Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
Energy harvesting coming from the environment generally from unused sources is essential in a society with growing energy demand. In most cases, these sources have limited amounts of energy, which can be used in low-power devices and limited access areas. As a solution to this type of problem, techn...
- Autores:
-
Forero Briceño, Jonnathan Julián
Salazar Ibarra, José Álvaro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/2209
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/2209
- Palabra clave:
- Energía
Recolección de energía
Gestión de energía
Sistemas autoalimentados
Generador piezoeléctrico
Viga en voladizo
Vibración
Energy
Energy harvesting
Power managament
Self-powered systems
Piezoelectric generator
Cantilever beam
Vibration
- Rights
- openAccess
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UAntonioN2_287d9c1667e71523ffe1f1e8a1a7a569 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/2209 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico |
title |
Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico |
spellingShingle |
Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico Energía Recolección de energía Gestión de energía Sistemas autoalimentados Generador piezoeléctrico Viga en voladizo Vibración Energy Energy harvesting Power managament Self-powered systems Piezoelectric generator Cantilever beam Vibration |
title_short |
Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico |
title_full |
Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico |
title_fullStr |
Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico |
title_full_unstemmed |
Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico |
title_sort |
Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico |
dc.creator.fl_str_mv |
Forero Briceño, Jonnathan Julián Salazar Ibarra, José Álvaro |
dc.contributor.advisor.spa.fl_str_mv |
Párraga Meneses, Manuel Fernando |
dc.contributor.author.spa.fl_str_mv |
Forero Briceño, Jonnathan Julián Salazar Ibarra, José Álvaro |
dc.subject.es_ES.fl_str_mv |
Energía Recolección de energía Gestión de energía Sistemas autoalimentados Generador piezoeléctrico Viga en voladizo Vibración |
topic |
Energía Recolección de energía Gestión de energía Sistemas autoalimentados Generador piezoeléctrico Viga en voladizo Vibración Energy Energy harvesting Power managament Self-powered systems Piezoelectric generator Cantilever beam Vibration |
dc.subject.keyword.es_ES.fl_str_mv |
Energy Energy harvesting Power managament Self-powered systems Piezoelectric generator Cantilever beam Vibration |
description |
Energy harvesting coming from the environment generally from unused sources is essential in a society with growing energy demand. In most cases, these sources have limited amounts of energy, which can be used in low-power devices and limited access areas. As a solution to this type of problem, technologies capable of taking advantage of this energy are developed, thanks to the creation of self-powered systems that also have a better impact on the environment. Entering in this technology two devices are postulated, the SPV1050 and the ADP5091, capable of storing, managing, and supplying the energy collected by specific transducers: photovoltaic cells and piezoelectric sensors. Simultaneously, the behavior of an acoustic energy harvester is analyzed. From its simulation in the Ansys CAE tool, solving the problem in a decoupled way, the modal response of a Helmholtz resonator with the hexagonal section is obtained. Likewise, the modal and voltage response of the series bimorph piezoelectric cantilever beam is achieved. The analysis carried out has the purpose of finding the behavior of the collection system for future implementation, making use of some of the proposed management systems. |
publishDate |
2020 |
dc.date.issued.spa.fl_str_mv |
2020-07-17 |
dc.date.accessioned.none.fl_str_mv |
2021-03-02T13:59:30Z |
dc.date.available.none.fl_str_mv |
2021-03-02T13:59:30Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/2209 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. https://doi.org/10.1002/er.4282 Alghisi, D., Ferrari, V., Ferrari, M., Crescini, D., Touati, F., & Mnaouer, A. B. (2017). Single- and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sensors and Actuators, A: Physical, 264, 234–246. https://doi.org/10.1016/j.sna.2017.07.027 Aloulou, R., Lucas De Peslouan, P. O., Mnif, H., Alicalapa, F., Lan Sun Luk, J. D., & Loulou, M. (2016). