Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas

Interna

Autores:
Medina Castillo, Yehidi Julieth
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/1494
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/1494
Palabra clave:
Neuroinflamación, barrera hematoencefálica, nanopartículas superparamagnéticas, péptido biomarcador, proteínas blanco, cultivos in vitro.
Neuroinflammation, blood-brain barrier, superparamagnetic nanoparticles, biomarker peptide, target proteins, in vitro cultures.
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_17244547b05a1c2a0871cadc84e4f2af
oai_identifier_str oai:repositorio.uan.edu.co:123456789/1494
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
title Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
spellingShingle Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
Neuroinflamación, barrera hematoencefálica, nanopartículas superparamagnéticas, péptido biomarcador, proteínas blanco, cultivos in vitro.
Neuroinflammation, blood-brain barrier, superparamagnetic nanoparticles, biomarker peptide, target proteins, in vitro cultures.
title_short Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
title_full Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
title_fullStr Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
title_full_unstemmed Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
title_sort Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticas
dc.creator.fl_str_mv Medina Castillo, Yehidi Julieth
dc.contributor.advisor.spa.fl_str_mv Losada Barragán, Mónica
Llamosa Pérez, Daniel
dc.contributor.author.spa.fl_str_mv Medina Castillo, Yehidi Julieth
dc.subject.es_ES.fl_str_mv Neuroinflamación, barrera hematoencefálica, nanopartículas superparamagnéticas, péptido biomarcador, proteínas blanco, cultivos in vitro.
topic Neuroinflamación, barrera hematoencefálica, nanopartículas superparamagnéticas, péptido biomarcador, proteínas blanco, cultivos in vitro.
Neuroinflammation, blood-brain barrier, superparamagnetic nanoparticles, biomarker peptide, target proteins, in vitro cultures.
dc.subject.keyword.es_ES.fl_str_mv Neuroinflammation, blood-brain barrier, superparamagnetic nanoparticles, biomarker peptide, target proteins, in vitro cultures.
description Interna
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-11-18
dc.date.accessioned.none.fl_str_mv 2021-02-18T18:33:52Z
dc.date.available.none.fl_str_mv 2021-02-18T18:33:52Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/1494
dc.identifier.bibliographicCitation.spa.fl_str_mv Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7(1), 41–53. https://doi.org/10.1038/nrn1824
Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. https://doi.org/10.2147/NSA.S99986
Alvear, D., Galeas, S., & Debut, A. (2017). Síntesis y Caracterización de Nanopartículas de Magnetita. Revista Politécnica, 39(2), 61–66. https://doi.org/10.33333/rp.v39i2.545
Balistreri, C. R., Carruba, G., Calabrò, M., Campisi, I., Carlo, D. Di, Lio, D., Colonna-Romano, G., Candore, G., & Caruso, C. (2009). CCR5 proinflammatory allele in prostate cancer risk: A pilot study in patients and centenarians from sicily. Annals of the New York Academy of Sciences, 1155, 289–292. https://doi.org/10.1111/j.1749-6632.2008.03691.x
Barkhof, F., Calabresi, P. A., Miller, D. H., & Reingold, S. C. (2009). Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nature Reviews Neurology, 5(5), 256–266. https://doi.org/10.1038/nrneurol.2009.41
Berger, C., Hiestand, P., Kindler-Baumann, D., Rudin, M., & Rausch, M. (2006). Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR in Biomedicine, 19(1), 101–107. https://doi.org/10.1002/nbm.1007
Berry, C. C. (2005). Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. Journal of Materials Chemistry, 15(5), 543–547. https://doi.org/10.1039/b409715g
Boiziau, C., Nikolski, M., Mordelet, E., Aussudre, J., Vargas-Sanchez, K., & Petry, K. G. (2018). A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis. Inflammation, 41(3), 932–947. https://doi.org/10.1007/s10753-018-0748-0
by Dove Press, published. (2014). Oh NPark J. 51–63. http://dx.doi.org/10.2147/IJN.S26592
