Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.

Zika, dengue and chikungunya viruses are implicated in emerging and re-emerging epidemics in tropical and subtropical countries such as Colombia, becoming a public health problem, with a negative impact on the quality of life of the population due to the morbidity and mortality associated with their...

Full description

Autores:
Cuéllar Quimbaya, Andrés Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/7967
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/7967
Palabra clave:
Arbovirus
Zika
Dengue
Chikungunya
Antiviral
T 40.23 C967d
Arbovirus
Zika
Dengue
Chikungunya
Antiviral
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_274b634e3a1f79e8b6dda4da4205a909
oai_identifier_str oai:repositorio.uan.edu.co:123456789/7967
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
title Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
spellingShingle Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
Arbovirus
Zika
Dengue
Chikungunya
Antiviral
T 40.23 C967d
Arbovirus
Zika
Dengue
Chikungunya
Antiviral
title_short Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
title_full Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
title_fullStr Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
title_full_unstemmed Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
title_sort Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
dc.creator.fl_str_mv Cuéllar Quimbaya, Andrés Felipe
dc.contributor.advisor.spa.fl_str_mv Losada Barragán, Mónica
Upegui Zapata, Yulieth Alexandra
dc.contributor.author.spa.fl_str_mv Cuéllar Quimbaya, Andrés Felipe
dc.subject.es_ES.fl_str_mv Arbovirus
Zika
Dengue
Chikungunya
Antiviral
topic Arbovirus
Zika
Dengue
Chikungunya
Antiviral
T 40.23 C967d
Arbovirus
Zika
Dengue
Chikungunya
Antiviral
dc.subject.ddc.es_ES.fl_str_mv T 40.23 C967d
dc.subject.keyword.es_ES.fl_str_mv Arbovirus
Zika
Dengue
Chikungunya
Antiviral
description Zika, dengue and chikungunya viruses are implicated in emerging and re-emerging epidemics in tropical and subtropical countries such as Colombia, becoming a public health problem, with a negative impact on the quality of life of the population due to the morbidity and mortality associated with their sequelae. Today there is no specific antiviral treatment, only for dengue there is a vaccine whose efficacy is not clear. This makes the development of therapeutic agents essential. Plants are a key point in the search for new molecules with potential biological action since their compounds have medicinal properties. Marcetia taxifolia is a shrub of the Melastomataceae family, for which secondary metabolites have been described with in vitro antiviral activity against the human immunodeficiency virus type 1. Preclinical evaluations of potential antivirals require reliable and reproducible methods. For this reason, an RTqPCR method was standardized for the detection and quantification of viral RNA from cell cultures, with efficiencies of 100.6%, 99.63% and 100.8%, for chikungunya, zika and dengue-2, respectively. BHK-21 was selected as the cell line that allows greater viral replication of clinical isolates compared to Vero. Additionally, the antiviral activity of derivatives of the extract of Marcetia taxifolia myricetin3-rhamnoside and myricetin-3-(6-rhamnogalactoside) was evaluated in the developed in vitro model, obtaining that the two compounds presented promising EC50 < 50µg/mL against the three viruses, on the other hand the lower effectiveness of myricetin-3-(6-rhamnogalactoside) in the case of chikungunya and zika. These data provide the first evidence for the in vitro anti-chikungunya, anti-Zika and antidengue-2 activity of myricetin-3-rhamnoside and myricetin-3-(6-rhamnogalactoside).
