Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales

In the field of rehabilitation of people with disabilities due to damage or lack of any of their members, the use of robotic prostheses is of great importance. At present, these prostheses present a high technological development at the level of their hardware and software, however, their operation...

Full description

Autores:
Forero Guerrero, Jaisson Hernando
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/2212
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/2212
Palabra clave:
Inteligencia Artificial
Reconocimiento de Patrones
Identificación intencionalidad del movimiento
Aprendizaje Automático
Miografia de la Fuerza
Aprendizaje supervisado
Inteligencia Artificial
Reconocimiento de Patrones
Identificación intencionalidad del movimiento
Aprendizaje Automático
Miografia de la Fuerza
Aprendizaje supervisado
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
id UAntonioN2_25f06d878a98ebe7894dfcc6074e1904
oai_identifier_str oai:repositorio.uan.edu.co:123456789/2212
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales
title Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales
spellingShingle Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales
Inteligencia Artificial
Reconocimiento de Patrones
Identificación intencionalidad del movimiento
Aprendizaje Automático
Miografia de la Fuerza
Aprendizaje supervisado
Inteligencia Artificial
Reconocimiento de Patrones
Identificación intencionalidad del movimiento
Aprendizaje Automático
Miografia de la Fuerza
Aprendizaje supervisado
title_short Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales
title_full Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales
title_fullStr Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales
title_full_unstemmed Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales
title_sort Identificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inerciales
dc.creator.fl_str_mv Forero Guerrero, Jaisson Hernando
dc.contributor.advisor.spa.fl_str_mv Torres Londoño, Leonardo
dc.contributor.author.spa.fl_str_mv Forero Guerrero, Jaisson Hernando
dc.subject.es_ES.fl_str_mv Inteligencia Artificial
Reconocimiento de Patrones
Identificación intencionalidad del movimiento
Aprendizaje Automático
Miografia de la Fuerza
Aprendizaje supervisado
topic Inteligencia Artificial
Reconocimiento de Patrones
Identificación intencionalidad del movimiento
Aprendizaje Automático
Miografia de la Fuerza
Aprendizaje supervisado
Inteligencia Artificial
Reconocimiento de Patrones
Identificación intencionalidad del movimiento
Aprendizaje Automático
Miografia de la Fuerza
Aprendizaje supervisado
dc.subject.keyword.es_ES.fl_str_mv Inteligencia Artificial
Reconocimiento de Patrones
Identificación intencionalidad del movimiento
Aprendizaje Automático
Miografia de la Fuerza
Aprendizaje supervisado
description In the field of rehabilitation of people with disabilities due to damage or lack of any of their members, the use of robotic prostheses is of great importance. At present, these prostheses present a high technological development at the level of their hardware and software, however, their operation depends directly on the human machine interface (HMI), which is in charge of recording and identifying the data generated before the intention of the movement of the member; Proper registration will allow optimal control of the prosthesis. A system was implemented that allows the identification of the intentionality of the upper limb movement using alternative techniques such as the use of force sensors and inertial motion sensors. As a first step, a bracelet was manufactured whose function was to record data pertinent to changes in pressure and position of the arm. Subsequently, the information recording protocol was carried out where parameters were established to achieve communication between the microcontroller bracelet, computer microcontroller. Through the Matlab tool, algorithms were implemented to capture the signals from the bracelet, which was used in 10 test subjects, each one of the volunteers maintained a fixed arm position and a grip at the time of registration. The registration of eight combinations was specified: two positions and four types of grip, establishing a standard procedure for the location of the bracelet, and the taking of records. All the data were processed and stored in the computer, to later be used in the construction of training sets and validation sets. Multiple validation tests were performed for two supervised learning algorithms: logistic regression and vector support machines, varying the measurement parameters such as: subject, number of trials, number of positions, inclusion and exclusion of inertial motion sensors. The results of the tests show a high index of accuracy in the prediction of the position and grip before the intention of movement of the test subject in Off Line mode. On the other hand, an application was developed in Matlab that allows to graphically evaluate the behavior in On Line mode. However, the accuracy of the prediction decreased by as much as fifty percent.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-07-21
dc.date.accessioned.none.fl_str_mv 2021-03-02T14:08:50Z
dc.date.available.none.fl_str_mv 2021-03-02T14:08:50Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/2212
dc.identifier.bibliographicCitation.spa.fl_str_mv “Sala situacional de las Personas con Discapacidad (PCD) Ministeriode Salud y Protecci ́on Social Oficina de Promoci ́on Social,” Tech. Rep.,2017.