Chen, Fang, Hableel, G., Zhao, E. R., & Jokerst, J. V. (2018). Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. Journal of Colloid and Interface Science, 521, 261–279. https://doi.org/10.1016/j.jcis.2018.02.053
Chen, Feng, Bu, W., Chen, Y., Fan, Y., He, Q., Zhu, M., Liu, X., Zhou, L., Zhang, S., Peng, W., & Shi, J. (2009). A Sub-50-nm Monosized Superparamagnetic Fe 3 O 4 @SiO 2 T 2 -Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core-Shell Nanostructures. Chemistry - An Asian Journal, 4(12), 1809–1816. https://doi.org/10.1002/asia.200900276
Zhang, L., Shao, H. ping, Zheng, H., Lin, T., & Guo, Z. meng. (2016). Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. International Journal of Minerals, Metallurgy and Materials, 23(9), 1112–1118. https://doi.org/10.1007/s12613-016-1329-6
Zhang, S., Li, J., Lykotrafitis, G., Bao, G., & Suresh, S. (2009). Size-dependent endocytosis of nanoparticles. Advanced Materials, 21(4), 419–424. https://doi.org/10.1002/adma.200801393
Zinnhardt, B., Wiesmann, M., Honold, L., Barca, C., Schäfers, M., Kiliaan, A. J., & Jacobs, A. H. (2018). In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics, 8(10), 2603–2620. https://doi.org/10.7150/thno.24128
Zlokovic, B. V. (2008). Review The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. 2, 178–201. https://doi.org/10.1016/j.neuron.2008.01.003
Costa, C., Brandão, F., Bessa, M. J., Costa, S., Valdiglesias, V., Kiliç, G., Fernández-Bertólez, N., Quaresma, P., Pereira, E., Pásaro, E., Laffon, B., & Teixeira, J. P. (2016). In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. Journal of Applied Toxicology, 36(3), 361–372. https://doi.org/10.1002/jat.3213
Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412
Deutscher, S. L. (2010). Phage display in molecular imaging and diagnosis of cancer. Chemical Reviews, 110(5), 3196–3211. https://doi.org/10.1021/cr900317f
Di Russo, J., Luik, A., Yousif, L., Budny, S., Oberleithner, H., Hofschröer, V., Klingauf, J., Bavel, E., Bakker, E. N., Hellstrand, P., Bhattachariya, A., Albinsson, S., Pincet, F., Hallmann, R., & Sorokin, L. M. (2017). Endothelial basement membrane laminin 511 is essential for shear stress response. The EMBO Journal, 36(2), 183–201. https://doi.org/10.15252/embj.201694756
Di Virgilio, F., Ceruti, S., Bramanti, P., & Abbracchio, M. P. (2009). Purinergic signalling in inflammation of the central nervous system. Trends in Neurosciences, 32(2), 79–87. https://doi.org/10.1016/j.tins.2008.11.003
Dijkhuizen, R. M. (2011). Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury. Translational Stroke Research, 2(4), 524–532. https://doi.org/10.1007/s12975-011-0130-0
Dijkhuizen, R. M., & Nicolay, K. (2003). Magnetic Resonance Imaging in Experimental Models of Brain Disorders. Journal of Cerebral Blood Flow and Metabolism, 23(12), 1383–1402. https://doi.org/10.1097/01.WCB.0000100341.78607.EB
Ding, H. L., Zhang, Y. X., Wang, S., Xu, J. M., Xu, S. C., & Li, G. H. (2012). Fe 3 O 4 @SiO 2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chemistry of Materials, 24(23), 4572–4580. https://doi.org/10.1021/cm302828d
Domogatskaya, A., Rodin, S., & Tryggvason, K. (2012). Functional diversity of laminins. Annual Review of Cell and Developmental Biology, 28, 523–553. https://doi.org/10.1146/annurev-cellbio-101011-155750
Dousset, V., Brochet, B., Deloire, M. S. A., Lagoarde, L., Barroso, B., Caille, J. M., & Petry, K. G. (2006). MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. American Journal of Neuroradiology, 27(5), 1000–1005.
Dresco, P. A., Zaitsev, V. S., Gambino, R. J., & Chu, B. (1999). Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir, 15(6), 1945–1951. https://doi.org/10.1021/la980971g
Engelhardt, B., & Ransohoff, R. M. (2012). Capture, crawl, cross: The T cell code to breach the blood-brain barriers. Trends in Immunology, 33(12), 579–589. https://doi.org/10.1016/j.it.2012.07.004
Estelrich, J., Escribano, E., Queralt, J., & Busquets, M. A. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International Journal of Molecular Sciences, 16(4), 8070–8101. https://doi.org/10.3390/ijms16048070
Estrada-rojo, F., Escoto, S. I., & Navarro, L. (2018). Neuroin amación : el ying-yang de la neuroinmunología. 44–53. http://www.scielo.org.mx/pdf/facmed/v61n5/2448-4865-facmed-61-05-44.pdf