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. https://doi.org/10.1080/00207217.2015.1072848 Anjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001 Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(34), 1–41. https://doi.org/10.1002/adma.201707271 Barroca, N., Saraiva, H. M., Gouveia, P. T., Tavares, J., Borges, L. M., Velez, F. J., Loss, C., Salvado, R., Pinho, P., Gonçalves, R., Borgescarvalho, N., Chavéz-Santiago, R., & Balasingham, I. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 532–537. https://doi.org/10.1109/PIMRC.2013.6666194 Batarseh, I., & Harb, A. (2017). Power Electronics: Circuit analysis and design. En Power Electronics: Circuit Analysis and Design. https://doi.org/10.1007/978-3-319-68366-9 Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E. (2017). Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications. https://doi.org/10.1007/978-3-319-49875-1 Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors (Switzerland), 14(3), 4755–4790. https://doi.org/10.3390/s140304755 Camilo, C., & Restrepo, A. (2015). Orígenes de las Leyes de conservación como un principio unificador de las Ciencias Naturales. El caso de la invarianza de la energía en la física Can, A., Leclercq, L., Lelong, J., & Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002 Cansiz, M., Altinel, D., & Kurt, G. K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100 Chapman, S. J. (2014). Máquinas eléctricas Chew, Z. J., & Zhu, M. (2015). Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting. 2015 IEEE SENSORS - Proceedings, 2–5. https://doi.org/10.1109/ICSENS.2015.7370663 Daniels, A., Zhu, M., & Tiwari, A. (2013). Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(12), 2626–2633. https://doi.org/10.1109/TUFFC.2013.2861 Díez, P. L., Gabilondo, I., Alarcón, E., & Moll, F. (2018). A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. Proceedings - IEEE International Symposium on Circuits and Systems, 2018-May. https://doi.org/10.1109/ISCAS.2018.8350907 Edy Susanto, M. (2019). Energy Harvesting Systems: Principles, Modeling and Applications. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004 Erturk, A., & Inman, D. J. (2011). Piezoelectric Energy Harvesting. En Piezoelectric Energy Harvesting. https://doi.org/10.1002/9781119991151 Fraden, J. (2016). Handbook of Modern Sensors. En Handbook of Modern Sensors. https://doi.org/10.1007/978-3-319-19303-8 Gautschi, G., 2013. Piezoelectric Sensorics. Springer. Gaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007 Harrop, P., & Das, R. (2009). Energy Harvesting and Storage for Electronic Devices 2009-2019. IDTechEx. https://www.idtechex.com/en/research-report/energy-harvesting-and-storage-for-electronic-devices-2009-2019/217 Hawkes, R. L., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. J. (2019). Physics for scientists and engineers: an interactive approach. Nelson Hehn, T., & Manoli, Y. (2015). CMOS Circuits for Piezoelectric Energy Harvesters (Vol. 38). https://doi.org/10.1007/978-94-017-9288-2 Heywang, W., Lubitz, K., & Wersing, W. (Eds.). (2008). Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business Media Jamadar, V., Pingle, P., & Kanase, S. (2017). Possibility of harvesting Vibration energy from power producing devices: A review. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 496–503. https://doi.org/10.1109/ICACDOT.2016.7877635 Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 1–4. https://doi.org/10.1038/nenergy.2016.141 Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(July 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132 Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power Converters Khan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001. https://doi.org/10.1088/0960-1317/26/10/103001 Kinsler, L. E., Frey, A. R., & Mayer, W. G. (1963). Fundamentals of Acoustics. Physics Today, 16(8), 56–57. https://doi.org/10.1063/1.3051072 Larsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. Comparative bioacoustics: An overview, 3-60 Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). https://doi.org/10.1063/1.5074184 Luo, F. L., & Ye, H. (2018). Power electronics: Advanced conversion technologies, second edition. En Power Electronics: Advanced Conversion Technologies, Second Edition. https://doi.org/10.1201/9781315186276 Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081 Mohanty, A., Parida, S., Behera, R. K., & Roy, T. (2019). Vibration energy harvesting: A review. Journal of Advanced Dielectrics, 9(4). https://doi.org/10.1142/S2010135X19300019 Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867. https://doi.org/10.1016/j.rser.2017.05.083 Newnham, R. E. (1992). Piezoelectric sensors and actuators: smart materials. En Proceedings of the Annual Frequency Control Symposium. https://doi.org/10.1109/freq.1992.269973 Nikolaev, V. A., Sieler, J., Nikolaev, V. V., Rodina, L. L., & Schulze, B. (2001). O-alkylation of amide carbonyl group with Diazo compounds: A new way for functionalizing saccharin and its analogs. En Russian Journal of Organic Chemistry (Vol. 37, Número 8). https://doi.org/10.1023/A:1013117120223 Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629–1635. https://doi.org/10.1007/s12541-013-0220-x Noticias ONU. (2018). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. ONU DAES Naciones Unidas Departamento de Asuntos Económicos y Sociales. https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.html Obidike, I., Nwabueze, C., Onwuzuruike, K., & Onuzulike, C. V. (2019). Energy Harvester : Alternative Source for Powering Electronic Devices. March, 53–57 Ogunniyi, E. O., & Pienaar, H. C. V. Z. (2017). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017, April, 233–239. https://doi.org/10.23919/DUE.2017.7931849 Pillai, M. A., & Ezhilarasi, D. (2016). Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting. Procedia Engineering, 144, 674–681. https://doi.org/10.1016/j.proeng.2016.05.065 Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082446 Rossell Turull; Ivana; Soler Rocasalbas; Sergi; Vila Deutschbein. (2005). Resonadores de helmholtz de boca rectangular y cuello de longitud pequeña. 1–7. http://www.sea-acustica.es/fileadmin/publicaciones/Terrassa05_AFS004.pdf Ruido - Secretaria Distrital de Ambiente. (2014). http://ambientebogota.gov.co/ruido Rupitsch, S. J. (2018). Piezoelectric Sensors and Actuators. Springer-Verlag Berlin Heidelberg, Heidelberg Sarker, M. R., Julai, S., Sabri, M. F. M., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. En Sensors and Actuators, A: Physical (Vol. 300). Elsevier B.V. https://doi.org/10.1016/j.sna.2019.111634 Serhan, H. A., & Ahmed, E. M. (2018). Effect of the different charging techniques on battery life-time: Review. Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, 2018-March, 421–426. https://doi.org/10.1109/ITCE.2018.8316661 Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054. https://doi.org/10.1016/j.rser.2015.11.010 Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512. https://doi.org/10.1088/0964-1726/15/6/001 Simpson, C. (2011). Linear and Switching Voltage Reglator Fundamental part 1. 31. http://www.ti.com/lit/an/snva559/snva559.pdf Spv, T. (2018). Ultralow power energy harvester and battery charger VFQFPN 3 x 3 x 1 mm 20L Die form. May, 1–36 Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1). https://doi.org/10.1186/s40486-017-0051-0 Turkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159 Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. https://doi.org/10.1016/j.apenergy.2018.08.080 Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001 Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74(January), 1–18. https://doi.org/10.1016/j.rser.2017.01.073 Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515a Yang, J. (2005). An introduction to the theory of piezoelectricity (Vol. 9). New York: Springer Yu, H., & Wu, H. (2017). Design of power management ASIC for piezoelectric energy harvester. Proceedings of IEEE Sensors, 5–7. https://doi.org/10.1109/ICSENS.2016.7808750 Yuan, M., Cao, Z., Luo, J., & Chou, X. (2019). Recent developments of acoustic energy harvesting: A review. Micromachines, 10(1). https://doi.org/10.3390/mi10010048 Yunda, J. (2018). Bogotá es una de las ciudades con más densidad poblacional del mundo. El Tiempo. https://www.eltiempo.com/bogota/bogota-es-una-de-las-ciudades-con-mas-densidad-poblacional-del-mundo-240412 Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011 Zhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82(October 2016), 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/2209 |
identifier_str_mv |
Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. https://doi.org/10.1002/er.4282 Alghisi, D., Ferrari, V., Ferrari, M., Crescini, D., Touati, F., & Mnaouer, A. B. (2017). Single- and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sensors and Actuators, A: Physical, 264, 234–246. https://doi.org/10.1016/j.sna.2017.07.027 Aloulou, R., Lucas De Peslouan, P. O., Mnif, H., Alicalapa, F., Lan Sun Luk, J. D., & Loulou, M. (2016). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. https://doi.org/10.1080/00207217.2015.1072848 Anjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001 Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(34), 1–41. https://doi.org/10.1002/adma.201707271 Barroca, N., Saraiva, H. M., Gouveia, P. T., Tavares, J., Borges, L. M., Velez, F. J., Loss, C., Salvado, R., Pinho, P., Gonçalves, R., Borgescarvalho, N., Chavéz-Santiago, R., & Balasingham, I. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 532–537. https://doi.org/10.1109/PIMRC.2013.6666194 Batarseh, I., & Harb, A. (2017). Power Electronics: Circuit analysis and design. En Power Electronics: Circuit Analysis and Design. https://doi.org/10.1007/978-3-319-68366-9 Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E. (2017). Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications. https://doi.org/10.1007/978-3-319-49875-1 Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors (Switzerland), 14(3), 4755–4790. https://doi.org/10.3390/s140304755 Camilo, C., & Restrepo, A. (2015). Orígenes de las Leyes de conservación como un principio unificador de las Ciencias Naturales. El caso de la invarianza de la energía en la física Can, A., Leclercq, L., Lelong, J., & Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002 Cansiz, M., Altinel, D., & Kurt, G. K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100 Chapman, S. J. (2014). Máquinas eléctricas Chew, Z. J., & Zhu, M. (2015). Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting. 2015 IEEE SENSORS - Proceedings, 2–5. https://doi.org/10.1109/ICSENS.2015.7370663 Daniels, A., Zhu, M., & Tiwari, A. (2013). Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(12), 2626–2633. https://doi.org/10.1109/TUFFC.2013.2861 Díez, P. L., Gabilondo, I., Alarcón, E., & Moll, F. (2018). A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. Proceedings - IEEE International Symposium on Circuits and Systems, 2018-May. https://doi.org/10.1109/ISCAS.2018.8350907 Edy Susanto, M. (2019). Energy Harvesting Systems: Principles, Modeling and Applications. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004 Erturk, A., & Inman, D. J. (2011). Piezoelectric Energy Harvesting. En Piezoelectric Energy Harvesting. https://doi.org/10.1002/9781119991151 Fraden, J. (2016). Handbook of Modern Sensors. En Handbook of Modern Sensors. https://doi.org/10.1007/978-3-319-19303-8 Gautschi, G., 2013. Piezoelectric Sensorics. Springer. Gaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007 Harrop, P., & Das, R. (2009). Energy Harvesting and Storage for Electronic Devices 2009-2019. IDTechEx. https://www.idtechex.com/en/research-report/energy-harvesting-and-storage-for-electronic-devices-2009-2019/217 Hawkes, R. L., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. J. (2019). Physics for scientists and engineers: an interactive approach. Nelson Hehn, T., & Manoli, Y. (2015). CMOS Circuits for Piezoelectric Energy Harvesters (Vol. 38). https://doi.org/10.1007/978-94-017-9288-2 Heywang, W., Lubitz, K., & Wersing, W. (Eds.). (2008). Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business Media Jamadar, V., Pingle, P., & Kanase, S. (2017). Possibility of harvesting Vibration energy from power producing devices: A review. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 496–503. https://doi.org/10.1109/ICACDOT.2016.7877635 Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 1–4. https://doi.org/10.1038/nenergy.2016.141 Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(July 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132 Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power Converters Khan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001. https://doi.org/10.1088/0960-1317/26/10/103001 Kinsler, L. E., Frey, A. R., & Mayer, W. G. (1963). Fundamentals of Acoustics. Physics Today, 16(8), 56–57. https://doi.org/10.1063/1.3051072 Larsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. Comparative bioacoustics: An overview, 3-60 Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). https://doi.org/10.1063/1.5074184 Luo, F. L., & Ye, H. (2018). Power electronics: Advanced conversion technologies, second edition. En Power Electronics: Advanced Conversion Technologies, Second Edition. https://doi.org/10.1201/9781315186276 Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081 Mohanty, A., Parida, S., Behera, R. K., & Roy, T. (2019). Vibration energy harvesting: A review. Journal of Advanced Dielectrics, 9(4). https://doi.org/10.1142/S2010135X19300019 Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867. https://doi.org/10.1016/j.rser.2017.05.083 Newnham, R. E. (1992). Piezoelectric sensors and actuators: smart materials. En Proceedings of the Annual Frequency Control Symposium. https://doi.org/10.1109/freq.1992.269973 Nikolaev, V. A., Sieler, J., Nikolaev, V. V., Rodina, L. L., & Schulze, B. (2001). O-alkylation of amide carbonyl group with Diazo compounds: A new way for functionalizing saccharin and its analogs. En Russian Journal of Organic Chemistry (Vol. 37, Número 8). https://doi.org/10.1023/A:1013117120223 Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629–1635. https://doi.org/10.1007/s12541-013-0220-x Noticias ONU. (2018). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. ONU DAES Naciones Unidas Departamento de Asuntos Económicos y Sociales. https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.html Obidike, I., Nwabueze, C., Onwuzuruike, K., & Onuzulike, C. V. (2019). Energy Harvester : Alternative Source for Powering Electronic Devices. March, 53–57 Ogunniyi, E. O., & Pienaar, H. C. V. Z. (2017). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017, April, 233–239. https://doi.org/10.23919/DUE.2017.7931849 Pillai, M. A., & Ezhilarasi, D. (2016). Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting. Procedia Engineering, 144, 674–681. https://doi.org/10.1016/j.proeng.2016.05.065 Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082446 Rossell Turull; Ivana; Soler Rocasalbas; Sergi; Vila Deutschbein. (2005). Resonadores de helmholtz de boca rectangular y cuello de longitud pequeña. 1–7. http://www.sea-acustica.es/fileadmin/publicaciones/Terrassa05_AFS004.pdf Ruido - Secretaria Distrital de Ambiente. (2014). http://ambientebogota.gov.co/ruido Rupitsch, S. J. (2018). Piezoelectric Sensors and Actuators. Springer-Verlag Berlin Heidelberg, Heidelberg Sarker, M. R., Julai, S., Sabri, M. F. M., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. En Sensors and Actuators, A: Physical (Vol. 300). Elsevier B.V. https://doi.org/10.1016/j.sna.2019.111634 Serhan, H. A., & Ahmed, E. M. (2018). Effect of the different charging techniques on battery life-time: Review. Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, 2018-March, 421–426. https://doi.org/10.1109/ITCE.2018.8316661 Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054. https://doi.org/10.1016/j.rser.2015.11.010 Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512. https://doi.org/10.1088/0964-1726/15/6/001 Simpson, C. (2011). Linear and Switching Voltage Reglator Fundamental part 1. 31. http://www.ti.com/lit/an/snva559/snva559.pdf Spv, T. (2018). Ultralow power energy harvester and battery charger VFQFPN 3 x 3 x 1 mm 20L Die form. May, 1–36 Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1). https://doi.org/10.1186/s40486-017-0051-0 Turkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159 Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. https://doi.org/10.1016/j.apenergy.2018.08.080 Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001 Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74(January), 1–18. https://doi.org/10.1016/j.rser.2017.01.073 Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515a Yang, J. (2005). An introduction to the theory of piezoelectricity (Vol. 9). New York: Springer Yu, H., & Wu, H. (2017). Design of power management ASIC for piezoelectric energy harvester. Proceedings of IEEE Sensors, 5–7. https://doi.org/10.1109/ICSENS.2016.7808750 Yuan, M., Cao, Z., Luo, J., & Chou, X. (2019). Recent developments of acoustic energy harvesting: A review. Micromachines, 10(1). https://doi.org/10.3390/mi10010048 Yunda, J. (2018). Bogotá es una de las ciudades con más densidad poblacional del mundo. El Tiempo. https://www.eltiempo.com/bogota/bogota-es-una-de-las-ciudades-con-mas-densidad-poblacional-del-mundo-240412 Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011 Zhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82(October 2016), 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Acceso abierto https://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Mecatrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica, Electrónica y Biomédica |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Sur |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/0650ee07-43a5-4ffd-8d28-e2b887b3fb82/download https://repositorio.uan.edu.co/bitstreams/32958fc0-ba1e-4a7c-a008-bbd4fb4ff0ad/download https://repositorio.uan.edu.co/bitstreams/cf7dee4b-e031-4eb8-9827-d8976c8ecbfb/download https://repositorio.uan.edu.co/bitstreams/a124ecae-1f03-48e2-b56d-7d43c52f4f66/download https://repositorio.uan.edu.co/bitstreams/2264dd51-4de8-43b6-816a-29b0edd41d8f/download https://repositorio.uan.edu.co/bitstreams/cfd12dd5-19bd-4476-a229-9585e5f75127/download https://repositorio.uan.edu.co/bitstreams/4b8185a3-8a4f-4f8b-82de-2813889a632c/download https://repositorio.uan.edu.co/bitstreams/90cbe554-ffca-4b5b-b76f-d6dd4ca8d0c8/download https://repositorio.uan.edu.co/bitstreams/785fd5e8-b0d3-44e8-88ac-154507789d6f/download |
bitstream.checksum.fl_str_mv |
