Predictive microbiology: a rising science

In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to d...

Full description

Autores:
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/10429
Acceso en línea:
https://revistas.uan.edu.co/index.php/ingeuan/article/view/351
https://repositorio.uan.edu.co/handle/123456789/10429
Palabra clave:
Microbiología de alimentos
modelos predictivos
factores de crecimiento
algoritmos matemáticos
superficies de respuesta
APPCC
seguridad alimentaria
análisis de riesgos
PCC
Food microbiology
predicitve models
rising factors
APPCC
food security
risk analysis
PCC
Rights
License
https://creativecommons.org/licenses/by-nc-sa/4.0
id UAntonioN2_218d6ad88633f514c888ba67418c5ae3
oai_identifier_str oai:repositorio.uan.edu.co:123456789/10429
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
spelling 2014-09-082024-10-10T02:24:52Z2024-10-10T02:24:52Zhttps://revistas.uan.edu.co/index.php/ingeuan/article/view/351https://repositorio.uan.edu.co/handle/123456789/10429In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to determine a priori the process conditions that lead to the activation and deactivation of microorganisms. It is worth noting that microorganisms can be harmful both to consumers as well as the food´s nutritional properties. Therefore, determining the susceptible conditions is important to prevent the consequences. The mathematical models frequently used include polynomials, logarithmic, exponential and differential equations. I distinguish three classes: primary models, secondary and tertiary. These models are important for reaching robust and reliable predictions regarding the behavior of microorganisms in food. This article presents a revision of microbiological predictive models, applied to the food field. The models presented often use the most studied parameters in predictive microbiology: temperature and pH.En las últimas dos décadas, para el estudio de la microbiología de alimentos, se han incluido como herramientas de análisis, el uso  de la matemática y la estadística; tales conocimientos se combinan para desarrollar modelos matemáticos que describan la evolución de los microorganismos en los alimentos [1]. Para los modelos predictivos hay una gran variedad de estudios aplicados en diferentes matrices e industrias alimenticias [2-4]; estos buscan determinar a priori las condiciones de proceso (pH, la temperatura, la actividad de agua, el tiempo de agitación, entre otros), en las cuales hay activación, desactivación, crecimiento o muerte de los microorganismos que pueden ser perjudiciales tanto para el ser humano como para las propiedades organolépticas y nutricionales de un alimento [5, 6], de esta manera establecer puntos de control que eviten tales resultados [7, 8]. Los modelos matemáticos incluyen ecuaciones de diversos tipos como las polinómicas, logarítmicas, exponenciales, diferenciales, hasta llegar a modelos que incluyan ecuaciones de  redes neuronales artificiales; también se clasifican en modelos primarios, secundarios o terciarios; que después de ser consolidados y aplicados logran unas predicciones robustas y seguras; sobre el comportamiento de los microorganismos en alimentos [9].application/pdfspaUNIVERSIDAD ANTONIO NARIÑOhttps://revistas.uan.edu.co/index.php/ingeuan/article/view/351/293https://creativecommons.org/licenses/by-nc-sa/4.0http://purl.org/coar/access_right/c_abf2INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 3 Núm. 6 (2013)2346-14462145-0935Microbiología de alimentosmodelos predictivosfactores de crecimientoalgoritmos matemáticossuperficies de respuestaAPPCCseguridad alimentariaanálisis de riesgosPCCFood microbiologypredicitve modelsrising factorsAPPCCfood securityrisk analysisPCCPredictive microbiology: a rising scienceMicrobiología predictiva: una ciencia en augeinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Yarce, Cristhian J.123456789/10429oai:repositorio.uan.edu.co:123456789/104292024-10-14 03:46:35.13metadata.onlyhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co
dc.title.en-US.fl_str_mv Predictive microbiology: a rising science
dc.title.es-ES.fl_str_mv Microbiología predictiva: una ciencia en auge
title Predictive microbiology: a rising science
spellingShingle Predictive microbiology: a rising science
Microbiología de alimentos
modelos predictivos
factores de crecimiento
algoritmos matemáticos
superficies de respuesta
APPCC
seguridad alimentaria
análisis de riesgos
PCC
Food microbiology
predicitve models
rising factors
APPCC
food security
risk analysis
PCC
title_short Predictive microbiology: a rising science
title_full Predictive microbiology: a rising science
title_fullStr Predictive microbiology: a rising science
title_full_unstemmed Predictive microbiology: a rising science
title_sort Predictive microbiology: a rising science
dc.subject.es-ES.fl_str_mv Microbiología de alimentos
modelos predictivos
factores de crecimiento
algoritmos matemáticos
superficies de respuesta
APPCC
seguridad alimentaria
análisis de riesgos
PCC
topic Microbiología de alimentos
modelos predictivos
factores de crecimiento
algoritmos matemáticos
superficies de respuesta
APPCC
seguridad alimentaria
análisis de riesgos
PCC
Food microbiology
predicitve models
rising factors
APPCC
food security
risk analysis
PCC
dc.subject.en-US.fl_str_mv Food microbiology
predicitve models
rising factors
APPCC
food security
risk analysis
PCC
description In recent years, researchers on food microbiology started to use mathematical and statistical tools more frequently. These tools are important to obtain a mathematical model able to describe the evolution of microorganisms in food. Researchers have applied the models to food industries in order to determine a priori the process conditions that lead to the activation and deactivation of microorganisms. It is worth noting that microorganisms can be harmful both to consumers as well as the food´s nutritional properties. Therefore, determining the susceptible conditions is important to prevent the consequences. The mathematical models frequently used include polynomials, logarithmic, exponential and differential equations. I distinguish three classes: primary models, secondary and tertiary. These models are important for reaching robust and reliable predictions regarding the behavior of microorganisms in food. This article presents a revision of microbiological predictive models, applied to the food field. The models presented often use the most studied parameters in predictive microbiology: temperature and pH.
publishDate 2014
dc.date.accessioned.none.fl_str_mv 2024-10-10T02:24:52Z
dc.date.available.none.fl_str_mv 2024-10-10T02:24:52Z
dc.date.none.fl_str_mv 2014-09-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.uan.edu.co/index.php/ingeuan/article/view/351
dc.identifier.uri.none.fl_str_mv https://repositorio.uan.edu.co/handle/123456789/10429
url https://revistas.uan.edu.co/index.php/ingeuan/article/view/351
https://repositorio.uan.edu.co/handle/123456789/10429
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uan.edu.co/index.php/ingeuan/article/view/351/293
dc.rights.es-ES.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0
http://purl.org/coar/access_right/c_abf2
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv UNIVERSIDAD ANTONIO NARIÑO
dc.source.es-ES.fl_str_mv INGE@UAN - TENDENCIAS EN LA INGENIERÍA; Vol. 3 Núm. 6 (2013)
dc.source.none.fl_str_mv 2346-1446
2145-0935
institution Universidad Antonio Nariño
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300349180149760