titanio como precursor de la Titania.Bioquímico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - Circunvalarremediaciónmetales pesadosfotocatalisiscromonanoparticulasoxido de hierro.572remediationheavy metalsphotocatalysischromiumnanoparticles, iron oxide.Adsorción de Cromo (III) mediante nanopartículas de hierro recubiertas con Titania en aguas simuladas del sector curtiembreTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_SergioHernandezPeña.pdf2023_SergioHernandezPeña.pdfapplication/pdf819519https://repositorio.uan.edu.co/bitstreams/c1f49db3-8579-46e9-b7b8-f23a4cf6f0d8/download116c9bf8225629f36d453ceef73a4ffdMD512023_SergioHernandezPeña_Autorización.pdf2023_SergioHernandezPeña_Autorización.pdfapplication/pdf2119635https://repositorio.uan.edu.co/bitstreams/5c736c05-9d64-419b-ae7d-f790306b34cf/downloaddb24b0c0a927bd350c1a56ae3d355758MD542023_SergioAndresHernandez_Acta.pdf2023_SergioAndresHernandez_Acta.pdfapplication/pdf2320528https://repositorio.uan.edu.co/bitstreams/b54464aa-185a-4e62-9e91-1643e7df1aa4/download68480cb317f9122869275a082f034d16MD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/1cf49895-2ae3-4a64-8016-27e852ef5a5c/download9868ccc48a14c8d591352b6eaf7f6239MD55123456789/7397oai:repositorio.uan.edu.co:123456789/73972024-10-09 22:41:33.201https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |