Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico

Energy harvesting coming from the environment generally from unused sources is essential in a society with growing energy demand. In most cases, these sources have limited amounts of energy, which can be used in low-power devices and limited access areas. As a solution to this type of problem, techn...

Full description

Autores:
Forero Briceño, Jonnathan Julián
Salazar Ibarra, José Álvaro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/2209
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/2209
Palabra clave:
Energía
Recolección de energía
Gestión de energía
Sistemas autoalimentados
Generador piezoeléctrico
Viga en voladizo
Vibración
Energy
Energy harvesting
Power managament
Self-powered systems
Piezoelectric generator
Cantilever beam
Vibration
Rights
openAccess
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UAntonioN2_287d9c1667e71523ffe1f1e8a1a7a569
oai_identifier_str oai:repositorio.uan.edu.co:123456789/2209
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
title Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
spellingShingle Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
Energía
Recolección de energía
Gestión de energía
Sistemas autoalimentados
Generador piezoeléctrico
Viga en voladizo
Vibración
Energy
Energy harvesting
Power managament
Self-powered systems
Piezoelectric generator
Cantilever beam
Vibration
title_short Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
title_full Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
title_fullStr Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
title_full_unstemmed Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
title_sort Sistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctrico
dc.creator.fl_str_mv Forero Briceño, Jonnathan Julián
Salazar Ibarra, José Álvaro
dc.contributor.advisor.spa.fl_str_mv Párraga Meneses, Manuel Fernando
dc.contributor.author.spa.fl_str_mv Forero Briceño, Jonnathan Julián
Salazar Ibarra, José Álvaro
dc.subject.es_ES.fl_str_mv Energía
Recolección de energía
Gestión de energía
Sistemas autoalimentados
Generador piezoeléctrico
Viga en voladizo
Vibración
topic Energía
Recolección de energía
Gestión de energía
Sistemas autoalimentados
Generador piezoeléctrico
Viga en voladizo
Vibración
Energy
Energy harvesting
Power managament
Self-powered systems
Piezoelectric generator
Cantilever beam
Vibration
dc.subject.keyword.es_ES.fl_str_mv Energy
Energy harvesting
Power managament
Self-powered systems
Piezoelectric generator
Cantilever beam
Vibration
description Energy harvesting coming from the environment generally from unused sources is essential in a society with growing energy demand. In most cases, these sources have limited amounts of energy, which can be used in low-power devices and limited access areas. As a solution to this type of problem, technologies capable of taking advantage of this energy are developed, thanks to the creation of self-powered systems that also have a better impact on the environment. Entering in this technology two devices are postulated, the SPV1050 and the ADP5091, capable of storing, managing, and supplying the energy collected by specific transducers: photovoltaic cells and piezoelectric sensors. Simultaneously, the behavior of an acoustic energy harvester is analyzed. From its simulation in the Ansys CAE tool, solving the problem in a decoupled way, the modal response of a Helmholtz resonator with the hexagonal section is obtained. Likewise, the modal and voltage response of the series bimorph piezoelectric cantilever beam is achieved. The analysis carried out has the purpose of finding the behavior of the collection system for future implementation, making use of some of the proposed management systems.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-07-17
dc.date.accessioned.none.fl_str_mv 2021-03-02T13:59:30Z
dc.date.available.none.fl_str_mv 2021-03-02T13:59:30Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/2209
dc.identifier.bibliographicCitation.spa.fl_str_mv Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. https://doi.org/10.1002/er.4282
Alghisi, D., Ferrari, V., Ferrari, M., Crescini, D., Touati, F., & Mnaouer, A. B. (2017). Single- and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sensors and Actuators, A: Physical, 264, 234–246. https://doi.org/10.1016/j.sna.2017.07.027
Aloulou, R., Lucas De Peslouan, P. O., Mnif, H., Alicalapa, F., Lan Sun Luk, J. D., & Loulou, M. (2016). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. https://doi.org/10.1080/00207217.2015.1072848
Anjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001
Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(34), 1–41. https://doi.org/10.1002/adma.201707271
Barroca, N., Saraiva, H. M., Gouveia, P. T., Tavares, J., Borges, L. M., Velez, F. J., Loss, C., Salvado, R., Pinho, P., Gonçalves, R., Borgescarvalho, N., Chavéz-Santiago, R., & Balasingham, I. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 532–537. https://doi.org/10.1109/PIMRC.2013.6666194
Batarseh, I., & Harb, A. (2017). Power Electronics: Circuit analysis and design. En Power Electronics: Circuit Analysis and Design. https://doi.org/10.1007/978-3-319-68366-9 Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E. (2017). Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications. https://doi.org/10.1007/978-3-319-49875-1
Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors (Switzerland), 14(3), 4755–4790. https://doi.org/10.3390/s140304755
Camilo, C., & Restrepo, A. (2015). Orígenes de las Leyes de conservación como un principio unificador de las Ciencias Naturales. El caso de la invarianza de la energía en la física
Can, A., Leclercq, L., Lelong, J., & Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002
Cansiz, M., Altinel, D., & Kurt, G. K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100
Chapman, S. J. (2014). Máquinas eléctricas
Chew, Z. J., & Zhu, M. (2015). Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting. 2015 IEEE SENSORS - Proceedings, 2–5. https://doi.org/10.1109/ICSENS.2015.7370663
Daniels, A., Zhu, M., & Tiwari, A. (2013). Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(12), 2626–2633. https://doi.org/10.1109/TUFFC.2013.2861
Díez, P. L., Gabilondo, I., Alarcón, E., & Moll, F. (2018). A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. Proceedings - IEEE International Symposium on Circuits and Systems, 2018-May. https://doi.org/10.1109/ISCAS.2018.8350907
Edy Susanto, M. (2019). Energy Harvesting Systems: Principles, Modeling and Applications. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004
Erturk, A., & Inman, D. J. (2011). Piezoelectric Energy Harvesting. En Piezoelectric Energy Harvesting. https://doi.org/10.1002/9781119991151
Fraden, J. (2016). Handbook of Modern Sensors. En Handbook of Modern Sensors. https://doi.org/10.1007/978-3-319-19303-8
Gautschi, G., 2013. Piezoelectric Sensorics. Springer.
Gaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007
Harrop, P., & Das, R. (2009). Energy Harvesting and Storage for Electronic Devices 2009-2019. IDTechEx. https://www.idtechex.com/en/research-report/energy-harvesting-and-storage-for-electronic-devices-2009-2019/217
Hawkes, R. L., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. J. (2019). Physics for scientists and engineers: an interactive approach. Nelson
Hehn, T., & Manoli, Y. (2015). CMOS Circuits for Piezoelectric Energy Harvesters (Vol. 38). https://doi.org/10.1007/978-94-017-9288-2
Heywang, W., Lubitz, K., & Wersing, W. (Eds.). (2008). Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business Media
Jamadar, V., Pingle, P., & Kanase, S. (2017). Possibility of harvesting Vibration energy from power producing devices: A review. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 496–503. https://doi.org/10.1109/ICACDOT.2016.7877635
Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 1–4. https://doi.org/10.1038/nenergy.2016.141
Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(July 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132
Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power Converters
Khan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001. https://doi.org/10.1088/0960-1317/26/10/103001
Kinsler, L. E., Frey, A. R., & Mayer, W. G. (1963). Fundamentals of Acoustics. Physics Today, 16(8), 56–57. https://doi.org/10.1063/1.3051072
Larsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. Comparative bioacoustics: An overview, 3-60
Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). https://doi.org/10.1063/1.5074184
Luo, F. L., & Ye, H. (2018). Power electronics: Advanced conversion technologies, second edition. En Power Electronics: Advanced Conversion Technologies, Second Edition. https://doi.org/10.1201/9781315186276
Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081
Mohanty, A., Parida, S., Behera, R. K., & Roy, T. (2019). Vibration energy harvesting: A review. Journal of Advanced Dielectrics, 9(4). https://doi.org/10.1142/S2010135X19300019
Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867. https://doi.org/10.1016/j.rser.2017.05.083
Newnham, R. E. (1992). Piezoelectric sensors and actuators: smart materials. En Proceedings of the Annual Frequency Control Symposium. https://doi.org/10.1109/freq.1992.269973
Nikolaev, V. A., Sieler, J., Nikolaev, V. V., Rodina, L. L., & Schulze, B. (2001). O-alkylation of amide carbonyl group with Diazo compounds: A new way for functionalizing saccharin and its analogs. En Russian Journal of Organic Chemistry (Vol. 37, Número 8). https://doi.org/10.1023/A:1013117120223
Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629–1635. https://doi.org/10.1007/s12541-013-0220-x
Noticias ONU. (2018). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. ONU DAES Naciones Unidas Departamento de Asuntos Económicos y Sociales. https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.html
Obidike, I., Nwabueze, C., Onwuzuruike, K., & Onuzulike, C. V. (2019). Energy Harvester : Alternative Source for Powering Electronic Devices. March, 53–57
Ogunniyi, E. O., & Pienaar, H. C. V. Z. (2017). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017, April, 233–239. https://doi.org/10.23919/DUE.2017.7931849
Pillai, M. A., & Ezhilarasi, D. (2016). Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting. Procedia Engineering, 144, 674–681. https://doi.org/10.1016/j.proeng.2016.05.065
Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082446
Rossell Turull; Ivana; Soler Rocasalbas; Sergi; Vila Deutschbein. (2005). Resonadores de helmholtz de boca rectangular y cuello de longitud pequeña. 1–7. http://www.sea-acustica.es/fileadmin/publicaciones/Terrassa05_AFS004.pdf
Ruido - Secretaria Distrital de Ambiente. (2014). http://ambientebogota.gov.co/ruido
Rupitsch, S. J. (2018). Piezoelectric Sensors and Actuators. Springer-Verlag Berlin Heidelberg, Heidelberg
Sarker, M. R., Julai, S., Sabri, M. F. M., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. En Sensors and Actuators, A: Physical (Vol. 300). Elsevier B.V. https://doi.org/10.1016/j.sna.2019.111634
Serhan, H. A., & Ahmed, E. M. (2018). Effect of the different charging techniques on battery life-time: Review. Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, 2018-March, 421–426. https://doi.org/10.1109/ITCE.2018.8316661
Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054. https://doi.org/10.1016/j.rser.2015.11.010
Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512. https://doi.org/10.1088/0964-1726/15/6/001
Simpson, C. (2011). Linear and Switching Voltage Reglator Fundamental part 1. 31. http://www.ti.com/lit/an/snva559/snva559.pdf
Spv, T. (2018). Ultralow power energy harvester and battery charger VFQFPN 3 x 3 x 1 mm 20L Die form. May, 1–36
Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media
Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1). https://doi.org/10.1186/s40486-017-0051-0
Turkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159
Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. https://doi.org/10.1016/j.apenergy.2018.08.080
Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001
Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74(January), 1–18. https://doi.org/10.1016/j.rser.2017.01.073
Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515a
Yang, J. (2005). An introduction to the theory of piezoelectricity (Vol. 9). New York: Springer
Yu, H., & Wu, H. (2017). Design of power management ASIC for piezoelectric energy harvester. Proceedings of IEEE Sensors, 5–7. https://doi.org/10.1109/ICSENS.2016.7808750
Yuan, M., Cao, Z., Luo, J., & Chou, X. (2019). Recent developments of acoustic energy harvesting: A review. Micromachines, 10(1). https://doi.org/10.3390/mi10010048
Yunda, J. (2018). Bogotá es una de las ciudades con más densidad poblacional del mundo. El Tiempo. https://www.eltiempo.com/bogota/bogota-es-una-de-las-ciudades-con-mas-densidad-poblacional-del-mundo-240412
Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011
Zhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82(October 2016), 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/2209
identifier_str_mv Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. https://doi.org/10.1002/er.4282
Alghisi, D., Ferrari, V., Ferrari, M., Crescini, D., Touati, F., & Mnaouer, A. B. (2017). Single- and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sensors and Actuators, A: Physical, 264, 234–246. https://doi.org/10.1016/j.sna.2017.07.027
Aloulou, R., Lucas De Peslouan, P. O., Mnif, H., Alicalapa, F., Lan Sun Luk, J. D., & Loulou, M. (2016). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. https://doi.org/10.1080/00207217.2015.1072848
Anjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001
Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(34), 1–41. https://doi.org/10.1002/adma.201707271
Barroca, N., Saraiva, H. M., Gouveia, P. T., Tavares, J., Borges, L. M., Velez, F. J., Loss, C., Salvado, R., Pinho, P., Gonçalves, R., Borgescarvalho, N., Chavéz-Santiago, R., & Balasingham, I. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 532–537. https://doi.org/10.1109/PIMRC.2013.6666194
Batarseh, I., & Harb, A. (2017). Power Electronics: Circuit analysis and design. En Power Electronics: Circuit Analysis and Design. https://doi.org/10.1007/978-3-319-68366-9 Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E. (2017). Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications. https://doi.org/10.1007/978-3-319-49875-1
Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors (Switzerland), 14(3), 4755–4790. https://doi.org/10.3390/s140304755
Camilo, C., & Restrepo, A. (2015). Orígenes de las Leyes de conservación como un principio unificador de las Ciencias Naturales. El caso de la invarianza de la energía en la física
Can, A., Leclercq, L., Lelong, J., & Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002
Cansiz, M., Altinel, D., & Kurt, G. K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100
Chapman, S. J. (2014). Máquinas eléctricas
Chew, Z. J., & Zhu, M. (2015). Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting. 2015 IEEE SENSORS - Proceedings, 2–5. https://doi.org/10.1109/ICSENS.2015.7370663
Daniels, A., Zhu, M., & Tiwari, A. (2013). Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(12), 2626–2633. https://doi.org/10.1109/TUFFC.2013.2861
Díez, P. L., Gabilondo, I., Alarcón, E., & Moll, F. (2018). A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. Proceedings - IEEE International Symposium on Circuits and Systems, 2018-May. https://doi.org/10.1109/ISCAS.2018.8350907
Edy Susanto, M. (2019). Energy Harvesting Systems: Principles, Modeling and Applications. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004
Erturk, A., & Inman, D. J. (2011). Piezoelectric Energy Harvesting. En Piezoelectric Energy Harvesting. https://doi.org/10.1002/9781119991151
Fraden, J. (2016). Handbook of Modern Sensors. En Handbook of Modern Sensors. https://doi.org/10.1007/978-3-319-19303-8
Gautschi, G., 2013. Piezoelectric Sensorics. Springer.
Gaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007
Harrop, P., & Das, R. (2009). Energy Harvesting and Storage for Electronic Devices 2009-2019. IDTechEx. https://www.idtechex.com/en/research-report/energy-harvesting-and-storage-for-electronic-devices-2009-2019/217
Hawkes, R. L., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. J. (2019). Physics for scientists and engineers: an interactive approach. Nelson
Hehn, T., & Manoli, Y. (2015). CMOS Circuits for Piezoelectric Energy Harvesters (Vol. 38). https://doi.org/10.1007/978-94-017-9288-2
Heywang, W., Lubitz, K., & Wersing, W. (Eds.). (2008). Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business Media
Jamadar, V., Pingle, P., & Kanase, S. (2017). Possibility of harvesting Vibration energy from power producing devices: A review. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 496–503. https://doi.org/10.1109/ICACDOT.2016.7877635
Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 1–4. https://doi.org/10.1038/nenergy.2016.141
Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(July 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132
Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power Converters
Khan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001. https://doi.org/10.1088/0960-1317/26/10/103001
Kinsler, L. E., Frey, A. R., & Mayer, W. G. (1963). Fundamentals of Acoustics. Physics Today, 16(8), 56–57. https://doi.org/10.1063/1.3051072
Larsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. Comparative bioacoustics: An overview, 3-60
Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). https://doi.org/10.1063/1.5074184
Luo, F. L., & Ye, H. (2018). Power electronics: Advanced conversion technologies, second edition. En Power Electronics: Advanced Conversion Technologies, Second Edition. https://doi.org/10.1201/9781315186276
Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081
Mohanty, A., Parida, S., Behera, R. K., & Roy, T. (2019). Vibration energy harvesting: A review. Journal of Advanced Dielectrics, 9(4). https://doi.org/10.1142/S2010135X19300019
Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867. https://doi.org/10.1016/j.rser.2017.05.083
Newnham, R. E. (1992). Piezoelectric sensors and actuators: smart materials. En Proceedings of the Annual Frequency Control Symposium. https://doi.org/10.1109/freq.1992.269973
Nikolaev, V. A., Sieler, J., Nikolaev, V. V., Rodina, L. L., & Schulze, B. (2001). O-alkylation of amide carbonyl group with Diazo compounds: A new way for functionalizing saccharin and its analogs. En Russian Journal of Organic Chemistry (Vol. 37, Número 8). https://doi.org/10.1023/A:1013117120223
Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629–1635. https://doi.org/10.1007/s12541-013-0220-x
Noticias ONU. (2018). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. ONU DAES Naciones Unidas Departamento de Asuntos Económicos y Sociales. https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.html
Obidike, I., Nwabueze, C., Onwuzuruike, K., & Onuzulike, C. V. (2019). Energy Harvester : Alternative Source for Powering Electronic Devices. March, 53–57
Ogunniyi, E. O., & Pienaar, H. C. V. Z. (2017). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017, April, 233–239. https://doi.org/10.23919/DUE.2017.7931849
Pillai, M. A., & Ezhilarasi, D. (2016). Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting. Procedia Engineering, 144, 674–681. https://doi.org/10.1016/j.proeng.2016.05.065
Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082446
Rossell Turull; Ivana; Soler Rocasalbas; Sergi; Vila Deutschbein. (2005). Resonadores de helmholtz de boca rectangular y cuello de longitud pequeña. 1–7. http://www.sea-acustica.es/fileadmin/publicaciones/Terrassa05_AFS004.pdf
Ruido - Secretaria Distrital de Ambiente. (2014). http://ambientebogota.gov.co/ruido
Rupitsch, S. J. (2018). Piezoelectric Sensors and Actuators. Springer-Verlag Berlin Heidelberg, Heidelberg
Sarker, M. R., Julai, S., Sabri, M. F. M., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. En Sensors and Actuators, A: Physical (Vol. 300). Elsevier B.V. https://doi.org/10.1016/j.sna.2019.111634
Serhan, H. A., & Ahmed, E. M. (2018). Effect of the different charging techniques on battery life-time: Review. Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, 2018-March, 421–426. https://doi.org/10.1109/ITCE.2018.8316661
Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054. https://doi.org/10.1016/j.rser.2015.11.010
Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512. https://doi.org/10.1088/0964-1726/15/6/001
Simpson, C. (2011). Linear and Switching Voltage Reglator Fundamental part 1. 31. http://www.ti.com/lit/an/snva559/snva559.pdf
Spv, T. (2018). Ultralow power energy harvester and battery charger VFQFPN 3 x 3 x 1 mm 20L Die form. May, 1–36
Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business Media
Tran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1). https://doi.org/10.1186/s40486-017-0051-0
Turkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159
Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. https://doi.org/10.1016/j.apenergy.2018.08.080
Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001
Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74(January), 1–18. https://doi.org/10.1016/j.rser.2017.01.073
Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515a
Yang, J. (2005). An introduction to the theory of piezoelectricity (Vol. 9). New York: Springer
Yu, H., & Wu, H. (2017). Design of power management ASIC for piezoelectric energy harvester. Proceedings of IEEE Sensors, 5–7. https://doi.org/10.1109/ICSENS.2016.7808750
Yuan, M., Cao, Z., Luo, J., & Chou, X. (2019). Recent developments of acoustic energy harvesting: A review. Micromachines, 10(1). https://doi.org/10.3390/mi10010048
Yunda, J. (2018). Bogotá es una de las ciudades con más densidad poblacional del mundo. El Tiempo. https://www.eltiempo.com/bogota/bogota-es-una-de-las-ciudades-con-mas-densidad-poblacional-del-mundo-240412
Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011
Zhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82(October 2016), 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Mecatrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Bogotá - Sur
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/0650ee07-43a5-4ffd-8d28-e2b887b3fb82/download
https://repositorio.uan.edu.co/bitstreams/32958fc0-ba1e-4a7c-a008-bbd4fb4ff0ad/download
https://repositorio.uan.edu.co/bitstreams/cf7dee4b-e031-4eb8-9827-d8976c8ecbfb/download
https://repositorio.uan.edu.co/bitstreams/a124ecae-1f03-48e2-b56d-7d43c52f4f66/download
https://repositorio.uan.edu.co/bitstreams/2264dd51-4de8-43b6-816a-29b0edd41d8f/download
https://repositorio.uan.edu.co/bitstreams/cfd12dd5-19bd-4476-a229-9585e5f75127/download
https://repositorio.uan.edu.co/bitstreams/4b8185a3-8a4f-4f8b-82de-2813889a632c/download
https://repositorio.uan.edu.co/bitstreams/90cbe554-ffca-4b5b-b76f-d6dd4ca8d0c8/download
https://repositorio.uan.edu.co/bitstreams/785fd5e8-b0d3-44e8-88ac-154507789d6f/download
bitstream.checksum.fl_str_mv 0dfe612e5b9cb0f75e4a97ad5514f796
4f7cdb58257770db47dcb1a4f636d9af
07469ac48129c53f23be32e43d8e0449
dd65805249d68ea862568f59102935ac
2e388663398085f69421c9e4c5fcf235
c71717605a2565d4e7f14b9dc7f0cf3d
7f97d00bb865c811e00a6075f9f6ee14
9b23013c31a9b4a1f21e8f24fcbe397e
0afd49b999acaea640fd82dcab196f8c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928330219913216
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Párraga Meneses, Manuel FernandoForero Briceño, Jonnathan JuliánSalazar Ibarra, José Álvaro2021-03-02T13:59:30Z2021-03-02T13:59:30Z2020-07-17http://repositorio.uan.edu.co/handle/123456789/2209Ahmadi, M. H., Ghazvini, M., Nazari, M. A., Ahmadi, M. A., Pourfayaz, F., Lorenzini, G., & Ming, T. (2019). Renewable energy harvesting with the application of nanotechnology: A review. International Journal of Energy Research, 43(4), 1387–1410. https://doi.org/10.1002/er.4282Alghisi, D., Ferrari, V., Ferrari, M., Crescini, D., Touati, F., & Mnaouer, A. B. (2017). Single- and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sensors and Actuators, A: Physical, 264, 234–246. https://doi.org/10.1016/j.sna.2017.07.027Aloulou, R., Lucas De Peslouan, P. O., Mnif, H., Alicalapa, F., Lan Sun Luk, J. D., & Loulou, M. (2016). A power management system for energy harvesting and wireless sensor networks application based on a novel charge pump circuit. International Journal of Electronics, 103(5), 841–852. https://doi.org/10.1080/00207217.2015.1072848Anjum, M. U., Fida, A., Ahmad, I., & Iftikhar, A. (2018). A broadband electromagnetic type energy harvester for smart sensor devices in biomedical applications. Sensors and Actuators, A: Physical, 277, 52–59. https://doi.org/10.1016/j.sna.2018.05.001Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(34), 1–41. https://doi.org/10.1002/adma.201707271Barroca, N., Saraiva, H. M., Gouveia, P. T., Tavares, J., Borges, L. M., Velez, F. J., Loss, C., Salvado, R., Pinho, P., Gonçalves, R., Borgescarvalho, N., Chavéz-Santiago, R., & Balasingham, I. (2013). Antennas and circuits for ambient RF energy harvesting in wireless body area networks. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 532–537. https://doi.org/10.1109/PIMRC.2013.6666194Batarseh, I., & Harb, A. (2017). Power Electronics: Circuit analysis and design. En Power Electronics: Circuit Analysis and Design. https://doi.org/10.1007/978-3-319-68366-9 Bizon, N., Tabatabaei, N. M., Blaabjerg, F., & Kurt, E. (2017). Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications. https://doi.org/10.1007/978-3-319-49875-1Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., de Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors (Switzerland), 14(3), 4755–4790. https://doi.org/10.3390/s140304755Camilo, C., & Restrepo, A. (2015). Orígenes de las Leyes de conservación como un principio unificador de las Ciencias Naturales. El caso de la invarianza de la energía en la físicaCan, A., Leclercq, L., Lelong, J., & Botteldooren, D. (2010). Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 71(8), 764–770. https://doi.org/10.1016/j.apacoust.2010.04.002Cansiz, M., Altinel, D., & Kurt, G. K. (2019). Efficiency in RF energy harvesting systems: A comprehensive review. Energy, 174, 292–309. https://doi.org/10.1016/j.energy.2019.02.100Chapman, S. J. (2014). Máquinas eléctricasChew, Z. J., & Zhu, M. (2015). Low power adaptive power management with energy aware interface for wireless sensor nodes powered using piezoelectric energy harvesting. 2015 IEEE SENSORS - Proceedings, 2–5. https://doi.org/10.1109/ICSENS.2015.7370663Daniels, A., Zhu, M., & Tiwari, A. (2013). Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 60(12), 2626–2633. https://doi.org/10.1109/TUFFC.2013.2861Díez, P. L., Gabilondo, I., Alarcón, E., & Moll, F. (2018). A Comprehensive Method to Taxonomize Mechanical Energy Harvesting Technologies. Proceedings - IEEE International Symposium on Circuits and Systems, 2018-May. https://doi.org/10.1109/ISCAS.2018.8350907Edy Susanto, M. (2019). Energy Harvesting Systems: Principles, Modeling and Applications. En Journal of Chemical Information and Modeling (Vol. 53, Número 9). https://doi.org/10.1017/CBO9781107415324.004Erturk, A., & Inman, D. J. (2011). Piezoelectric Energy Harvesting. En Piezoelectric Energy Harvesting. https://doi.org/10.1002/9781119991151Fraden, J. (2016). Handbook of Modern Sensors. En Handbook of Modern Sensors. https://doi.org/10.1007/978-3-319-19303-8Gautschi, G., 2013. Piezoelectric Sensorics. Springer.Gaynor, M., & Waterman, J. (2016). Design framework for sensors and RFID tags with healthcare applications. Health Policy and Technology, 5(4), 357–369. https://doi.org/10.1016/j.hlpt.2016.07.007Harrop, P., & Das, R. (2009). Energy Harvesting and Storage for Electronic Devices 2009-2019. IDTechEx. https://www.idtechex.com/en/research-report/energy-harvesting-and-storage-for-electronic-devices-2009-2019/217Hawkes, R. L., Iqbal, J., Mansour, F., Milner-Bolotin, M., & Williams, P. J. (2019). Physics for scientists and engineers: an interactive approach. NelsonHehn, T., & Manoli, Y. (2015). CMOS Circuits for Piezoelectric Energy Harvesters (Vol. 38). https://doi.org/10.1007/978-94-017-9288-2Heywang, W., Lubitz, K., & Wersing, W. (Eds.). (2008). Piezoelectricity: evolution and future of a technology (Vol. 114). Springer Science & Business MediaJamadar, V., Pingle, P., & Kanase, S. (2017). Possibility of harvesting Vibration energy from power producing devices: A review. International Conference on Automatic Control and Dynamic Optimization Techniques, ICACDOT 2016, 496–503. https://doi.org/10.1109/ICACDOT.2016.7877635Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(9), 1–4. https://doi.org/10.1038/nenergy.2016.141Karami, N., Moubayed, N., & Outbib, R. (2017). General review and classification of different MPPT Techniques. Renewable and Sustainable Energy Reviews, 68(July 2016), 1–18. https://doi.org/10.1016/j.rser.2016.09.132Kazimierczuk, M. K. (2016). Pulse-Width Modulated DC–DC Power ConvertersKhan, F. U., & Qadir, M. U. (2016). State-of-the-art in vibration-based electrostatic energy harvesting. Journal of Micromechanics and Microengineering, 26(10), 103001. https://doi.org/10.1088/0960-1317/26/10/103001Kinsler, L. E., Frey, A. R., & Mayer, W. G. (1963). Fundamentals of Acoustics. Physics Today, 16(8), 56–57. https://doi.org/10.1063/1.3051072Larsen, O. N., & Wahlberg, M. (2017). Sound and sound sources. Comparative bioacoustics: An overview, 3-60Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4). https://doi.org/10.1063/1.5074184Luo, F. L., & Ye, H. (2018). Power electronics: Advanced conversion technologies, second edition. En Power Electronics: Advanced Conversion Technologies, Second Edition. https://doi.org/10.1201/9781315186276Luo, X., Wang, J., Dooner, M., & Clarke, J. (2015). Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 137, 511–536. https://doi.org/10.1016/j.apenergy.2014.09.081Mohanty, A., Parida, S., Behera, R. K., & Roy, T. (2019). Vibration energy harvesting: A review. Journal of Advanced Dielectrics, 9(4). https://doi.org/10.1142/S2010135X19300019Mohapatra, A., Nayak, B., Das, P., & Mohanty, K. B. (2017). A review on MPPT techniques of PV system under partial shading condition. Renewable and Sustainable Energy Reviews, 80(February), 854–867. https://doi.org/10.1016/j.rser.2017.05.083Newnham, R. E. (1992). Piezoelectric sensors and actuators: smart materials. En Proceedings of the Annual Frequency Control Symposium. https://doi.org/10.1109/freq.1992.269973Nikolaev, V. A., Sieler, J., Nikolaev, V. V., Rodina, L. L., & Schulze, B. (2001). O-alkylation of amide carbonyl group with Diazo compounds: A new way for functionalizing saccharin and its analogs. En Russian Journal of Organic Chemistry (Vol. 37, Número 8). https://doi.org/10.1023/A:1013117120223Noh, S., Lee, H., & Choi, B. (2013). A study on the acoustic energy harvesting with Helmholtz resonator and piezoelectric cantilevers. International Journal of Precision Engineering and Manufacturing, 14(9), 1629–1635. https://doi.org/10.1007/s12541-013-0220-xNoticias ONU. (2018). Las ciudades seguirán creciendo, sobre todo en los países en desarrollo. ONU DAES Naciones Unidas Departamento de Asuntos Económicos y Sociales. https://www.un.org/development/desa/es/news/population/2018-world-urbanization-prospects.htmlObidike, I., Nwabueze, C., Onwuzuruike, K., & Onuzulike, C. V. (2019). Energy Harvester : Alternative Source for Powering Electronic Devices. March, 53–57Ogunniyi, E. O., & Pienaar, H. C. V. Z. (2017). Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications. Proceedings of the 25th Conference on the Domestic Use of Energy, DUE 2017, April, 233–239. https://doi.org/10.23919/DUE.2017.7931849Pillai, M. A., & Ezhilarasi, D. (2016). Improved Acoustic Energy Harvester Using Tapered Neck Helmholtz Resonator and Piezoelectric Cantilever Undergoing Concurrent Bending and Twisting. Procedia Engineering, 144, 674–681. https://doi.org/10.1016/j.proeng.2016.05.065Prauzek, M., Konecny, J., Borova, M., Janosova, K., Hlavica, J., & Musilek, P. (2018). Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors (Switzerland), 18(8). https://doi.org/10.3390/s18082446Rossell Turull; Ivana; Soler Rocasalbas; Sergi; Vila Deutschbein. (2005). Resonadores de helmholtz de boca rectangular y cuello de longitud pequeña. 1–7. http://www.sea-acustica.es/fileadmin/publicaciones/Terrassa05_AFS004.pdfRuido - Secretaria Distrital de Ambiente. (2014). http://ambientebogota.gov.co/ruidoRupitsch, S. J. (2018). Piezoelectric Sensors and Actuators. Springer-Verlag Berlin Heidelberg, HeidelbergSarker, M. R., Julai, S., Sabri, M. F. M., Said, S. M., Islam, M. M., & Tahir, M. (2019). Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. En Sensors and Actuators, A: Physical (Vol. 300). Elsevier B.V. https://doi.org/10.1016/j.sna.2019.111634Serhan, H. A., & Ahmed, E. M. (2018). Effect of the different charging techniques on battery life-time: Review. Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, 2018-March, 421–426. https://doi.org/10.1109/ITCE.2018.8316661Shaikh, F. K., & Zeadally, S. (2016). Energy harvesting in wireless sensor networks: A comprehensive review. Renewable and Sustainable Energy Reviews, 55, 1041–1054. https://doi.org/10.1016/j.rser.2015.11.010Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, 15(6), 1499–1512. https://doi.org/10.1088/0964-1726/15/6/001Simpson, C. (2011). Linear and Switching Voltage Reglator Fundamental part 1. 31. http://www.ti.com/lit/an/snva559/snva559.pdfSpv, T. (2018). Ultralow power energy harvester and battery charger VFQFPN 3 x 3 x 1 mm 20L Die form. May, 1–36Tichý, J., Erhart, J., Kittinger, E., & Privratska, J. (2010). Fundamentals of piezoelectric sensorics: mechanical, dielectric, and thermodynamical properties of piezoelectric materials. Springer Science & Business MediaTran, L. G., Cha, H. K., & Park, W. T. (2017). RF power harvesting: a review on designing methodologies and applications. Micro and Nano Systems Letters, 5(1). https://doi.org/10.1186/s40486-017-0051-0Turkmen, A. C., & Celik, C. (2018). Energy harvesting with the piezoelectric material integrated shoe. Energy, 150, 556–564. https://doi.org/10.1016/j.energy.2017.12.159Wang, Y., Zhu, X., Zhang, T., Bano, S., Pan, H., Qi, L., Zhang, Z., & Yuan, Y. (2018). A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film. https://doi.org/10.1016/j.apenergy.2018.08.080Wang, Z. L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Materials Today, 20(2), 74–82. https://doi.org/10.1016/j.mattod.2016.12.001Wei, C., & Jing, X. (2017). A comprehensive review on vibration energy harvesting: Modelling and realization. Renewable and Sustainable Energy Reviews, 74(January), 1–18. https://doi.org/10.1016/j.rser.2017.01.073Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515aYang, J. (2005). An introduction to the theory of piezoelectricity (Vol. 9). New York: SpringerYu, H., & Wu, H. (2017). Design of power management ASIC for piezoelectric energy harvester. Proceedings of IEEE Sensors, 5–7. https://doi.org/10.1109/ICSENS.2016.7808750Yuan, M., Cao, Z., Luo, J., & Chou, X. (2019). Recent developments of acoustic energy harvesting: A review. Micromachines, 10(1). https://doi.org/10.3390/mi10010048Yunda, J. (2018). Bogotá es una de las ciudades con más densidad poblacional del mundo. El Tiempo. https://www.eltiempo.com/bogota/bogota-es-una-de-las-ciudades-con-mas-densidad-poblacional-del-mundo-240412Zakeri, B., & Syri, S. (2015). Electrical energy storage systems: A comparative life cycle cost analysis. Renewable and Sustainable Energy Reviews, 42, 569–596. https://doi.org/10.1016/j.rser.2014.10.011Zhou, M., Al-Furjan, M. S. H., Zou, J., & Liu, W. (2018). A review on heat and mechanical energy harvesting from human – Principles, prototypes and perspectives. Renewable and Sustainable Energy Reviews, 82(October 2016), 3582–3609. https://doi.org/10.1016/j.rser.2017.10.102instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Energy harvesting coming from the environment generally from unused sources is essential in a society with growing energy demand. In most cases, these sources have limited amounts of