Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.
Zika, dengue and chikungunya viruses are implicated in emerging and re-emerging epidemics in tropical and subtropical countries such as Colombia, becoming a public health problem, with a negative impact on the quality of life of the population due to the morbidity and mortality associated with their...
- Autores:
-
Cuéllar Quimbaya, Andrés Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Antonio Nariño
- Repositorio:
- Repositorio UAN
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uan.edu.co:123456789/7967
- Acceso en línea:
- http://repositorio.uan.edu.co/handle/123456789/7967
- Palabra clave:
- Arbovirus
Zika
Dengue
Chikungunya
Antiviral
T 40.23 C967d
Arbovirus
Zika
Dengue
Chikungunya
Antiviral
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id |
UAntonioN2_274b634e3a1f79e8b6dda4da4205a909 |
---|---|
oai_identifier_str |
oai:repositorio.uan.edu.co:123456789/7967 |
network_acronym_str |
UAntonioN2 |
network_name_str |
Repositorio UAN |
repository_id_str |
|
dc.title.es_ES.fl_str_mv |
Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue. |
title |
Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue. |
spellingShingle |
Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue. Arbovirus Zika Dengue Chikungunya Antiviral T 40.23 C967d Arbovirus Zika Dengue Chikungunya Antiviral |
title_short |
Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue. |
title_full |
Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue. |
title_fullStr |
Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue. |
title_full_unstemmed |
Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue. |
title_sort |
Determinación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue. |
dc.creator.fl_str_mv |
Cuéllar Quimbaya, Andrés Felipe |
dc.contributor.advisor.spa.fl_str_mv |
Losada Barragán, Mónica Upegui Zapata, Yulieth Alexandra |
dc.contributor.author.spa.fl_str_mv |
Cuéllar Quimbaya, Andrés Felipe |
dc.subject.es_ES.fl_str_mv |
Arbovirus Zika Dengue Chikungunya Antiviral |
topic |
Arbovirus Zika Dengue Chikungunya Antiviral T 40.23 C967d Arbovirus Zika Dengue Chikungunya Antiviral |
dc.subject.ddc.es_ES.fl_str_mv |
T 40.23 C967d |
dc.subject.keyword.es_ES.fl_str_mv |
Arbovirus Zika Dengue Chikungunya Antiviral |
description |
Zika, dengue and chikungunya viruses are implicated in emerging and re-emerging epidemics in tropical and subtropical countries such as Colombia, becoming a public health problem, with a negative impact on the quality of life of the population due to the morbidity and mortality associated with their sequelae. Today there is no specific antiviral treatment, only for dengue there is a vaccine whose efficacy is not clear. This makes the development of therapeutic agents essential. Plants are a key point in the search for new molecules with potential biological action since their compounds have medicinal properties. Marcetia taxifolia is a shrub of the Melastomataceae family, for which secondary metabolites have been described with in vitro antiviral activity against the human immunodeficiency virus type 1. Preclinical evaluations of potential antivirals require reliable and reproducible methods. For this reason, an RTqPCR method was standardized for the detection and quantification of viral RNA from cell cultures, with efficiencies of 100.6%, 99.63% and 100.8%, for chikungunya, zika and dengue-2, respectively. BHK-21 was selected as the cell line that allows greater viral replication of clinical isolates compared to Vero. Additionally, the antiviral activity of derivatives of the extract of Marcetia taxifolia myricetin3-rhamnoside and myricetin-3-(6-rhamnogalactoside) was evaluated in the developed in vitro model, obtaining that the two compounds presented promising EC50 < 50µg/mL against the three viruses, on the other hand the lower effectiveness of myricetin-3-(6-rhamnogalactoside) in the case of chikungunya and zika. These data provide the first evidence for the in vitro anti-chikungunya, anti-Zika and antidengue-2 activity of myricetin-3-rhamnoside and myricetin-3-(6-rhamnogalactoside). |