publishDate 2022
dc.date.issued.spa.fl_str_mv 2022-11-18
dc.date.accessioned.none.fl_str_mv 2023-04-15T16:32:10Z
dc.date.available.none.fl_str_mv 2023-04-15T16:32:10Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/7967
dc.identifier.bibliographicCitation.spa.fl_str_mv Álvarez-Díaz, D. A., Quintero, P. A., Peláez-Carvajal, D., Ajami, N. J., & Usme-Ciro, J. A. (2019). Novel panserotype control RNA for dengue virus typing through real-time reverse transcription-polymerase chain reaction. Journal of Virological Methods, 271. https://doi.org/10.1016/j.jviromet.2019.113677
Álvarez-Díaz, D. A., Valencia-Álvarez, E., Rivera, J. A., Rengifo, A. C., Usme-Ciro, J. A., Peláez-Carvajal, D., Lozano-Jiménez, Y. Y., & Torres-Fernández, O. (2021a). An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. Infection, Genetics and Evolution, 93. https://doi.org/10.1016/j.meegid.2021.104967
Alvis-Zakzuk, N. J., Díaz-Jiménez, D., Castillo-Rodríguez, L., Castañeda-Orjuela, C., Paternina-Caicedo, Á., Pinzón-Redondo, H., Carrasquilla-Sotomayor, M., Alvis-Guzmán, N., & De La Hoz-Restrepo, F. (2018). Economic Costs of Chikungunya Virus in Colombia. Value in Health Regional Issues, 17(51), 32–37. https://doi.org/10.1016/j.vhri.2018.01.004
Baptista, J., Chávez, K., Torrico, F., Trejo, E., Garcia, C. C., Urbina, J., Carrasco, J., Taddei, A., Tillett, S., & Suárez, A. I. (2016). Constituyentes químicos y actividad antiinflamatoria de Marcetia taxifolia. In Scientific Journal from the Experimental Faculty of Sciences, at the Universidad del Zulia (Vol. 24). Abril-Junio.
Begum, F., Das, S., Mukherjee, D., Mal, S., & Ray, U. (2019). Insight into the tropism of dengue virus in humans. In Viruses (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/v11121136
Behl, T., Rocchetti, G., Chadha, S., Zengin, G., Bungau, S., Kumar, A., Mehta, V., Uddin, M. S., Khullar, G., Setia, D., Arora, S., Sinan, K. I., Ak, G., Putnik, P., Gallo, M., & Montesano, D. (2021). Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals, 14(4). https://doi.org/10.3390/ph14040381
Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007
Brinton, M. A., & Basu, M. (2015). Functions of the 3’ and 5’ genome RNA regions of members of the genus Flavivirus. Virus Research, 206, 108–119. https://doi.org/10.1016/j.virusres.2015.02.006
Buendia-Atencio, C., Pieffet, G. P., Montoya-Vargas, S., Martínez Bernal, J. A., Rangel, H. R., Muñoz, A. L., Losada-Barragán, M., Segura, N. A., Torres, O. A., Bello, F., Suárez, A. I., & Rodríguez, A. K. (2021). Inverse Molecular Docking Study of NS3-Helicase and NS5-RNA Polymerase of Zika Virus as Possible Therapeutic Targets of Ligands Derived from Marcetia taxifolia and Its Imp
Carabali, M., Jaramillo, G.-I., Rivera, V., Restrepo, B. N., Zinser, K., & gloria.jaramillor@campusucc.edu.co. (2019). Biomedica : revista del Instituto Nacional de Salud. In XVII Congreso Colombiano de Parasitología y Medicina Tropical. Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Villavicencio. https://repository.ucc.edu.co/handle/20.500.12494/18362
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/7967
identifier_str_mv Álvarez-Díaz, D. A., Quintero, P. A., Peláez-Carvajal, D., Ajami, N. J., & Usme-Ciro, J. A. (2019). Novel panserotype control RNA for dengue virus typing through real-time reverse transcription-polymerase chain reaction. Journal of Virological Methods, 271. https://doi.org/10.1016/j.jviromet.2019.113677
Álvarez-Díaz, D. A., Valencia-Álvarez, E., Rivera, J. A., Rengifo, A. C., Usme-Ciro, J. A., Peláez-Carvajal, D., Lozano-Jiménez, Y. Y., & Torres-Fernández, O. (2021a). An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. Infection, Genetics and Evolution, 93. https://doi.org/10.1016/j.meegid.2021.104967
Alvis-Zakzuk, N. J., Díaz-Jiménez, D., Castillo-Rodríguez, L., Castañeda-Orjuela, C., Paternina-Caicedo, Á., Pinzón-Redondo, H., Carrasquilla-Sotomayor, M., Alvis-Guzmán, N., & De La Hoz-Restrepo, F. (2018). Economic Costs of Chikungunya Virus in Colombia. Value in Health Regional Issues, 17(51), 32–37. https://doi.org/10.1016/j.vhri.2018.01.004
Baptista, J., Chávez, K., Torrico, F., Trejo, E., Garcia, C. C., Urbina, J., Carrasco, J., Taddei, A., Tillett, S., & Suárez, A. I. (2016). Constituyentes químicos y actividad antiinflamatoria de Marcetia taxifolia. In Scientific Journal from the Experimental Faculty of Sciences, at the Universidad del Zulia (Vol. 24). Abril-Junio.