“ObservatorioDiscapacidad.”[Online].Available:http://rssvr2.sispro.gov.co/ObservatorioDiscapacidad/
“P ́aginas-NombredelObservatorio.”[Online].Available:http://ondiscapacidad.minsalud.gov.co/Paginas/Inicio.aspx
V. Ravindra and C. Castellini, “A comparative analysis of three non-invasive human-machine interfaces for the disabled,”Frontiers in Neu-rorobotics, vol. 8, no. JAN, pp. 1–10, 2014.
E. Cho, R. Chen, L. K. Merhi, Z. Xiao, B. Pousett, and C. Menon,“Force myography to control robotic upper extremity prostheses: A fea-sibility study,”Frontiers in Bioengineering and Biotechnology, vol. 4,no. MAR, pp. 1–12, 2016.
R. N. Khushaba, A. H. Al-Timemy, A. Al-Ani, and A. Al-Jumaily, “A Framework of Temporal-Spatial Descriptors basedFeature Extraction for Improved Myoelectric Pattern Recognition,”IEEE Transactions on Neural Systems and Rehabilitation Engi-neering, vol. 4320, no. c, pp. 1–1, 2017. [Online]. Available:http://ieeexplore.ieee.org/document/7886279/
A. Fougner, E. Scheme, A. D. C. Chan, K. Englehart, and Ø. Stavdahl,“Resolving the limb position effect in myoelectric pattern recognition,”IEEE Transactions on Neural Systems and Rehabilitation Engineering,p. 8, 2011.
S. Benatti, B. Milosevic, E. Farella, E. Gruppioni, and L. Benini, “AProsthetic Hand Body Area Controller Based on Efficient PatternRecognition Control Strategies,”Sensors, vol. 17, no. 4, p. 869, 2017.[Online]. Available: http://www.mdpi.com/1424-8220/17/4/869
F. E. R. Mattioli, E. A. Lamounier, A. Cardoso, A. B. Soares, andA. O. Andrade, “Classification of EMG signals using artificial neuralnetworks for virtual hand prosthesis control,”Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicine andBiology Society, EMBS, pp. 7254–7257, 2011.
K. Englehart and B. Hudgins, “A robust, real-time control scheme formultifunction myoelectric control,”IEEE Transactions on Bio-MedicalEngineering, vol. 50, no. 7, pp. 848–54, 2003.
L. Pan, D. Zhang, N. Jiang, X. Sheng, and X. Zhu, “Improvingrobustness against electrode shift of high density EMG for myoelectriccontrol through common spatial patterns.”Journal of neuroenginee-ring and rehabilitation, vol. 12, no. 1, p. 110, 2015. [Online]. Available:http://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0102-9
A. Fougner, O. Stavdahl, P. J. Kyberd, Y. G. Losier, and P. A. Par-ker, “Control of upper limb prostheses: Terminology and proportionalmyoelectric controla review,”IEEE Transactions on Neural Systemsand Rehabilitation Engineering, vol. 20, no. 5, pp. 663–677, 2012.
M. Ortiz-Catalan, “Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition,”Frontiers inNeuroscience, vol. 9, no. OCT, pp. 1–7, 2015.
A. D. C. Chan and K. B. Englehart, “Continuous myoelectric controlfor powered prostheses using hidden Markov models,”IEEE Transac-tions on Biomedical Engineering, vol. 52, no. 1, pp. 121–124, 2005.
N. Jiang, K. B. Englehart, and P. A. Parker, “Extracting simultaneousand proportional neural control information for multiple-dof prosthe-ses from the surface electromyographic signal,”IEEE Transactions onBiomedical Engineering, vol. 56, no. 4, pp. 1070–1080, 2009.