publishDate |
2022 |
dc.date.issued.spa.fl_str_mv |
2022-11-18 |
dc.date.accessioned.none.fl_str_mv |
2023-04-15T16:32:10Z |
dc.date.available.none.fl_str_mv |
2023-04-15T16:32:10Z |
dc.type.spa.fl_str_mv |
Trabajo de grado (Pregrado y/o Especialización) |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://repositorio.uan.edu.co/handle/123456789/7967 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Álvarez-Díaz, D. A., Quintero, P. A., Peláez-Carvajal, D., Ajami, N. J., & Usme-Ciro, J. A. (2019). Novel panserotype control RNA for dengue virus typing through real-time reverse transcription-polymerase chain reaction. Journal of Virological Methods, 271. https://doi.org/10.1016/j.jviromet.2019.113677 Álvarez-Díaz, D. A., Valencia-Álvarez, E., Rivera, J. A., Rengifo, A. C., Usme-Ciro, J. A., Peláez-Carvajal, D., Lozano-Jiménez, Y. Y., & Torres-Fernández, O. (2021a). An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. Infection, Genetics and Evolution, 93. https://doi.org/10.1016/j.meegid.2021.104967 Alvis-Zakzuk, N. J., Díaz-Jiménez, D., Castillo-Rodríguez, L., Castañeda-Orjuela, C., Paternina-Caicedo, Á., Pinzón-Redondo, H., Carrasquilla-Sotomayor, M., Alvis-Guzmán, N., & De La Hoz-Restrepo, F. (2018). Economic Costs of Chikungunya Virus in Colombia. Value in Health Regional Issues, 17(51), 32–37. https://doi.org/10.1016/j.vhri.2018.01.004 Baptista, J., Chávez, K., Torrico, F., Trejo, E., Garcia, C. C., Urbina, J., Carrasco, J., Taddei, A., Tillett, S., & Suárez, A. I. (2016). Constituyentes químicos y actividad antiinflamatoria de Marcetia taxifolia. In Scientific Journal from the Experimental Faculty of Sciences, at the Universidad del Zulia (Vol. 24). Abril-Junio. Begum, F., Das, S., Mukherjee, D., Mal, S., & Ray, U. (2019). Insight into the tropism of dengue virus in humans. In Viruses (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/v11121136 Behl, T., Rocchetti, G., Chadha, S., Zengin, G., Bungau, S., Kumar, A., Mehta, V., Uddin, M. S., Khullar, G., Setia, D., Arora, S., Sinan, K. I., Ak, G., Putnik, P., Gallo, M., & Montesano, D. (2021). Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals, 14(4). https://doi.org/10.3390/ph14040381 Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007 Brinton, M. A., & Basu, M. (2015). Functions of the 3’ and 5’ genome RNA regions of members of the genus Flavivirus. Virus Research, 206, 108–119. https://doi.org/10.1016/j.virusres.2015.02.006 Buendia-Atencio, C., Pieffet, G. P., Montoya-Vargas, S., Martínez Bernal, J. A., Rangel, H. R., Muñoz, A. L., Losada-Barragán, M., Segura, N. A., Torres, O. A., Bello, F., Suárez, A. I., & Rodríguez, A. K. (2021). Inverse Molecular Docking Study of NS3-Helicase and NS5-RNA Polymerase of Zika Virus as Possible Therapeutic Targets of Ligands Derived from Marcetia taxifolia and Its Imp Carabali, M., Jaramillo, G.-I., Rivera, V., Restrepo, B. N., Zinser, K., & gloria.jaramillor@campusucc.edu.co. (2019). Biomedica : revista del Instituto Nacional de Salud. In XVII Congreso Colombiano de Parasitología y Medicina Tropical. Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Villavicencio. https://repository.ucc.edu.co/handle/20.500.12494/18362 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Antonio Nariño |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UAN |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uan.edu.co/ |
url |
http://repositorio.uan.edu.co/handle/123456789/7967 |
identifier_str_mv |