Filippi, M., Preziosa, P., & Rocca, M. A. (2014). Magnetic resonance outcome measures in multiple sclerosis trials: Time to rethink? Current Opinion in Neurology, 27(3), 290–299. https://doi.org/10.1097/WCO.0000000000000095
Floris, S., Blezer, E. L. A., Schreibelt, G., Do, E., Dijkstra, K. N. C. D., & Vries, H. E. De. (2004). Blood ± brain barrier permeability and monocyte in ® ltration in experimental allergic encephalomyelitis A quantitative MRI study. 127(3), 616–627. https://doi.org/10.1093/brain/awh068
Garre Olmo, J. (2018). Epidemiología de la enfermedad de Alzheimer y otras demencias. Revista de Neurología, 66(11), 377. https://doi.org/10.33588/rn.6611.2017519
Gauberti, M., Montagne, A., Marcos-Contreras, O. A., Le Béhot, A., Maubert, E., & Vivien, D. (2013). Ultra-Sensitive Molecular MRI of Vascular Cell Adhesion Molecule-1 Reveals a Dynamic Inflammatory Penumbra After Strokes. Stroke, 44(7), 1988–1996. https://doi.org/10.1161/STROKEAHA.111.000544
Gendelman, H. E. (2002). Neural immunity: Friend or foe? Journal of NeuroVirology, 8(6), 474–479. https://doi.org/10.1080/13550280290168631
Ghosh, D., Upmanyu, N., Shukla, T., & Shrivastava, T. P. (2019). Cell and organ drug targeting. In Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00015-1
Gupta, A. K., & Wells, S. (2004). Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies. IEEE Transactions on Nanobioscience, 3(1), 66–73. https://doi.org/10.1109/TNB.2003.820277
Han, Q., Li, B., Feng, H., Xiao, Z., Chen, B., Zhao, Y., Huang, J., & Dai, J. (2011). The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials, 32(22), 5077–5085. https://doi.org/10.1016/j.biomaterials.2011.03.072
He, J., Huang, M., Wang, D., Zhang, Z., & Li, G. (2014). Magnetic separation techniques in sample preparation for biological analysis: A review. Journal of Pharmaceutical and Biomedical Analysis, 101, 84–101. https://doi.org/10.1016/j.jpba.2014.04.017
Heneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Heneka, M. (2015). Neuroinflammation in Alzheimer’s Disease HHS Public Access. Lancet Neurol, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
Hilger, I., Frühauf, S., Linß, W., Hiergeist, R., Andrä, W., Hergt, R., & Kaiser, W. A. (2003). Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. Journal of Magnetism and Magnetic Materials, 261(1–2), 7–12. https://doi.org/10.1016/S0304-8853(01)00258-X
Hirsch, E. C., Vyas, S., St´, S., & Hunot, S. (2012). Parkinsonism and Related Disorders 18S1 (2012) S210-S212. 1, 210–212. https://doi.org/10.1016/S1353-8020(11)70065-7
Husemann, J., Loike, J. D., Anankov, R., Febbraio, M., & Silverstein, S. C. (2002). Scavenger receptors in neurobiology and neuropathology: Their role on microglia and other cells of the nervous system. Glia, 40(2), 195–205. https://doi.org/10.1002/glia.10148
Issa, B., & M. Obaidat, I. (2019). Magnetic Nanoparticles as MRI Contrast Agents. Magnetic Resonance Imaging, 1–16. https://doi.org/10.5772/intechopen.84649
Iv, M., Telischak, N., Feng, D., Holdsworth, S. J., Yeom, K. W., & Daldrup-Link, H. E. (2015). Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 10(6), 993–1008. https://doi.org/10.2217/nnm.14.203
Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(12), 2699–2711. https://doi.org/10.1080/10934520600966177
Ji, K., & Tsirka, S. E. (2012a). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9, 1–12. https://doi.org/10.1186/1742-2094-9-159
Ji, K., & Tsirka, S. E. (2012b). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9(1), 610. https://doi.org/10.1186/1742-2094-9-159
Jo, D. H., Kim, J. H., Lee, T. G., & Kim, J. H. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(7), 1603–1611. https://doi.org/10.1016/j.nano.2015.04.015
Kandelaki, E., Kavlashvili, N., Kherkheulidze, M., & Chkhaidze, I. (2015). Prevalence of Atopic Dermatitis Symptoms in Children With Developmental and Behavioral Problems. Georgian Medical News, 6(243), 29–33.
Karina, J., & Sanchez, V. (2013). IN VIVO PEPTIDE BIOMARKER SCREENING FOR MOLECULAR IMAGING IN EAE NEUROINFLAMMATION. the Bordeaux Segalen University.
Karlik, S. J., Roscoe, W. A., Patinote, C., & Contino-pépin, C. (2012). Targeting Vascular Changes in Lesions in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. 7–14.
Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science and Technology, 43(12), 4555–4560. https://doi.org/10.1021/es9006383
Kharisov, B. I., Rasika Dias, H. V., Kharissova, O. V., Manuel Jiménez-Pérez, V., Olvera Pérez, B., & Muñoz Flores, B. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325. https://doi.org/10.1039/c2ra20812a
Kiliç, G., Fernández-Bertólez, N., Costa, C., Brandão, F., Teixeira, J. P., Pásaro, E., Laffon, B., & Valdiglesias, V. (2016). The Application, Neurotoxicity, and Related Mechanism of Iron Oxide Nanoparticles. In Neurotoxicity of Nanomaterials and Nanomedicine. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804598-5.00006-4
Koffie, R. M., Farrar, C. T., Saidi, L. J., William, C. M., Hyman, B. T., & Spires-Jones, T. L. (2011). Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18837–18842. https://doi.org/10.1073/pnas.1111405108
Krishnan, K. M. (2010). Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Transactions on Magnetics, 46(7), 2523–2558. https://doi.org/10.1109/TMAG.2010.2046907
Lewczuk, P., Mroczko, B., Fagan, A., & Kornhuber, J. (2015). Biomarkers of Alzheimer’s disease and mild cognitive impairment: A current perspective. Advances in Medical Sciences, 60(1), 76–82. https://doi.org/10.1016/j.advms.2014.11.002
Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 7(1), 9894. https://doi.org/10.1038/s41598-017-09897-5
Lombardo, S. M., Schneider, M., Türeli, A. E., & Türeli, N. G. (2020). Key for crossing the BBB with nanoparticles: The rational design. Beilstein Journal of Nanotechnology, 11(866), 866–883. https://doi.org/10.3762/BJNANO.11.72
Lourenço, I. M., Pieretti, J. C., Nascimento, M. H. M., Lombello, C. B., & Seabra, A. B. (2019). Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines. Energy, Ecology and Environment, 4(6), 261–270. https://doi.org/10.1007/s40974-019-00134-5
Lucchinetti, C. F. (2008). Multiple sclerosis and the spectrum of CNS inflammatory demyelinating diseases. Seminars in Neurology, 28(1), 3–6. https://doi.org/10.1055/s-2007-1019123
Luo, B., Song, X. J., Zhang, F., Xia, A., Yang, W. L., Hu, J. H., & Wang, C. C. (2010). Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. In Langmuir (Vol. 26, Issue 3, pp. 1674–1679). https://doi.org/10.1021/la902635k
Mahmoudi, M., Simchi, A., & Imani, M. (2009). Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. Journal of Physical Chemistry C, 113(22), 9573–9580. https://doi.org/10.1021/jp9001516
Maldonado-Camargo, L., Unni, M., & Rinaldi, C. (2017). Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications (pp. 47–71). https://doi.org/10.1007/978-1-4939-6840-4_4
Mathieu, Coppel, Respaud, Nguyen, Boutry, Laurent, Stanicki, Henoumont, Novio, Lorenzo, Montpeyó, & Amiens. (2019). Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T2 Weighted Magnetic Resonance Imaging. Molecules, 24(24), 4629. https://doi.org/10.3390/molecules24244629
McAteer, M. A., Sibson, N. R., von zur Muhlen, C., Schneider, J. E., Lowe, A. S., Warrick, N., Channon, K. M., Anthony, D. C., & Choudhury, R. P. (2007). In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nature Medicine, 13(10), 1253–1258. https://doi.org/10.1038/nm1631
McConnell, H. L., Schwartz, D. L., Richardson, B. E., Woltjer, R. L., Muldoon, L. L., & Neuwelt, E. A. (2016). Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(6), 1535–1542. https://doi.org/10.1016/j.nano.2016.03.009
McQualter, J. L., & Bernard, C. C. A. (2007). Multiple sclerosis: A battle between destruction and repair. Journal of Neurochemistry, 100(2), 295–306. https://doi.org/10.1111/j.1471-4159.2006.04232.x
Menezes, M. J., McClenahan, F. K., Leiton, C. V., Aranmolate, A., Shan, X., & Colognato, H. (2014). The Extracellular Matrix Protein Laminin 2 Regulates the Maturation and Function of the Blood-Brain Barrier. Journal of Neuroscience, 34(46), 15260–15280. https://doi.org/10.1523/JNEUROSCI.3678-13.2014
Millward, J. M., Schnorr, J., Taupitz, M., Wagner, S., Wuerfel, J. T., & Infante-Duarte, C. (2013). Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation. ASN Neuro, 5(2), 89–98. https://doi.org/10.1042/AN20120081
Miner, J. H., Li, C., Mudd, J. L., Go, G., & Sutherland, A. E. (2004). Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development, 131(10), 2247–2256. https://doi.org/10.1242/dev.01112
Mirzaei, S., Hadadi, Z., Attar, F., Mousavi, S. E., Zargar, S. S., Tajik, A., Saboury, A. A., Rezayat, S. M., & Falahati, M. (2018). ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics, 36(16), 4235–4245. https://doi.org/10.1080/07391102.2017.1411832
Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-Circulating and Target-Specific Nanoparticles : Theory to Practice. 53(2), 283–318.