E. J. Earley, A. A. Adewuyi, and L. J. Hargrove, “Optimizing pat-tern recognition-based control for partial-hand prosthesis application,”Conference proceedings : ... Annual International Conference of theIEEE Engineering in Medicine and Biology Society. IEEE Engineeringin Medicine and Biology Society. Annual Conference, vol. 2014, pp.3574–3577, 2014.
G. W. Favieiro, K. O. A. Moura, and A. Balbinot, “Novel methodto characterize upper-limb movements based on paraconsistentlogic and myoelectric signals,”2016 38th Annual InternationalConference of the IEEE Engineering in Medicine and BiologySociety (EMBC), no. 3, pp. 395–398, 2016. [Online]. Available:http://ieeexplore.ieee.org/document/7590723/
L. Hargrove, Y. Losier, B. Lock, K. Englehart, and B. Hudgins, “Areal-time pattern recognition based myoelectric control usability studyimplemented in a virtual environment,”Annual International Confe-rence of the IEEE Engineering in Medicine and Biology - Proceedings,pp. 4842–4845, 2007.
Z. Lu, K.-y. Tong, H. Shin, S. Li, and P. Zhou, “Ad-vanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient,”Frontiers in Neuro-logy, vol. 8, no. March, pp. 1–5, 2017. [Online]. Available:http://journal.frontiersin.org/article/10.3389/fneur.2017.00107/full
L. J. Hargrove, B. A. Lock, and A. M. Simon, “Pattern recognitioncontrol outperforms conventional myoelectric control in upper limb pa-tients with targeted muscle reinnervation,”Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicine andBiology Society, EMBS, pp. 1599–1602, 2013.
C. Lauretti, A. Davalli, R. Sacchetti, E. Guglielmelli, and L. Zollo,“Fusion of M-IMU and EMG signals for the control of trans-humeralprostheses,”Proceedings of the IEEE RAS and EMBS InternationalConference on Biomedical Robotics and Biomechatronics, vol. 2016-July, pp. 1123–1128, 2016.
T. A. Kuiken, G. A. Dumanian, R. D. Lipschutz, L. A. Miller, andK. A. Stubblefield, “Targeted muscle reinnervation for improved myoe-lectric prosthesis control,”2nd International IEEE EMBS Conferenceon Neural Engineering, vol. 2005, pp. 396–399, 2005.
D. Ferigo, L. K. Merhi, B. Pousett, Z. G. Xiao, and C. Menon, “ACase Study of a Force-myography Controlled Bionic Hand MitigatingLimb Position Effect,”Journal of Bionic Engineering, vol. 14, no. 4,pp. 692–705, 2017.
“AprendizajeAutom ́atico—Coursera.”[Online].Available:https://www.coursera.org/learn/machine-learning?
A. Mu,Statistical Pattern Recognition, 2019, vol. 53, no. 9.
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/2212
identifier_str_mv “Sala situacional de las Personas con Discapacidad (PCD) Ministeriode Salud y Protecci ́on Social Oficina de Promoci ́on Social,” Tech. Rep.,2017.
“ObservatorioDiscapacidad.”[Online].Available:http://rssvr2.sispro.gov.co/ObservatorioDiscapacidad/
“P ́aginas-NombredelObservatorio.”[Online].Available:http://ondiscapacidad.minsalud.gov.co/Paginas/Inicio.aspx
V. Ravindra and C. Castellini, “A comparative analysis of three non-invasive human-machine interfaces for the disabled,”Frontiers in Neu-rorobotics, vol. 8, no. JAN, pp. 1–10, 2014.
E. Cho, R. Chen, L. K. Merhi, Z. Xiao, B. Pousett, and C. Menon,“Force myography to control robotic upper extremity prostheses: A fea-sibility study,”Frontiers in Bioengineering and Biotechnology, vol. 4,no. MAR, pp. 1–12, 2016.
R. N. Khushaba, A. H. Al-Timemy, A. Al-Ani, and A. Al-Jumaily, “A Framework of Temporal-Spatial Descriptors basedFeature Extraction for Improved Myoelectric Pattern Recognition,”IEEE Transactions on Neural Systems and Rehabilitation Engi-neering, vol. 4320, no. c, pp. 1–1, 2017. [Online]. Available:http://ieeexplore.ieee.org/document/7886279/
A. Fougner, E. Scheme, A. D. C. Chan, K. Englehart, and Ø. Stavdahl,“Resolving the limb position effect in myoelectric pattern recognition,”IEEE Transactions on Neural Systems and Rehabilitation Engineering,p. 8, 2011.