Álvarez-Díaz, D. A., Quintero, P. A., Peláez-Carvajal, D., Ajami, N. J., & Usme-Ciro, J. A. (2019). Novel panserotype control RNA for dengue virus typing through real-time reverse transcription-polymerase chain reaction. Journal of Virological Methods, 271. https://doi.org/10.1016/j.jviromet.2019.113677 Álvarez-Díaz, D. A., Valencia-Álvarez, E., Rivera, J. A., Rengifo, A. C., Usme-Ciro, J. A., Peláez-Carvajal, D., Lozano-Jiménez, Y. Y., & Torres-Fernández, O. (2021a). An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. Infection, Genetics and Evolution, 93. https://doi.org/10.1016/j.meegid.2021.104967 Alvis-Zakzuk, N. J., Díaz-Jiménez, D., Castillo-Rodríguez, L., Castañeda-Orjuela, C., Paternina-Caicedo, Á., Pinzón-Redondo, H., Carrasquilla-Sotomayor, M., Alvis-Guzmán, N., & De La Hoz-Restrepo, F. (2018). Economic Costs of Chikungunya Virus in Colombia. Value in Health Regional Issues, 17(51), 32–37. https://doi.org/10.1016/j.vhri.2018.01.004 Baptista, J., Chávez, K., Torrico, F., Trejo, E., Garcia, C. C., Urbina, J., Carrasco, J., Taddei, A., Tillett, S., & Suárez, A. I. (2016). Constituyentes químicos y actividad antiinflamatoria de Marcetia taxifolia. In Scientific Journal from the Experimental Faculty of Sciences, at the Universidad del Zulia (Vol. 24). Abril-Junio. Begum, F., Das, S., Mukherjee, D., Mal, S., & Ray, U. (2019). Insight into the tropism of dengue virus in humans. In Viruses (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/v11121136 Behl, T., Rocchetti, G., Chadha, S., Zengin, G., Bungau, S., Kumar, A., Mehta, V., Uddin, M. S., Khullar, G., Setia, D., Arora, S., Sinan, K. I., Ak, G., Putnik, P., Gallo, M., & Montesano, D. (2021). Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals, 14(4). https://doi.org/10.3390/ph14040381 Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007 Brinton, M. A., & Basu, M. (2015). Functions of the 3’ and 5’ genome RNA regions of members of the genus Flavivirus. Virus Research, 206, 108–119. https://doi.org/10.1016/j.virusres.2015.02.006 Buendia-Atencio, C., Pieffet, G. P., Montoya-Vargas, S., Martínez Bernal, J. A., Rangel, H. R., Muñoz, A. L., Losada-Barragán, M., Segura, N. A., Torres, O. A., Bello, F., Suárez, A. I., & Rodríguez, A. K. (2021). Inverse Molecular Docking Study of NS3-Helicase and NS5-RNA Polymerase of Zika Virus as Possible Therapeutic Targets of Ligands Derived from Marcetia taxifolia and Its Imp Carabali, M., Jaramillo, G.-I., Rivera, V., Restrepo, B. N., Zinser, K., & gloria.jaramillor@campusucc.edu.co. (2019). Biomedica : revista del Instituto Nacional de Salud. In XVII Congreso Colombiano de Parasitología y Medicina Tropical. Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Villavicencio. https://repository.ucc.edu.co/handle/20.500.12494/18362 instname:Universidad Antonio Nariño reponame:Repositorio Institucional UAN repourl:https://repositorio.uan.edu.co/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
Acceso abierto |
dc.rights.license.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Acceso abierto https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad Antonio Nariño |
dc.publisher.program.spa.fl_str_mv |
Bioquímica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.campus.spa.fl_str_mv |
Bogotá - Circunvalar |
institution |
Universidad Antonio Nariño |
bitstream.url.fl_str_mv |
https://repositorio.uan.edu.co/bitstreams/52231852-934d-46d0-ac47-ecefd3aef240/download https://repositorio.uan.edu.co/bitstreams/e30f1b15-ea6e-4ffc-b996-d900fd1b4c5a/download https://repositorio.uan.edu.co/bitstreams/af012a37-4dfb-4b9e-8b33-527a9e7f80e6/download https://repositorio.uan.edu.co/bitstreams/56cc9b80-2ebf-4e65-92d6-cd931aa037b7/download |
bitstream.checksum.fl_str_mv |
329d201f542f4f9b4061c9179e6dac5b 2ca38a89b7aec906004c14ff744e530f 462ca62585a400d33e24c12086c7632a 9868ccc48a14c8d591352b6eaf7f6239 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UAN |
repository.mail.fl_str_mv |
alertas.repositorio@uan.edu.co |
_version_ |