Moura, M. De, & Houten, B. Van. (2010). Review Article. Environmental and Molecular Mutagenesis, 405(April), 391–405. https://doi.org/10.1002/em
Naegele, M., & Martin, R. (2014). The good and the bad of neuroinflammation in multiple sclerosis. In Handbook of Clinical Neurology (1st ed., Vol. 122, Issue 0). Elsevier B.V. https://doi.org/10.1016/B978-0-444-52001-2.00003-0
Neuberger, T., Scho, B., Hofmann, M., & Rechenberg, B. Von. (2005). Superparamagnetic nanoparticles for biomedical applications : Possibilities and limitations of a new drug delivery system. 293, 483–496. https://doi.org/10.1016/j.jmmm.2005.01.064
Nirwane, A., & Yao, Y. (2019). Laminins and their receptors in the CNS. Biological Reviews, 94(1), 283–306. https://doi.org/10.1111/brv.12454
Patil, R. M., Thorat, N. D., Shete, P. B., & Bedge, P. A. (2018). Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports, 13(December 2017), 63–72. https://doi.org/10.1016/j.bbrep.2017.12.002
Petry, K. G., Boiziau, C., Dousset, V., & Brochet, B. (2007). Magnetic Resonance Imaging of Human Brain Macrophage Infiltration. Neurotherapeutics, 4(3), 434–442. https://doi.org/10.1016/j.nurt.2007.05.005
Petry, K., VARGAS-SANCHEZ, K., & VEKRIS, A. (2016). DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomarker Insights, 19.https://doi.org/10.4137/BMI.S32188
Quenault, A., Martinez de Lizarrondo, S., Etard, O., Gauberti, M., Orset, C., Haelewyn, B., Segal, H. C., Rothwell, P. M., Vivien, D., Touzé, E., & Ali, C. (2017). Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain : A Journal of Neurology, 140(1), 146–157. https://doi.org/10.1093/brain/aww260
Ramge, P., Petrov, V., Hamm, S., Gelperina, S. E., Engelhardt, B., Alyautdin, R., Von, H., & Begley, D. J. (2003). Direct Evidence that Poly ( Butylcyanoacrylate ) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles. Pharmaceutical Research, 20(3), 409–416.
Roco, M. C. (2011). Erratum to: The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years (Journal of Nanoparticle Research (2011) 13, (427-445) DOI: 10.1007/s11051-010-0192-z). Journal of Nanoparticle Research, 13(3), 1335. https://doi.org/10.1007/s11051-011-0323-1
Rojas, H. A., Martínez, J. J., & Vargas, A. Y. (2014). Selección de soportes magnéticos para la inmovilización de Ureasa Magnetic supports selection for Urease inmobilization. Ingeniería y Competitividad, 296(2), 289–296. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332014000200026
Schéele, S., Nyström, A., Durbeej, M., Talts, J. F., Ekblom, M., & Ekblom, P. (2007). Laminin isoforms in development and disease. Journal of Molecular Medicine, 85(8), 825–836. https://doi.org/10.1007/s00109-007-0182-5
Sharifi, S., Seyednejad, H., Laurent, S., Atyabi, F., Saei, A. A., & Mahmoudi, M. (2015). Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media and Molecular Imaging, 10(5), 329–355. https://doi.org/10.1002/cmmi.1638
Sicotte, N. L. (2011). Neuroimaging in Multiple Sclerosis : Neurotherapeutic Implications. 8(January), 54–62. https://doi.org/10.1007/s13311-010-0008-y
Song, J., Zhang, X., Buscher, K., Wang, Y., Wang, H., Di Russo, J., Li, L., Lütke-Enking, S., Zarbock, A., Stadtmann, A., Striewski, P., Wirth, B., Kuzmanov, I., Wiendl, H., Schulte, D., Vestweber, D., & Sorokin, L. (2017). Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Reports, 18(5), 1256–1269. https://doi.org/10.1016/j.celrep.2016.12.092
Stoll, G., & Bendszus, M. (2009). Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience, 158(3), 1151–1160. https://doi.org/10.1016/j.neuroscience.2008.06.045
Van Rooy, I., Cakir-Tascioglu, S., Couraud, P. O., Romero, I. A., Weksler, B., Storm, G., Hennink, W. E., Schiffelers, R. M., & Mastrobattista, E. (2010). Identification of peptide ligands for targeting to the blood-brain barrier. Pharmaceutical Research, 27(4), 673–682. https://doi.org/10.1007/s11095-010-0053-6
Van Rooy, I., Cakir-Tascioglu, S., Hennink, W. E., Storm, G., Schiffelers, R. M., & Mastrobattista, E. (2011). In vivo methods to study uptake of nanoparticles into the brain. Pharmaceutical Research, 28(3), 456–471. https://doi.org/10.1007/s11095-010-0291-7
Varatharaj, A., & Galea, I. (2017). The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity, 60, 1–12. https://doi.org/10.1016/j.bbi.2016.03.010
Vellinga, M. M., Oude Engberink, R. D., Seewann, A., Pouwels, P. J. W., Wattjes, M. P., Van Der Pol, S. M. A., Pering, C., Polman, C. H., De Vries, H. E., Geurts, J. J. G., & Barkhof, F. (2008). Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain, 131(3), 800–807. https://doi.org/10.1093/brain/awn009
Wahajuddin, & Arora. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 3445. https://doi.org/10.2147/IJN.S30320
Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H., & Josephson, L. (1990). Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology, 175(2), 489–493. https://doi.org/10.1148/radiology.175.2.2326474
Willner, I., & Willner, B. (2002). Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure and Applied Chemistry, 74(9), 1773–1783.