S. Benatti, B. Milosevic, E. Farella, E. Gruppioni, and L. Benini, “AProsthetic Hand Body Area Controller Based on Efficient PatternRecognition Control Strategies,”Sensors, vol. 17, no. 4, p. 869, 2017.[Online]. Available: http://www.mdpi.com/1424-8220/17/4/869
F. E. R. Mattioli, E. A. Lamounier, A. Cardoso, A. B. Soares, andA. O. Andrade, “Classification of EMG signals using artificial neuralnetworks for virtual hand prosthesis control,”Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicine andBiology Society, EMBS, pp. 7254–7257, 2011.
K. Englehart and B. Hudgins, “A robust, real-time control scheme formultifunction myoelectric control,”IEEE Transactions on Bio-MedicalEngineering, vol. 50, no. 7, pp. 848–54, 2003.
L. Pan, D. Zhang, N. Jiang, X. Sheng, and X. Zhu, “Improvingrobustness against electrode shift of high density EMG for myoelectriccontrol through common spatial patterns.”Journal of neuroenginee-ring and rehabilitation, vol. 12, no. 1, p. 110, 2015. [Online]. Available:http://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0102-9
A. Fougner, O. Stavdahl, P. J. Kyberd, Y. G. Losier, and P. A. Par-ker, “Control of upper limb prostheses: Terminology and proportionalmyoelectric controla review,”IEEE Transactions on Neural Systemsand Rehabilitation Engineering, vol. 20, no. 5, pp. 663–677, 2012.
M. Ortiz-Catalan, “Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition,”Frontiers inNeuroscience, vol. 9, no. OCT, pp. 1–7, 2015.
A. D. C. Chan and K. B. Englehart, “Continuous myoelectric controlfor powered prostheses using hidden Markov models,”IEEE Transac-tions on Biomedical Engineering, vol. 52, no. 1, pp. 121–124, 2005.
N. Jiang, K. B. Englehart, and P. A. Parker, “Extracting simultaneousand proportional neural control information for multiple-dof prosthe-ses from the surface electromyographic signal,”IEEE Transactions onBiomedical Engineering, vol. 56, no. 4, pp. 1070–1080, 2009.
E. J. Earley, A. A. Adewuyi, and L. J. Hargrove, “Optimizing pat-tern recognition-based control for partial-hand prosthesis application,”Conference proceedings : ... Annual International Conference of theIEEE Engineering in Medicine and Biology Society. IEEE Engineeringin Medicine and Biology Society. Annual Conference, vol. 2014, pp.3574–3577, 2014.
G. W. Favieiro, K. O. A. Moura, and A. Balbinot, “Novel methodto characterize upper-limb movements based on paraconsistentlogic and myoelectric signals,”2016 38th Annual InternationalConference of the IEEE Engineering in Medicine and BiologySociety (EMBC), no. 3, pp. 395–398, 2016. [Online]. Available:http://ieeexplore.ieee.org/document/7590723/
L. Hargrove, Y. Losier, B. Lock, K. Englehart, and B. Hudgins, “Areal-time pattern recognition based myoelectric control usability studyimplemented in a virtual environment,”Annual International Confe-rence of the IEEE Engineering in Medicine and Biology - Proceedings,pp. 4842–4845, 2007.
Z. Lu, K.-y. Tong, H. Shin, S. Li, and P. Zhou, “Ad-vanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient,”Frontiers in Neuro-logy, vol. 8, no. March, pp. 1–5, 2017. [Online]. Available:http://journal.frontiersin.org/article/10.3389/fneur.2017.00107/full
L. J. Hargrove, B. A. Lock, and A. M. Simon, “Pattern recognitioncontrol outperforms conventional myoelectric control in upper limb pa-tients with targeted muscle reinnervation,”Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicine andBiology Society, EMBS, pp. 1599–1602, 2013.