1814300389440225280 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Losada Barragán, MónicaUpegui Zapata, Yulieth AlexandraCuéllar Quimbaya, Andrés Felipe118217225192023-04-15T16:32:10Z2023-04-15T16:32:10Z2022-11-18http://repositorio.uan.edu.co/handle/123456789/7967Álvarez-Díaz, D. A., Quintero, P. A., Peláez-Carvajal, D., Ajami, N. J., & Usme-Ciro, J. A. (2019). Novel panserotype control RNA for dengue virus typing through real-time reverse transcription-polymerase chain reaction. Journal of Virological Methods, 271. https://doi.org/10.1016/j.jviromet.2019.113677Álvarez-Díaz, D. A., Valencia-Álvarez, E., Rivera, J. A., Rengifo, A. C., Usme-Ciro, J. A., Peláez-Carvajal, D., Lozano-Jiménez, Y. Y., & Torres-Fernández, O. (2021a). An updated RT-qPCR assay for the simultaneous detection and quantification of chikungunya, dengue and zika viruses. Infection, Genetics and Evolution, 93. https://doi.org/10.1016/j.meegid.2021.104967Alvis-Zakzuk, N. J., Díaz-Jiménez, D., Castillo-Rodríguez, L., Castañeda-Orjuela, C., Paternina-Caicedo, Á., Pinzón-Redondo, H., Carrasquilla-Sotomayor, M., Alvis-Guzmán, N., & De La Hoz-Restrepo, F. (2018). Economic Costs of Chikungunya Virus in Colombia. Value in Health Regional Issues, 17(51), 32–37. https://doi.org/10.1016/j.vhri.2018.01.004Baptista, J., Chávez, K., Torrico, F., Trejo, E., Garcia, C. C., Urbina, J., Carrasco, J., Taddei, A., Tillett, S., & Suárez, A. I. (2016). Constituyentes químicos y actividad antiinflamatoria de Marcetia taxifolia. In Scientific Journal from the Experimental Faculty of Sciences, at the Universidad del Zulia (Vol. 24). Abril-Junio.Begum, F., Das, S., Mukherjee, D., Mal, S., & Ray, U. (2019). Insight into the tropism of dengue virus in humans. In Viruses (Vol. 11, Issue 12). MDPI AG. https://doi.org/10.3390/v11121136Behl, T., Rocchetti, G., Chadha, S., Zengin, G., Bungau, S., Kumar, A., Mehta, V., Uddin, M. S., Khullar, G., Setia, D., Arora, S., Sinan, K. I., Ak, G., Putnik, P., Gallo, M., & Montesano, D. (2021). Phytochemicals from Plant Foods as Potential Source of Antiviral Agents: An Overview. Pharmaceuticals, 14(4). https://doi.org/10.3390/ph14040381Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., & Mumford, R. (2014). Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Research, 186, 20–31. https://doi.org/10.1016/j.virusres.2013.12.007Brinton, M. A., & Basu, M. (2015). Functions of the 3’ and 5’ genome RNA regions of members of the genus Flavivirus. Virus Research, 206, 108–119. https://doi.org/10.1016/j.virusres.2015.02.006Buendia-Atencio, C., Pieffet, G. P., Montoya-Vargas, S., Martínez Bernal, J. A., Rangel, H. R., Muñoz, A. L., Losada-Barragán, M., Segura, N. A., Torres, O. A., Bello, F., Suárez, A. I., & Rodríguez, A. K. (2021). Inverse Molecular Docking Study of NS3-Helicase and NS5-RNA Polymerase of Zika Virus as Possible Therapeutic Targets of Ligands Derived from Marcetia taxifolia and Its ImpCarabali, M., Jaramillo, G.-I., Rivera, V., Restrepo, B. N., Zinser, K., & gloria.jaramillor@campusucc.edu.co. (2019). Biomedica : revista del Instituto Nacional de Salud. In XVII Congreso Colombiano de Parasitología y Medicina Tropical. Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Villavicencio. https://repository.ucc.edu.co/handle/20.500.12494/18362instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Zika, dengue and chikungunya viruses are implicated in emerging and re-emerging epidemics in tropical and subtropical countries such as Colombia, becoming a public health problem, with a negative impact on the quality of life of the population due to the morbidity and mortality associated with their sequelae. Today there is no specific antiviral treatment, only for dengue there is a vaccine whose efficacy is not clear. This makes the development of therapeutic agents essential. Plants are a key point in the search for new molecules with potential biological action since their compounds have medicinal properties. Marcetia taxifolia is a shrub of the Melastomataceae family, for which secondary metabolites have been described with in vitro antiviral activity against the human immunodeficiency virus type 1. Preclinical evaluations of potential antivirals require reliable and reproducible methods. For this reason, an RTqPCR method was standardized for the detection and quantification of viral RNA from cell cultures, with efficiencies of 100.6%, 99.63% and 100.8%, for