0dfe612e5b9cb0f75e4a97ad5514f796 4f7cdb58257770db47dcb1a4f636d9af 07469ac48129c53f23be32e43d8e0449 dd65805249d68ea862568f59102935ac 2e388663398085f69421c9e4c5fcf235 c71717605a2565d4e7f14b9dc7f0cf3d 7f97d00bb865c811e00a6075f9f6ee14 9b23013c31a9b4a1f21e8f24fcbe397e 0afd49b999acaea640fd82dcab196f8c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300354761719808 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Párraga Meneses, Manuel FernandoForero Briceño, Jonnathan JuliánSalazar Ibarra, José Álvaro2021-03-02T13:59:30Z2021-03-02T13:59:30Z2020-07-17http://repositorio.uan.edu.co/handle/123456789/2209Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. https://doi.org/10.1002/er.4282Alghisi, D., Ferrari, V., Ferrari, M., Crescini, D., Touati, F., & Mnaouer, A. B. (2017). Single- and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sensors and Actuators, A: Physical, 264, 234–246. https://doi.org/10.1016/j.sna.2017.07.027Aloulou, R., Lucas De Peslouan, P. O., Mnif, H., Alicalapa, F., Lan Sun Luk, J. D., & Loulou, M. (2016). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. https://doi.org/10.1080/00207217.2015.1072848Anjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(34), 1–41. https://doi.org/10.1002/adma.201707271Barroca, N., Saraiva, H. M., Gouveia, P. T., Tavares, J., Borges, L. M., Velez, F. J., Loss, C., Salvado, R., Pinho, P., Gonçalves, R., Borgescarvalho, N., Chavéz-Santiago, R., & Balasingham, I. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 532–537. https://doi.org/10.1109/PIMRC.2013.6666194Batarseh, I., & Harb, A. (2017). Power Electronics: Circuit analysis and design. En Power Electronics: Circuit Analysis and Design. https://doi.org/10.1007/978-3-319-68366-9 Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E. (2017). Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications. https://doi.org/10.1007/978-3-319-49875-1Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors (Switzerland), 14(3), 4755–4790. https://doi.org/10.3390/s140304755Camilo, C., & Restrepo, A. (2015). Orígenes de las Leyes de conservación como un principio unificador de las Ciencias Naturales. El caso de la invarianza de la energía en la físicaCan, A., Leclercq, L., Lelong, J., & Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002Cansiz, M., Altinel, D., & Kurt, G. K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100Chapman, S. J. (2014). Máquinas eléctricasChew, Z. J., & Zhu, M. (2015). Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting. 2015 IEEE SENSORS - Proceedings, 2–5. https://doi.org/10.1109/ICSENS.2015.7370663Daniels, A., Zhu, M., & Tiwari, A. (2013). Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(12), 2626–2633. https://doi.org/10.1109/TUFFC.2013.2861Díez, P. L., Gabilondo, I., Alarcón, E., & Moll, F. (2018). A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. Proceedings - IEEE International Symposium on Circuits and Systems, 2018-May. https://doi.org/10.1109/ISCAS.2018.8350907Edy Susanto, M. (2019). Energy Harvesting Systems: Principles, Modeling and Applications. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004Erturk, A., & Inman, D. J. (2011). Piezoelectric Energy Harvesting. En Piezoelectric Energy Harvesting. https://doi.org/10.1002/9781119991151Fraden, J. (2016). Handbook of Modern Sensors. En Handbook of Modern Sensors. https://doi.org/10.1007/978-3-319-19303-8Gautschi, G., 2013. Piezoelectric Sensorics. Springer.Gaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007Harrop, P., & Das, R. (2009). Energy Harvesting and Storage for Electronic Devices 2009-2019. IDTechEx. https://www.idtechex.com/en/research-report/energy-harvesting-and-storage-for-electronic-devices-2009-2019/217Hawkes, R. L., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. J. (2019). Physics for scientists and engineers: an interactive approach. NelsonHehn, T., & Manoli, Y. (2015). CMOS Circuits for Piezoelectric Energy Harvesters (Vol. 38). https://doi.org/10.1007/978-94-017-9288-2Heywang, W., Lubitz, K., & Wersing, W. (Eds.). (2008). Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business MediaJamadar, V., Pingle, P., & Kanase, S. (2017). Possibility of harvesting Vibration energy from power producing devices: A review. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 496–503. https://doi.org/10.1109/ICACDOT.2016.7877635Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 1–4. https://doi.org/10.1038/nenergy.2016.141Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(July 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power ConvertersKhan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001. https://doi.org/10.1088/0960-1317/26/10/103001Kinsler, L. E., Frey, A. R., & Mayer, W. G. (1963). Fundamentals of Acoustics. Physics Today, 16(8), 56–57. https://doi.org/10.1063/1.3051072Larsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. Comparative bioacoustics: An overview, 3-60Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). https://doi.org/10.1063/1.5074184Luo, F. L., & Ye, H. (2018). Power electronics: Advanced conversion technologies, second edition. En Power Electronics: Advanced Conversion Technologies, Second