C. Lauretti, A. Davalli, R. Sacchetti, E. Guglielmelli, and L. Zollo,“Fusion of M-IMU and EMG signals for the control of trans-humeralprostheses,”Proceedings of the IEEE RAS and EMBS InternationalConference on Biomedical Robotics and Biomechatronics, vol. 2016-July, pp. 1123–1128, 2016.
T. A. Kuiken, G. A. Dumanian, R. D. Lipschutz, L. A. Miller, andK. A. Stubblefield, “Targeted muscle reinnervation for improved myoe-lectric prosthesis control,”2nd International IEEE EMBS Conferenceon Neural Engineering, vol. 2005, pp. 396–399, 2005.
D. Ferigo, L. K. Merhi, B. Pousett, Z. G. Xiao, and C. Menon, “ACase Study of a Force-myography Controlled Bionic Hand MitigatingLimb Position Effect,”Journal of Bionic Engineering, vol. 14, no. 4,pp. 692–705, 2017.
“AprendizajeAutom ́atico—Coursera.”[Online].Available:https://www.coursera.org/learn/machine-learning?
A. Mu,Statistical Pattern Recognition, 2019, vol. 53, no. 9.
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica, Electrónica y Biomédica
dc.publisher.campus.spa.fl_str_mv Bogotá - Sur
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/fa644a4a-a3b8-4285-a8ac-0dabbc6ca153/download
https://repositorio.uan.edu.co/bitstreams/00f7bfc3-a57f-4870-83c7-6a9783f56a72/download
https://repositorio.uan.edu.co/bitstreams/671873c1-30af-404f-822b-0d5d2fce4ac2/download
https://repositorio.uan.edu.co/bitstreams/3adcbb6b-a0f6-4ec3-8633-1c8a2b11975f/download
https://repositorio.uan.edu.co/bitstreams/954c2393-61f9-4868-b331-b2355841aade/download
https://repositorio.uan.edu.co/bitstreams/822f52b0-7b29-463f-89d0-0f968603b476/download
https://repositorio.uan.edu.co/bitstreams/0323bde6-c0ab-4b06-99e2-3b4a9e4b442f/download
https://repositorio.uan.edu.co/bitstreams/76f9b7d3-4c01-423c-8bd8-855517466fe2/download
bitstream.checksum.fl_str_mv 3110d69fb7d7c7581bc3630044d64231
7fb7ff287fd8d961c1e45da03508945e
80294ba9ff4c5b4f07812ee200fbc42f
2e388663398085f69421c9e4c5fcf235
e1c06d85ae7b8b032bef47e42e4c08f9
0a53accf5b152fc6e2bd91d0e601962a
aebf2e001d5b929dd3be40745f268987
a5f09636724a54ee8d98f7ee4f405f36
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300336497623040
spelling Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torres Londoño, LeonardoForero Guerrero, Jaisson Hernando2021-03-02T14:08:50Z2021-03-02T14:08:50Z2020-07-21http://repositorio.uan.edu.co/handle/123456789/2212“Sala situacional de las Personas con Discapacidad (PCD) Ministeriode Salud y Protecci ́on Social Oficina de Promoci ́on Social,” Tech. Rep.,2017.“ObservatorioDiscapacidad.”[Online].Available:http://rssvr2.sispro.gov.co/ObservatorioDiscapacidad/“P ́aginas-NombredelObservatorio.”[Online].Available:http://ondiscapacidad.minsalud.gov.co/Paginas/Inicio.aspxV. Ravindra and C. Castellini, “A comparative analysis of three non-invasive human-machine interfaces for the disabled,”Frontiers in Neu-rorobotics, vol. 8, no. JAN, pp. 1–10, 2014.E. Cho, R. Chen, L. K. Merhi, Z. Xiao, B. Pousett, and C. Menon,“Force myography to control robotic upper extremity prostheses: A fea-sibility study,”Frontiers in Bioengineering and Biotechnology, vol. 4,no. MAR, pp. 1–12, 2016.R. N. Khushaba, A. H. Al-Timemy, A. Al-Ani, and A. Al-Jumaily, “A Framework of Temporal-Spatial Descriptors basedFeature Extraction for Improved Myoelectric Pattern Recognition,”IEEE Transactions on Neural Systems and Rehabilitation Engi-neering, vol. 4320, no. c, pp. 1–1, 2017. [Online]. Available:http://ieeexplore.ieee.org/document/7886279/A. Fougner, E. Scheme, A. D. C. Chan, K. Englehart, and Ø. Stavdahl,“Resolving the limb position effect in myoelectric pattern recognition,”IEEE Transactions on Neural Systems and Rehabilitation Engineering,p. 8, 2011.S. Benatti, B. Milosevic, E. Farella, E. Gruppioni, and L. Benini, “AProsthetic Hand Body Area Controller Based on Efficient PatternRecognition Control Strategies,”Sensors, vol. 17, no. 4, p. 869, 2017.