Begum, F., Das, S., Mukherjee, D., Mal, S., & Ray, U. (2019). Insight into the tropism of dengue virus in humans. In Viruses (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/v11121136
Behl, T., Rocchetti, G., Chadha, S., Zengin, G., Bungau, S., Kumar, A., Mehta, V., Uddin, M. S., Khullar, G., Setia, D., Arora, S., Sinan, K. I., Ak, G., Putnik, P., Gallo, M., & Montesano, D. (2021). Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals, 14(4). https://doi.org/10.3390/ph14040381
Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007
Brinton, M. A., & Basu, M. (2015). Functions of the 3’ and 5’ genome RNA regions of members of the genus Flavivirus. Virus Research, 206, 108–119. https://doi.org/10.1016/j.virusres.2015.02.006
Buendia-Atencio, C., Pieffet, G. P., Montoya-Vargas, S., Martínez Bernal, J. A., Rangel, H. R., Muñoz, A. L., Losada-Barragán, M., Segura, N. A., Torres, O. A., Bello, F., Suárez, A. I., & Rodríguez, A. K. (2021). Inverse Molecular Docking Study of NS3-Helicase and NS5-RNA Polymerase of Zika Virus as Possible Therapeutic Targets of Ligands Derived from Marcetia taxifolia and Its Imp
Carabali, M., Jaramillo, G.-I., Rivera, V., Restrepo, B. N., Zinser, K., & gloria.jaramillor@campusucc.edu.co. (2019). Biomedica : revista del Instituto Nacional de Salud. In XVII Congreso Colombiano de Parasitología y Medicina Tropical. Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Villavicencio. https://repository.ucc.edu.co/handle/20.500.12494/18362
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/52231852-934d-46d0-ac47-ecefd3aef240/download
https://repositorio.uan.edu.co/bitstreams/e30f1b15-ea6e-4ffc-b996-d900fd1b4c5a/download
https://repositorio.uan.edu.co/bitstreams/af012a37-4dfb-4b9e-8b33-527a9e7f80e6/download
https://repositorio.uan.edu.co/bitstreams/56cc9b80-2ebf-4e65-92d6-cd931aa037b7/download
bitstream.checksum.fl_str_mv 329d201f542f4f9b4061c9179e6dac5b
2ca38a89b7aec906004c14ff744e530f
462ca62585a400d33e24c12086c7632a
9868ccc48a14c8d591352b6eaf7f6239
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928349933142016
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Losada Barragán, MónicaUpegui Zapata, Yulieth AlexandraCuéllar Quimbaya, Andrés Felipe118217225192023-04-15T16:32:10Z2023-04-15T16:32:10Z2022-11-18http://repositorio.uan.edu.co/handle/123456789/7967Álvarez-Díaz, D. A., Quintero, P. A., Peláez-Carvajal, D., Ajami, N. J., & Usme-Ciro, J. A. (2019). Novel panserotype control RNA for dengue virus typing through real-time reverse transcription-polymerase chain reaction. Journal of Virological Methods, 271. https://doi.org/10.1016/j.jviromet.2019.113677Álvarez-Díaz, D. A., Valencia-Álvarez, E., Rivera, J. A., Rengifo, A. C., Usme-Ciro, J. A., Peláez-Carvajal, D., Lozano-Jiménez, Y. Y., & Torres-Fernández, O. (2021a). An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. Infection, Genetics and Evolution, 93. https://doi.org/10.1016/j.meegid.2021.104967Alvis-Zakzuk, N. J., Díaz-Jiménez, D., Castillo-Rodríguez, L., Castañeda-Orjuela, C., Paternina-Caicedo, Á., Pinzón-Redondo, H., Carrasquilla-Sotomayor, M., Alvis-Guzmán, N., & De La Hoz-Restrepo, F. (2018). Economic Costs of Chikungunya Virus in Colombia. Value in Health Regional Issues, 17(51), 32–37. https://doi.org/10.1016/j.vhri.2018.01.004Baptista, J., Chávez, K., Torrico, F., Trejo, E., Garcia, C. C., Urbina, J., Carrasco, J., Taddei, A., Tillett, S., & Suárez, A. I. (2016). Constituyentes