energy, which can be used in low-power devices and limited access areas. As a solution to this type of problem, technologies capable of taking advantage of this energy are developed, thanks to the creation of self-powered systems that also have a better impact on the environment. Entering in this technology two devices are postulated, the SPV1050 and the ADP5091, capable of storing, managing, and supplying the energy collected by specific transducers: photovoltaic cells and piezoelectric sensors. Simultaneously, the behavior of an acoustic energy harvester is analyzed. From its simulation in the Ansys CAE tool, solving the problem in a decoupled way, the modal response of a Helmholtz resonator with the hexagonal section is obtained. Likewise, the modal and voltage response of the series bimorph piezoelectric cantilever beam is achieved. The analysis carried out has the purpose of finding the behavior of the collection system for future implementation, making use of some of the proposed management systems.La recolección de energía proveniente del ambiente generalmente de fuentes no utilizadas se hace indispensable en una sociedad con una creciente demanda energética. En la mayoría de casos estas fuentes presentan cantidades limitadas de energía, que puede ser usada en dispositivos de bajo consumo y en áreas con acceso limitado. Como solución a este tipo de problemas se desarrollan tecnologías capaces de aprovechar esta energía, gracias a la creación de sistemas autoalimentados que además presentan un mejor impacto en el ambiente. Incursionando en esta tecnología se postulan dos dispositivos, como lo son el SPV1050 y el ADP5091, capaces de almacenar, gestionar, y suministrar la energía recolectada por transductores específicos: celdas fotovoltaicas y sensores piezoeléctricos. En simultáneo, se analiza el comportamiento de un recolector de energía acústico. A partir de su simulación en la herramienta CAE de Ansys, resolviendo el problema de forma desacoplada, se obtiene la respuesta modal de un resonador Helmholtz con sección hexagonal. Así mismo, se consigue la respuesta modal y en voltaje del voladizo piezoeléctrico bimorfo en serie. El análisis realizado tiene la finalidad de encontrar el comportamiento del sistema de recolección para una implementación futura, haciendo uso de alguno de los sistemas de gestión propuestos.Ingeniero(a) Mecatrónico(a)PregradoCosto total del proyecto $1.200.000. Financiación propia $280.000. Financiación UAN $920.000.PresencialspaUniversidad Antonio NariñoIngeniería MecatrónicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaBogotá - SurEnergíaRecolección de energíaGestión de energíaSistemas autoalimentadosGenerador piezoeléctricoViga en voladizoVibraciónEnergyEnergy harvestingPower managamentSelf-powered systemsPiezoelectric generatorCantilever beamVibrationSistema de recolección de energía proveniente del ambiente utilizando un sensor piezoeléctricoTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020JonnathanJuliánForeroBriceño.pdf2020JonnathanJuliánForeroBriceño.pdfTrabajo de gradoapplication/pdf7360991https://repositorio.uan.edu.co/bitstreams/0650ee07-43a5-4ffd-8d28-e2b887b3fb82/download0dfe612e5b9cb0f75e4a97ad5514f796MD512020AutorizacióndeAutores.pdf2020AutorizacióndeAutores.pdfAutorización de primer autorapplication/pdf302113https://repositorio.uan.edu.co/bitstreams/32958fc0-ba1e-4a7c-a008-bbd4fb4ff0ad/download4f7cdb58257770db47dcb1a4f636d9afMD522020AutorizacióndeAutores.pdf2020AutorizacióndeAutores.pdfAutorización de primer autorapplication/pdf321459https://repositorio.uan.edu.co/bitstreams/cf7dee4b-e031-4eb8-9827-d8976c8ecbfb/download07469ac48129c53f23be32e43d8e0449MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://repositorio.uan.edu.co/bitstreams/a124ecae-1f03-48e2-b56d-7d43c52f4f66/downloaddd65805249d68ea862568f59102935acMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/2264dd51-4de8-43b6-816a-29b0edd41d8f/download2e388663398085f69421c9e4c5fcf235MD58TEXT2020JonnathanJuliánForeroBriceño.pdf.txt2020JonnathanJuliánForeroBriceño.pdf.txtExtracted texttext/plain105262https://repositorio.uan.edu.co/bitstreams/cfd12dd5-19bd-4476-a229-9585e5f75127/downloadc71717605a2565d4e7f14b9dc7f0cf3dMD592020AutorizacióndeAutores.pdf.txt2020AutorizacióndeAutores.pdf.txtExtracted texttext/plain3582https://repositorio.uan.edu.co/bitstreams/4b8185a3-8a4f-4f8b-82de-2813889a632c/download7f97d00bb865c811e00a6075f9f6ee14MD511THUMBNAIL2020JonnathanJuliánForeroBriceño.pdf.jpg2020JonnathanJuliánForeroBriceño.pdf.jpgGenerated Thumbnailimage/jpeg9432https://repositorio.uan.edu.co/bitstreams/90cbe554-ffca-4b5b-b76f-d6dd4ca8d0c8/download9b23013c31a9b4a1f21e8f24fcbe397eMD5102020AutorizacióndeAutores.pdf.jpg2020AutorizacióndeAutores.pdf.jpgGenerated Thumbnailimage/jpeg18181https://repositorio.uan.edu.co/bitstreams/785fd5e8-b0d3-44e8-88ac-154507789d6f/download0afd49b999acaea640fd82dcab196f8cMD512123456789/2209oai:repositorio.uan.edu.co:123456789/22092024-10-09 22:54:06.251https://creativecommons.org/licenses/by-nc/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==