Wong, H. L., Wu, X. Y., & Bendayan, R. (2012a). Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews, 64(7), 686–700. https://doi.org/10.1016/j.addr.2011.10.007
Wong, H. L., Wu, X. Y., & Bendayan, R. (2012b). Nanotechnological advances for the delivery of CNS therapeutics. In Advanced Drug Delivery Reviews (Vol. 64, Issue 7, pp. 686–700). https://doi.org/10.1016/j.addr.2011.10.007
Xiao, Y. (2019). Superparamagnetic nanoparticles for biomedical applications. https://doi.org/10.1039/c9tb01955c
Yi, P., Chen, G., Zhang, H., Tian, F., Tan, B., Dai, J., Wang, Q., & Deng, Z. (2013). Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials, 34(12), 3010–3019. https://doi.org/10.1016/j.biomaterials.2013.01.022
Zaharchuk, G. (2007). Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. American Journal of Neuroradiology, 28(10), 1850–1858. https://doi.org/10.3174/ajnr.A0831
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/1494
identifier_str_mv Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7(1), 41–53. https://doi.org/10.1038/nrn1824
Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. https://doi.org/10.2147/NSA.S99986
Alvear, D., Galeas, S., & Debut, A. (2017). Síntesis y Caracterización de Nanopartículas de Magnetita. Revista Politécnica, 39(2), 61–66. https://doi.org/10.33333/rp.v39i2.545
Balistreri, C. R., Carruba, G., Calabrò, M., Campisi, I., Carlo, D. Di, Lio, D., Colonna-Romano, G., Candore, G., & Caruso, C. (2009). CCR5 proinflammatory allele in prostate cancer risk: A pilot study in patients and centenarians from sicily. Annals of the New York Academy of Sciences, 1155, 289–292. https://doi.org/10.1111/j.1749-6632.2008.03691.x
Barkhof, F., Calabresi, P. A., Miller, D. H., & Reingold, S. C. (2009). Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nature Reviews Neurology, 5(5), 256–266. https://doi.org/10.1038/nrneurol.2009.41
Berger, C., Hiestand, P., Kindler-Baumann, D., Rudin, M., & Rausch, M. (2006). Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR in Biomedicine, 19(1), 101–107. https://doi.org/10.1002/nbm.1007
Berry, C. C. (2005). Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. Journal of Materials Chemistry, 15(5), 543–547. https://doi.org/10.1039/b409715g
Boiziau, C., Nikolski, M., Mordelet, E., Aussudre, J., Vargas-Sanchez, K., & Petry, K. G. (2018). A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis. Inflammation, 41(3), 932–947. https://doi.org/10.1007/s10753-018-0748-0
by Dove Press, published. (2014). Oh NPark J. 51–63. http://dx.doi.org/10.2147/IJN.S26592
Chen, Fang, Hableel, G., Zhao, E. R., & Jokerst, J. V. (2018). Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. Journal of Colloid and Interface Science, 521, 261–279. https://doi.org/10.1016/j.jcis.2018.02.053
Chen, Feng, Bu, W., Chen, Y., Fan, Y., He, Q., Zhu, M., Liu, X., Zhou, L., Zhang, S., Peng, W., & Shi, J. (2009). A Sub-50-nm Monosized Superparamagnetic Fe 3 O 4 @SiO 2 T 2 -Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core-Shell Nanostructures. Chemistry - An Asian Journal, 4(12), 1809–1816. https://doi.org/10.1002/asia.200900276
Zhang, L., Shao, H. ping, Zheng, H., Lin, T., & Guo, Z. meng. (2016). Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. International Journal of Minerals, Metallurgy and Materials, 23(9), 1112–1118. https://doi.org/10.1007/s12613-016-1329-6
Zhang, S., Li, J., Lykotrafitis, G., Bao, G., & Suresh, S. (2009). Size-dependent endocytosis of nanoparticles. Advanced Materials, 21(4), 419–424. https://doi.org/10.1002/adma.200801393
Zinnhardt, B., Wiesmann, M., Honold, L., Barca, C., Schäfers, M., Kiliaan, A. J., & Jacobs, A. H. (2018). In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics, 8(10), 2603–2620. https://doi.org/10.7150/thno.24128
Zlokovic, B. V. (2008). Review The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. 2, 178–201. https://doi.org/10.1016/j.neuron.2008.01.003
Costa, C., Brandão, F., Bessa, M. J., Costa, S., Valdiglesias, V., Kiliç, G., Fernández-Bertólez, N., Quaresma, P., Pereira, E., Pásaro, E., Laffon, B., & Teixeira, J. P. (2016). In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. Journal of Applied Toxicology, 36(3), 361–372. https://doi.org/10.1002/jat.3213
Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412
Deutscher, S. L. (2010). Phage display in molecular imaging and diagnosis of cancer. Chemical Reviews, 110(5), 3196–3211. https://doi.org/10.1021/cr900317f