[Online]. Available: http://www.mdpi.com/1424-8220/17/4/869F. E. R. Mattioli, E. A. Lamounier, A. Cardoso, A. B. Soares, andA. O. Andrade, “Classification of EMG signals using artificial neuralnetworks for virtual hand prosthesis control,”Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicine andBiology Society, EMBS, pp. 7254–7257, 2011.K. Englehart and B. Hudgins, “A robust, real-time control scheme formultifunction myoelectric control,”IEEE Transactions on Bio-MedicalEngineering, vol. 50, no. 7, pp. 848–54, 2003.L. Pan, D. Zhang, N. Jiang, X. Sheng, and X. Zhu, “Improvingrobustness against electrode shift of high density EMG for myoelectriccontrol through common spatial patterns.”Journal of neuroenginee-ring and rehabilitation, vol. 12, no. 1, p. 110, 2015. [Online]. Available:http://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-015-0102-9A. Fougner, O. Stavdahl, P. J. Kyberd, Y. G. Losier, and P. A. Par-ker, “Control of upper limb prostheses: Terminology and proportionalmyoelectric controla review,”IEEE Transactions on Neural Systemsand Rehabilitation Engineering, vol. 20, no. 5, pp. 663–677, 2012.M. Ortiz-Catalan, “Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition,”Frontiers inNeuroscience, vol. 9, no. OCT, pp. 1–7, 2015.A. D. C. Chan and K. B. Englehart, “Continuous myoelectric controlfor powered prostheses using hidden Markov models,”IEEE Transac-tions on Biomedical Engineering, vol. 52, no. 1, pp. 121–124, 2005.N. Jiang, K. B. Englehart, and P. A. Parker, “Extracting simultaneousand proportional neural control information for multiple-dof prosthe-ses from the surface electromyographic signal,”IEEE Transactions onBiomedical Engineering, vol. 56, no. 4, pp. 1070–1080, 2009.E. J. Earley, A. A. Adewuyi, and L. J. Hargrove, “Optimizing pat-tern recognition-based control for partial-hand prosthesis application,”Conference proceedings : ... Annual International Conference of theIEEE Engineering in Medicine and Biology Society. IEEE Engineeringin Medicine and Biology Society. Annual Conference, vol. 2014, pp.3574–3577, 2014.G. W. Favieiro, K. O. A. Moura, and A. Balbinot, “Novel methodto characterize upper-limb movements based on paraconsistentlogic and myoelectric signals,”2016 38th Annual InternationalConference of the IEEE Engineering in Medicine and BiologySociety (EMBC), no. 3, pp. 395–398, 2016. [Online]. Available:http://ieeexplore.ieee.org/document/7590723/L. Hargrove, Y. Losier, B. Lock, K. Englehart, and B. Hudgins, “Areal-time pattern recognition based myoelectric control usability studyimplemented in a virtual environment,”Annual International Confe-rence of the IEEE Engineering in Medicine and Biology - Proceedings,pp. 4842–4845, 2007.Z. Lu, K.-y. Tong, H. Shin, S. Li, and P. Zhou, “Ad-vanced Myoelectric Control for Robotic Hand-Assisted Training: Outcome from a Stroke Patient,”Frontiers in Neuro-logy, vol. 8, no. March, pp. 1–5, 2017. [Online]. Available:http://journal.frontiersin.org/article/10.3389/fneur.2017.00107/fullL. J. Hargrove, B. A. Lock, and A. M. Simon, “Pattern recognitioncontrol outperforms conventional myoelectric control in upper limb pa-tients with targeted muscle reinnervation,”Proceedings of the AnnualInternational Conference of the IEEE Engineering in Medicine andBiology Society, EMBS, pp. 1599–1602, 2013.C. Lauretti, A. Davalli, R. Sacchetti, E. Guglielmelli, and L. Zollo,“Fusion of M-IMU and EMG signals for the control of trans-humeralprostheses,”Proceedings of the IEEE RAS and EMBS InternationalConference on Biomedical Robotics and Biomechatronics, vol. 2016-July, pp. 1123–1128, 2016.T. A. Kuiken, G. A. Dumanian, R. D. Lipschutz, L. A. Miller, andK. A. Stubblefield, “Targeted muscle reinnervation for improved myoe-lectric prosthesis control,”2nd International IEEE EMBS Conferenceon Neural Engineering, vol. 2005, pp. 396–399, 2005.D. Ferigo, L. K. Merhi, B. Pousett, Z. G. Xiao, and C. Menon, “ACase Study of a Force-myography Controlled Bionic Hand MitigatingLimb Position Effect,”Journal of Bionic Engineering, vol. 14, no. 4,pp. 692–705, 2017.