químicos y actividad antiinflamatoria de Marcetia taxifolia. In Scientific Journal from the Experimental Faculty of Sciences, at the Universidad del Zulia (Vol. 24). Abril-Junio.Begum, F., Das, S., Mukherjee, D., Mal, S., & Ray, U. (2019). Insight into the tropism of dengue virus in humans. In Viruses (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/v11121136Behl, T., Rocchetti, G., Chadha, S., Zengin, G., Bungau, S., Kumar, A., Mehta, V., Uddin, M. S., Khullar, G., Setia, D., Arora, S., Sinan, K. I., Ak, G., Putnik, P., Gallo, M., & Montesano, D. (2021). Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals, 14(4). https://doi.org/10.3390/ph14040381Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007Brinton, M. A., & Basu, M. (2015). Functions of the 3’ and 5’ genome RNA regions of members of the genus Flavivirus. Virus Research, 206, 108–119. https://doi.org/10.1016/j.virusres.2015.02.006Buendia-Atencio, C., Pieffet, G. P., Montoya-Vargas, S., Martínez Bernal, J. A., Rangel, H. R., Muñoz, A. L., Losada-Barragán, M., Segura, N. A., Torres, O. A., Bello, F., Suárez, A. I., & Rodríguez, A. K. (2021). Inverse Molecular Docking Study of NS3-Helicase and NS5-RNA Polymerase of Zika Virus as Possible Therapeutic Targets of Ligands Derived from Marcetia taxifolia and Its ImpCarabali, M., Jaramillo, G.-I., Rivera, V., Restrepo, B. N., Zinser, K., & gloria.jaramillor@campusucc.edu.co. (2019). Biomedica : revista del Instituto Nacional de Salud. In XVII Congreso Colombiano de Parasitología y Medicina Tropical. Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Villavicencio. https://repository.ucc.edu.co/handle/20.500.12494/18362instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Zika, dengue and chikungunya viruses are implicated in emerging and re-emerging epidemics in tropical and subtropical countries such as Colombia, becoming a public health problem, with a negative impact on the quality of life of the population due to the morbidity and mortality associated with their sequelae. Today there is no specific antiviral treatment, only for dengue there is a vaccine whose efficacy is not clear. This makes the development of therapeutic agents essential. Plants are a key point in the search for new molecules with potential biological action since their compounds have medicinal properties. Marcetia taxifolia is a shrub of the Melastomataceae family, for which secondary metabolites have been described with in vitro antiviral activity against the human immunodeficiency virus type 1. Preclinical evaluations of potential antivirals require reliable and reproducible methods. For this reason, an RTqPCR method was standardized for the detection and quantification of viral RNA from cell cultures, with efficiencies of 100.6%, 99.63% and 100.8%, for chikungunya, zika and dengue-2, respectively. BHK-21 was selected as the cell line that allows greater viral replication of clinical isolates compared to Vero. Additionally, the antiviral activity of derivatives of the extract of Marcetia taxifolia myricetin3-rhamnoside and myricetin-3-(6-rhamnogalactoside) was evaluated in the developed in vitro model, obtaining that the two compounds presented promising EC50 < 50µg/mL against the three viruses, on the