Edition. https://doi.org/10.1201/9781315186276Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081Mohanty, A., Parida, S., Behera, R. K., & Roy, T. (2019). Vibration energy harvesting: A review. Journal of Advanced Dielectrics, 9(4). https://doi.org/10.1142/S2010135X19300019Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867. https://doi.org/10.1016/j.rser.2017.05.083Newnham, R. E. (1992). Piezoelectric sensors and actuators: smart materials. En Proceedings of the Annual Frequency Control Symposium. https://doi.org/10.1109/freq.1992.269973Nikolaev, V. A., Sieler, J., Nikolaev, V. V., Rodina, L. L., & Schulze, B. (2001). O-alkylation of amide carbonyl group with Diazo compounds: A new way for functionalizing saccharin and its analogs. En Russian Journal of Organic Chemistry (Vol. 37, Número 8). https://doi.org/10.1023/A:1013117120223Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629–1635. https://doi.org/10.1007/s12541-013-0220-xNoticias ONU. (2018). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. ONU DAES Naciones Unidas Departamento de Asuntos Económicos y Sociales. https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.htmlObidike, I., Nwabueze, C., Onwuzuruike, K., & Onuzulike, C. V. (2019). Energy Harvester : Alternative Source for Powering Electronic Devices. March, 53–57Ogunniyi, E. O., & Pienaar, H. C. V. Z. (2017). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017, April, 233–239. https://doi.org/10.23919/DUE.2017.7931849Pillai, M. A., & Ezhilarasi, D. (2016). Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting. Procedia Engineering, 144, 674–681. https://doi.org/10.1016/j.proeng.2016.05.065Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082446Rossell Turull; Ivana; Soler Rocasalbas; Sergi; Vila Deutschbein. (2005). Resonadores de helmholtz de boca rectangular y cuello de longitud pequeña. 1–7. http://www.sea-acustica.es/fileadmin/publicaciones/Terrassa05_AFS004.pdfRuido - Secretaria Distrital de Ambiente. (2014). http://ambientebogota.gov.co/ruidoRupitsch, S. J. (2018). Piezoelectric Sensors and Actuators. Springer-Verlag Berlin Heidelberg, HeidelbergSarker, M. R., Julai, S., Sabri, M. F. M., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. En Sensors and Actuators, A: Physical (Vol. 300). Elsevier B.V. https://doi.org/10.1016/j.sna.2019.111634Serhan, H. A., & Ahmed, E. M. (2018). Effect of the different charging techniques on battery life-time: Review. Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, 2018-March, 421–426. https://doi.org/10.1109/ITCE.2018.8316661Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054. https://doi.org/10.1016/j.rser.2015.11.010Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512. https://doi.org/10.1088/0964-1726/15/6/001Simpson, C. (2011). Linear and Switching Voltage Reglator Fundamental part 1. 31. http://www.ti.com/lit/an/snva559/snva559.pdfSpv, T. (2018). Ultralow power energy harvester and battery charger VFQFPN 3 x 3 x 1 mm 20L Die form. May, 1–36Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business MediaTran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1). https://doi.org/10.1186/s40486-017-0051-0Turkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. https://doi.org/10.1016/j.apenergy.2018.08.080Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74(January), 1–18. https://doi.org/10.1016/j.rser.2017.01.073Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515aYang, J. (2005). An introduction to the theory of piezoelectricity (Vol. 9). New York: SpringerYu, H., & Wu, H. (2017). Design of power management ASIC for piezoelectric energy harvester. Proceedings of IEEE Sensors, 5–7. https://doi.org/10.1109/ICSENS.2016.7808750Yuan, M., Cao, Z., Luo, J., & Chou, X. (2019). Recent developments of acoustic energy harvesting: A review. Micromachines, 10(1). https://doi.org/10.3390/mi10010048Yunda, J. (2018). Bogotá es una de las ciudades con más densidad poblacional del mundo. El Tiempo. https://www.eltiempo.com/bogota/bogota-es-una-de-las-ciudades-con-mas-densidad-poblacional-del-mundo-240412Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011Zhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82(October 2016), 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Energy harvesting coming from the environment generally from unused sources is essential in a society with growing energy demand. In most cases, these sources have limited amounts of energy, which can be used in low-power devices and limited access areas. As a solution to this type of problem, technologies capable of taking advantage of this energy are developed, thanks to the creation of self-powered systems that also have a better impact on the environment. Entering in this technology two