“AprendizajeAutom ́atico—Coursera.”[Online].Available:https://www.coursera.org/learn/machine-learning?A. Mu,Statistical Pattern Recognition, 2019, vol. 53, no. 9.instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/In the field of rehabilitation of people with disabilities due to damage or lack of any of their members, the use of robotic prostheses is of great importance. At present, these prostheses present a high technological development at the level of their hardware and software, however, their operation depends directly on the human machine interface (HMI), which is in charge of recording and identifying the data generated before the intention of the movement of the member; Proper registration will allow optimal control of the prosthesis. A system was implemented that allows the identification of the intentionality of the upper limb movement using alternative techniques such as the use of force sensors and inertial motion sensors. As a first step, a bracelet was manufactured whose function was to record data pertinent to changes in pressure and position of the arm. Subsequently, the information recording protocol was carried out where parameters were established to achieve communication between the microcontroller bracelet, computer microcontroller. Through the Matlab tool, algorithms were implemented to capture the signals from the bracelet, which was used in 10 test subjects, each one of the volunteers maintained a fixed arm position and a grip at the time of registration. The registration of eight combinations was specified: two positions and four types of grip, establishing a standard procedure for the location of the bracelet, and the taking of records. All the data were processed and stored in the computer, to later be used in the construction of training sets and validation sets. Multiple validation tests were performed for two supervised learning algorithms: logistic regression and vector support machines, varying the measurement parameters such as: subject, number of trials, number of positions, inclusion and exclusion of inertial motion sensors. The results of the tests show a high index of accuracy in the prediction of the position and grip before the intention of movement of the test subject in Off Line mode. On the other hand, an application was developed in Matlab that allows to graphically evaluate the behavior in On Line mode. However, the accuracy of the prediction decreased by as much as fifty percent.En el ámbito de la rehabilitación de personas con discapacidad por daño o falta de alguno de sus miembros, el uso de prótesis robóticas es da gran importancia. En la actualidad estas prótesis presentan un alto desarrollo tecnológico a nivel su hardware y software, sin embargo, su funcionamiento depende directamente de la interfaz hombre maquina (HMI), que es la encargada de registrar e identificar los datos generados ante la intencionalidad del movimiento del miembro; Un registro apropiado permitirá un óptimo control de la prótesis. Se implementó un sistema que permite a la identificación de la intencionalidad del movimiento del miembro superior usando técnicas alternas como el uso sensores de fuerza y sensores de movimiento inercial. Como primer paso se fabricó un brazalete cuya función fue registrar los datos pertinentes a cambios de presión y posición del brazo. Posteriormente se efectuó el protocolo de registro de información donde se establecieron parámetros para lograr la comunicación entre el brazalete microcontrolador, microcontrolador computador. Por medio de la herramienta de Matlab se implementaron algoritmos para captar las señales