chikungunya, zika and dengue-2, respectively. BHK-21 was selected as the cell line that allows greater viral replication of clinical isolates compared to Vero. Additionally, the antiviral activity of derivatives of the extract of Marcetia taxifolia myricetin3-rhamnoside and myricetin-3-(6-rhamnogalactoside) was evaluated in the developed in vitro model, obtaining that the two compounds presented promising EC50 < 50µg/mL against the three viruses, on the other hand the lower effectiveness of myricetin-3-(6-rhamnogalactoside) in the case of chikungunya and zika. These data provide the first evidence for the in vitro anti-chikungunya, anti-Zika and antidengue-2 activity of myricetin-3-rhamnoside and myricetin-3-(6-rhamnogalactoside).Los virus zika, dengue y chikungunya están implicados en epidemias emergentes y reemergentes en países tropicales y subtropicales como Colombia, convirtiéndose en un problema de salud pública, con impacto negativo en la calidad de vida de la población debido a la morbimortalidad asociadas a sus secuelas. Hoy en día no existe un tratamiento antiviral específico, solo para dengue se cuenta con una vacuna de la cual no se tiene claridad en su eficacia. Lo que hace primordial el desarrollo de agentes terapéuticos. Las plantas son un punto clave en la búsqueda de nuevas moléculas con potencial acción biológica, ya que sus compuestos tienen propiedades medicinales, Marcetia taxifolia es un arbusto de la familia Melastomataceae, para la cual se han descrito metabolitos secundarios con actividad antiviral in vitro contra el virus de inmunodeficiencia humana tipo 1. Las evaluaciones preclínicas de potenciales antivirales requieren métodos confiables y reproducibles. Por ello se estandarizó un método de RTqPCR para la detección y cuantificación de ARN viral a partir de cultivos celulares, con eficiencias del 100.6%, 99.63% y 100.8% , para chikungunya, zika y dengue-2 respectivamente. Se seleccionó BHK21 como la linea celular que permite mayor replicacion viral de los aislamientos clinicos respecto a Vero. Adicionalmente, la actividad antiviral de derivados del extracto de Marcetia taxifolia miricetina3-ramnósido y miricetina-3-(6-ramnogalactosido) se evaluó en el modelo in vitro desarrollado, obteniendo que los dos compuestos presentaron CE50 promisorias < 50µg/mL contra los tres virus, por otro lado la menor efectividad de dio con miricetina-3-(6-ramnogalactosido) en el caso de chikungunya y zika. Estos datos proporcionan la primera evidencia de la actividad anti-chikungunya, anti-zika y antidengue-2 in vitro de miricetina-3-ramnósido y miricetina-3-(6-ramnogalactosido).Bioquímico(a)PregradoPresencialInvestigaciónspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarArbovirusZikaDengueChikungunyaAntiviralT 40.23 C967dArbovirusZikaDengueChikungunyaAntiviralDeterminación de la actividad antiviral in vitro de derivados de miricetina de Marcetia taxifolia contra los virus del chikungunya, zika y dengue.Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85EspecializadaORIGINAL2023_AndrésFelipeCuéllarQuimbaya.pdf2023_AndrésFelipeCuéllarQuimbaya.pdfapplication/pdf750465https://repositorio.uan.edu.co/bitstreams/52231852-934d-46d0-ac47-ecefd3aef240/download329d201f542f4f9b4061c9179e6dac5bMD512023_AndrésFelipeCuéllarQuimbaya_Acta.pdf2023_AndrésFelipeCuéllarQuimbaya_Acta.pdfapplication/pdf122997https://repositorio.uan.edu.co/bitstreams/e30f1b15-ea6e-4ffc-b996-d900fd1b4c5a/download2ca38a89b7aec906004c14ff744e530fMD522023_AndrésFelipeCuéllarQuimbaya_Autorización.pdf2023_AndrésFelipeCuéllarQuimbaya_Autorización.pdfapplication/pdf613091https://repositorio.uan.edu.co/bitstreams/af012a37-4dfb-4b9e-8b33-527a9e7f80e6/download462ca62585a400d33e24c12086c7632aMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/56cc9b80-2ebf-4e65-92d6-cd931aa037b7/download9868ccc48a14c8d591352b6eaf7f6239MD54123456789/7967oai:repositorio.uan.edu.co:123456789/79672024-10-09 23:05:36.678https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co |