other hand the lower effectiveness of myricetin-3-(6-rhamnogalactoside) in the case of chikungunya and zika. These data provide the first evidence for the in vitro anti-chikungunya, anti-Zika and antidengue-2 activity of myricetin-3-rhamnoside and myricetin-3-(6-rhamnogalactoside).Los virus zika, dengue y chikungunya están implicados en epidemias emergentes y reemergentes en países tropicales y subtropicales como Colombia, convirtiéndose en un problema de salud pública, con impacto negativo en la calidad de vida de la población debido a la morbimortalidad asociadas a sus secuelas. Hoy en día no existe un tratamiento antiviral específico, solo para dengue se cuenta con una vacuna de la cual no se tiene claridad en su eficacia. Lo que hace primordial el desarrollo de agentes terapéuticos. Las plantas son un punto clave en la búsqueda de nuevas moléculas con potencial acción biológica, ya que sus compuestos tienen propiedades medicinales, Marcetia taxifolia es un arbusto de la familia Melastomataceae, para la cual se han descrito metabolitos secundarios con actividad antiviral in vitro contra el virus de inmunodeficiencia humana tipo 1. Las evaluaciones preclínicas de potenciales antivirales requieren métodos confiables y reproducibles. Por ello se estandarizó un método de RTqPCR para la detección y cuantificación de ARN viral a partir de cultivos celulares, con eficiencias del 100.6%, 99.63% y 100.8% , para chikungunya, zika y dengue-2 respectivamente. Se seleccionó BHK21 como la linea celular que permite mayor replicacion viral de los aislamientos clinicos respecto a Vero. Adicionalmente, la actividad antiviral de derivados del extracto de Marcetia taxifolia miricetina3-ramnósido y miricetina-3-(6-ramnogalactosido) se evaluó en el modelo in vitro desarrollado, obteniendo que los dos compuestos presentaron CE50 promisorias < 50µg/mL contra los tres virus, por otro lado la menor efectividad de dio con miricetina-3-(6-ramnogalactosido) en el caso de chikungunya y zika. Estos datos proporcionan la primera evidencia de la actividad anti-chikungunya, anti-zika y antidengue-2 in vitro de miricetina-3-ramnósido y miricetina-3-(6-ramnogalactosido).Bioquímico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarArbovirusZikaDengueChikungunyaAntiviralT 40.23 C967dArbovirusZikaDengueChikungunyaAntiviralDeterminación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_AndrésFelipeCuéllarQuimbaya.pdf2023_AndrésFelipeCuéllarQuimbaya.pdfapplication/pdf750465https://repositorio.uan.edu.co/bitstreams/52231852-934d-46d0-ac47-ecefd3aef240/download329d201f542f4f9b4061c9179e6dac5bMD512023_AndrésFelipeCuéllarQuimbaya_Acta.pdf2023_AndrésFelipeCuéllarQuimbaya_Acta.pdfapplication/pdf122997https://repositorio.uan.edu.co/bitstreams/e30f1b15-ea6e-4ffc-b996-d900fd1b4c5a/download2ca38a89b7aec906004c14ff744e530fMD522023_AndrésFelipeCuéllarQuimbaya_Autorización.pdf2023_AndrésFelipeCuéllarQuimbaya_Autorización.pdfapplication/pdf613091https://repositorio.uan.edu.co/bitstreams/af012a37-4dfb-4b9e-8b33-527a9e7f80e6/download462ca62585a400d33e24c12086c7632aMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/56cc9b80-2ebf-4e65-92d6-cd931aa037b7/download9868ccc48a14c8d591352b6eaf7f6239MD54123456789/7967oai:repositorio.uan.edu.co:123456789/79672024-10-09 23:05:36.678https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co