devices are postulated, the SPV1050 and the ADP5091, capable of storing, managing, and supplying the energy collected by specific transducers: photovoltaic cells and piezoelectric sensors. Simultaneously, the behavior of an acoustic energy harvester is analyzed. From its simulation in the Ansys CAE tool, solving the problem in a decoupled way, the modal response of a Helmholtz resonator with the hexagonal section is obtained. Likewise, the modal and voltage response of the series bimorph piezoelectric cantilever beam is achieved. The analysis carried out has the purpose of finding the behavior of the collection system for future implementation, making use of some of the proposed management systems.La recolección de energía proveniente del ambiente generalmente de fuentes no utilizadas se hace indispensable en una sociedad con una creciente demanda energética. En la mayoría de casos estas fuentes presentan cantidades limitadas de energía, que puede ser usada en dispositivos de bajo consumo y en áreas con acceso limitado. Como solución a este tipo de problemas se desarrollan tecnologías capaces de aprovechar esta energía, gracias a la creación de sistemas autoalimentados que además presentan un mejor impacto en el ambiente. Incursionando en esta tecnología se postulan dos dispositivos, como lo son el SPV1050 y el ADP5091, capaces de almacenar, gestionar, y suministrar la energía recolectada por transductores específicos: celdas fotovoltaicas y sensores piezoeléctricos. En simultáneo, se analiza el comportamiento de un recolector de energía acústico. A partir de su simulación en la herramienta CAE de Ansys, resolviendo el problema de forma desacoplada, se obtiene la respuesta modal de un resonador Helmholtz con sección hexagonal. Así mismo, se consigue la respuesta modal y en voltaje del voladizo piezoeléctrico bimorfo en serie. El análisis realizado tiene la finalidad de encontrar el comportamiento del sistema de recolección para una implementación futura, haciendo uso de alguno de los sistemas de gestión propuestos.Ingeniero(a) Mecatrónico(a)PregradoCosto total del proyecto $1.200.000. Financiación propia $280.000. Financiación UAN $920.000.PresencialspaUniversidad Antonio NariñoIngeniería MecatrónicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaBogotá - SurEnergíaRecolección de energíaGestión de energíaSistemas autoalimentadosGenerador piezoeléctricoViga en voladizoVibraciónEnergyEnergy harvestingPower managamentSelf-powered systemsPiezoelectric generatorCantilever beamVibrationSistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctricoTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020JonnathanJuliánForeroBriceño.pdf2020JonnathanJuliánForeroBriceño.pdfTrabajo de gradoapplication/pdf7360991https://repositorio.uan.edu.co/bitstreams/0650ee07-43a5-4ffd-8d28-e2b887b3fb82/download0dfe612e5b9cb0f75e4a97ad5514f796MD512020AutorizacióndeAutores.pdf2020AutorizacióndeAutores.pdfAutorización de primer autorapplication/pdf302113https://repositorio.uan.edu.co/bitstreams/32958fc0-ba1e-4a7c-a008-bbd4fb4ff0ad/download4f7cdb58257770db47dcb1a4f636d9afMD522020AutorizacióndeAutores.pdf2020AutorizacióndeAutores.pdfAutorización de primer autorapplication/pdf321459https://repositorio.uan.edu.co/bitstreams/cf7dee4b-e031-4eb8-9827-d8976c8ecbfb/download07469ac48129c53f23be32e43d8e0449MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://repositorio.uan.edu.co/bitstreams/a124ecae-1f03-48e2-b56d-7d43c52f4f66/downloaddd65805249d68ea862568f59102935acMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/2264dd51-4de8-43b6-816a-29b0edd41d8f/download2e388663398085f69421c9e4c5fcf235MD58TEXT2020JonnathanJuliánForeroBriceño.pdf.txt2020JonnathanJuliánForeroBriceño.pdf.txtExtracted texttext/plain105262https://repositorio.uan.edu.co/bitstreams/cfd12dd5-19bd-4476-a229-9585e5f75127/downloadc71717605a2565d4e7f14b9dc7f0cf3dMD592020AutorizacióndeAutores.pdf.txt2020AutorizacióndeAutores.pdf.txtExtracted texttext/plain3582https://repositorio.uan.edu.co/bitstreams/4b8185a3-8a4f-4f8b-82de-2813889a632c/download7f97d00bb865c811e00a6075f9f6ee14MD511THUMBNAIL2020JonnathanJuliánForeroBriceño.pdf.jpg2020JonnathanJuliánForeroBriceño.pdf.jpgGenerated Thumbnailimage/jpeg9432https://repositorio.uan.edu.co/bitstreams/90cbe554-ffca-4b5b-b76f-d6dd4ca8d0c8/download9b23013c31a9b4a1f21e8f24fcbe397eMD5102020AutorizacióndeAutores.pdf.jpg2020AutorizacióndeAutores.pdf.jpgGenerated Thumbnailimage/jpeg18181https://repositorio.uan.edu.co/bitstreams/785fd5e8-b0d3-44e8-88ac-154507789d6f/download0afd49b999acaea640fd82dcab196f8cMD512123456789/2209oai:repositorio.uan.edu.co:123456789/22092024-10-09 22:54:06.251https://creativecommons.org/licenses/by-nc/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg== |