del brazalete, el cual fue usado en 10 sujetos de prueba cada uno de los voluntarios mantuvieron una posición del brazo fija y un agarre en el momento del registro. Se concreto el registro de ocho combinaciones: dos posiciones y cuatro tipos de agarre, estableciendo un procedimiento estándar para la ubicación del brazalete, y la toma de registros. Todos los datos fueron procesados y almacenados en el computador, para luego ser utilizados en la construcción de conjuntos de entrenamiento y conjuntos de validación. Se realizaron múltiples pruebas de validación para dos algoritmos de aprendizaje supervisado: Regresión logística y máquinas de soporte vectorial variando los parámetros de medida como: sujeto, numero de ensayos, numero de posiciones, inclusión y exclusión de los sensores de movimiento inercial. Los resultados de las pruebas exponen un alto índice de exactitud en la predicción de la posición y agarre ante la intencionalidad de movimiento del sujeto de prueba en modo Off Line. Por otro lado, se desarrolló una aplicación en Matlab que permite evaluar de manera gráfica el comportamiento en modo On Line. Sin embargo, la exactitud en la predicción disminuyo hasta en un cincuenta por ciento.Ingeniero(a) Electrónico(a)PregradoCosto total del proyecto $7.335.000. Financiación propia $135.000. Financiación externa $2.600.000. Financiación UAN $4.600.000.PresencialspaUniversidad Antonio NariñoIngeniería ElectrónicaFacultad de Ingeniería Mecánica, Electrónica y BiomédicaBogotá - SurInteligencia ArtificialReconocimiento de PatronesIdentificación intencionalidad del movimientoAprendizaje AutomáticoMiografia de la FuerzaAprendizaje supervisadoInteligencia ArtificialReconocimiento de PatronesIdentificación intencionalidad del movimientoAprendizaje AutomáticoMiografia de la FuerzaAprendizaje supervisadoIdentificación de la intencionalidad de movimientos del miembro superior mediante el uso de sensores de fuerza y sensores inercialesTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020AutorizacióndeAutores.pdf2020AutorizacióndeAutores.pdfapplication/pdf1705923https://repositorio.uan.edu.co/bitstreams/fa644a4a-a3b8-4285-a8ac-0dabbc6ca153/download3110d69fb7d7c7581bc3630044d64231MD522020JaissonHernandoForeroGuerrero.pdf2020JaissonHernandoForeroGuerrero.pdfapplication/pdf34024821https://repositorio.uan.edu.co/bitstreams/00f7bfc3-a57f-4870-83c7-6a9783f56a72/download7fb7ff287fd8d961c1e45da03508945eMD513CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.uan.edu.co/bitstreams/671873c1-30af-404f-822b-0d5d2fce4ac2/download80294ba9ff4c5b4f07812ee200fbc42fMD514LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/3adcbb6b-a0f6-4ec3-8633-1c8a2b11975f/download2e388663398085f69421c9e4c5fcf235MD515TEXT2020AutorizacióndeAutores.pdf.txt2020AutorizacióndeAutores.pdf.txtExtracted texttext/plain2https://repositorio.uan.edu.co/bitstreams/954c2393-61f9-4868-b331-b2355841aade/downloade1c06d85ae7b8b032bef47e42e4c08f9MD5162020JaissonHernandoForeroGuerrero.pdf.txt2020JaissonHernandoForeroGuerrero.pdf.txtExtracted texttext/plain101909https://repositorio.uan.edu.co/bitstreams/822f52b0-7b29-463f-89d0-0f968603b476/download0a53accf5b152fc6e2bd91d0e601962aMD518THUMBNAIL2020AutorizacióndeAutores.pdf.jpg2020AutorizacióndeAutores.pdf.jpgGenerated Thumbnailimage/jpeg19473https://repositorio.uan.edu.co/bitstreams/0323bde6-c0ab-4b06-99e2-3b4a9e4b442f/downloadaebf2e001d5b929dd3be40745f268987MD5172020JaissonHernandoForeroGuerrero.pdf.jpg2020JaissonHernandoForeroGuerrero.pdf.jpgGenerated Thumbnailimage/jpeg4019https://repositorio.uan.edu.co/bitstreams/76f9b7d3-4c01-423c-8bd8-855517466fe2/downloada5f09636724a54ee8d98f7ee4f405f36MD519123456789/2212oai:repositorio.uan.edu.co:123456789/22122024-10-09 22:48:36.04https://creativecommons.org/licenses/by-nc-sa/4.0/Acceso abiertorestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==