Di Russo, J., Luik, A., Yousif, L., Budny, S., Oberleithner, H., Hofschröer, V., Klingauf, J., Bavel, E., Bakker, E. N., Hellstrand, P., Bhattachariya, A., Albinsson, S., Pincet, F., Hallmann, R., & Sorokin, L. M. (2017). Endothelial basement membrane laminin 511 is essential for shear stress response. The EMBO Journal, 36(2), 183–201. https://doi.org/10.15252/embj.201694756
Di Virgilio, F., Ceruti, S., Bramanti, P., & Abbracchio, M. P. (2009). Purinergic signalling in inflammation of the central nervous system. Trends in Neurosciences, 32(2), 79–87. https://doi.org/10.1016/j.tins.2008.11.003
Dijkhuizen, R. M. (2011). Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury. Translational Stroke Research, 2(4), 524–532. https://doi.org/10.1007/s12975-011-0130-0
Dijkhuizen, R. M., & Nicolay, K. (2003). Magnetic Resonance Imaging in Experimental Models of Brain Disorders. Journal of Cerebral Blood Flow and Metabolism, 23(12), 1383–1402. https://doi.org/10.1097/01.WCB.0000100341.78607.EB
Ding, H. L., Zhang, Y. X., Wang, S., Xu, J. M., Xu, S. C., & Li, G. H. (2012). Fe 3 O 4 @SiO 2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chemistry of Materials, 24(23), 4572–4580. https://doi.org/10.1021/cm302828d
Domogatskaya, A., Rodin, S., & Tryggvason, K. (2012). Functional diversity of laminins. Annual Review of Cell and Developmental Biology, 28, 523–553. https://doi.org/10.1146/annurev-cellbio-101011-155750
Dousset, V., Brochet, B., Deloire, M. S. A., Lagoarde, L., Barroso, B., Caille, J. M., & Petry, K. G. (2006). MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. American Journal of Neuroradiology, 27(5), 1000–1005.
Dresco, P. A., Zaitsev, V. S., Gambino, R. J., & Chu, B. (1999). Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir, 15(6), 1945–1951. https://doi.org/10.1021/la980971g
Engelhardt, B., & Ransohoff, R. M. (2012). Capture, crawl, cross: The T cell code to breach the blood-brain barriers. Trends in Immunology, 33(12), 579–589. https://doi.org/10.1016/j.it.2012.07.004
Estelrich, J., Escribano, E., Queralt, J., & Busquets, M. A. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International Journal of Molecular Sciences, 16(4), 8070–8101. https://doi.org/10.3390/ijms16048070
Estrada-rojo, F., Escoto, S. I., & Navarro, L. (2018). Neuroin amación : el ying-yang de la neuroinmunología. 44–53. http://www.scielo.org.mx/pdf/facmed/v61n5/2448-4865-facmed-61-05-44.pdf
Filippi, M., Preziosa, P., & Rocca, M. A. (2014). Magnetic resonance outcome measures in multiple sclerosis trials: Time to rethink? Current Opinion in Neurology, 27(3), 290–299. https://doi.org/10.1097/WCO.0000000000000095
Floris, S., Blezer, E. L. A., Schreibelt, G., Do, E., Dijkstra, K. N. C. D., & Vries, H. E. De. (2004). Blood ± brain barrier permeability and monocyte in ® ltration in experimental allergic encephalomyelitis A quantitative MRI study. 127(3), 616–627. https://doi.org/10.1093/brain/awh068
Garre Olmo, J. (2018). Epidemiología de la enfermedad de Alzheimer y otras demencias. Revista de Neurología, 66(11), 377. https://doi.org/10.33588/rn.6611.2017519
Gauberti, M., Montagne, A., Marcos-Contreras, O. A., Le Béhot, A., Maubert, E., & Vivien, D. (2013). Ultra-Sensitive Molecular MRI of Vascular Cell Adhesion Molecule-1 Reveals a Dynamic Inflammatory Penumbra After Strokes. Stroke, 44(7), 1988–1996. https://doi.org/10.1161/STROKEAHA.111.000544
Gendelman, H. E. (2002). Neural immunity: Friend or foe? Journal of NeuroVirology, 8(6), 474–479. https://doi.org/10.1080/13550280290168631
Ghosh, D., Upmanyu, N., Shukla, T., & Shrivastava, T. P. (2019). Cell and organ drug targeting. In Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00015-1
Gupta, A. K., & Wells, S. (2004). Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies. IEEE Transactions on Nanobioscience, 3(1), 66–73. https://doi.org/10.1109/TNB.2003.820277
Han, Q., Li, B., Feng, H., Xiao, Z., Chen, B., Zhao, Y., Huang, J., & Dai, J. (2011). The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials, 32(22), 5077–5085. https://doi.org/10.1016/j.biomaterials.2011.03.072
He, J., Huang, M., Wang, D., Zhang, Z., & Li, G. (2014). Magnetic separation techniques in sample preparation for biological analysis: A review. Journal of Pharmaceutical and Biomedical Analysis, 101, 84–101. https://doi.org/10.1016/j.jpba.2014.04.017
Heneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Heneka, M. (2015). Neuroinflammation in Alzheimer’s Disease HHS Public Access. Lancet Neurol, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5
Hilger, I., Frühauf, S., Linß, W., Hiergeist, R., Andrä, W., Hergt, R., & Kaiser, W. A. (2003). Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. Journal of Magnetism and Magnetic Materials, 261(1–2), 7–12. https://doi.org/10.1016/S0304-8853(01)00258-X
Hirsch, E. C., Vyas, S., St´, S., & Hunot, S. (2012). Parkinsonism and Related Disorders 18S1 (2012) S210-S212. 1, 210–212. https://doi.org/10.1016/S1353-8020(11)70065-7
Husemann, J., Loike, J. D., Anankov, R., Febbraio, M., & Silverstein, S. C. (2002). Scavenger receptors in neurobiology and neuropathology: Their role on microglia and other cells of the nervous system. Glia, 40(2), 195–205. https://doi.org/10.1002/glia.10148
Issa, B., & M. Obaidat, I. (2019). Magnetic Nanoparticles as MRI Contrast Agents. Magnetic Resonance Imaging, 1–16. https://doi.org/10.5772/intechopen.84649
Iv, M., Telischak, N., Feng, D., Holdsworth, S. J., Yeom, K. W., & Daldrup-Link, H. E. (2015). Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 10(6), 993–1008. https://doi.org/10.2217/nnm.14.203
Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(12), 2699–2711. https://doi.org/10.1080/10934520600966177
Ji, K., & Tsirka, S. E. (2012a). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9, 1–12. https://doi.org/10.1186/1742-2094-9-159
Ji, K., & Tsirka, S. E. (2012b). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9(1), 610. https://doi.org/10.1186/1742-2094-9-159
Jo, D. H., Kim, J. H., Lee, T. G., & Kim, J. H. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(7), 1603–1611. https://doi.org/10.1016/j.nano.2015.04.015
Kandelaki, E., Kavlashvili, N., Kherkheulidze, M., & Chkhaidze, I. (2015). Prevalence of Atopic Dermatitis Symptoms in Children With Developmental and Behavioral Problems. Georgian Medical News, 6(243), 29–33.
Karina, J., & Sanchez, V. (2013). IN VIVO PEPTIDE BIOMARKER SCREENING FOR MOLECULAR IMAGING IN EAE NEUROINFLAMMATION. the Bordeaux Segalen University.
Karlik, S. J., Roscoe, W. A., Patinote, C., & Contino-pépin, C. (2012). Targeting Vascular Changes in Lesions in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. 7–14.
Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science and Technology, 43(12), 4555–4560. https://doi.org/10.1021/es9006383
Kharisov, B. I., Rasika Dias, H. V., Kharissova, O. V., Manuel Jiménez-Pérez, V., Olvera Pérez, B., & Muñoz Flores, B. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325. https://doi.org/10.1039/c2ra20812a
Kiliç, G., Fernández-Bertólez, N., Costa, C., Brandão, F., Teixeira, J. P., Pásaro, E., Laffon, B., & Valdiglesias, V. (2016). The Application, Neurotoxicity, and Related Mechanism of Iron Oxide Nanoparticles. In Neurotoxicity of Nanomaterials and Nanomedicine. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804598-5.00006-4
Koffie, R. M., Farrar, C. T., Saidi, L. J., William, C. M., Hyman, B. T., & Spires-Jones, T. L. (2011). Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18837–18842. https://doi.org/10.1073/pnas.1111405108
Krishnan, K. M. (2010). Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Transactions on Magnetics, 46(7), 2523–2558. https://doi.org/10.1109/TMAG.2010.2046907
Lewczuk, P., Mroczko, B., Fagan, A., & Kornhuber, J. (2015). Biomarkers of Alzheimer’s disease and mild cognitive impairment: A current perspective. Advances in Medical Sciences, 60(1), 76–82. https://doi.org/10.1016/j.advms.2014.11.002
Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 7(1), 9894. https://doi.org/10.1038/s41598-017-09897-5
Lombardo, S. M., Schneider, M., Türeli, A. E., & Türeli, N. G. (2020). Key for crossing the BBB with nanoparticles: The rational design. Beilstein Journal of Nanotechnology, 11(866), 866–883. https://doi.org/10.3762/BJNANO.11.72
Lourenço, I. M., Pieretti, J. C., Nascimento, M. H. M., Lombello, C. B., & Seabra, A. B. (2019). Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines. Energy, Ecology and Environment, 4(6), 261–270. https://doi.org/10.1007/s40974-019-00134-5
Lucchinetti, C. F. (2008). Multiple sclerosis and the spectrum of CNS inflammatory demyelinating diseases. Seminars in Neurology, 28(1), 3–6. https://doi.org/10.1055/s-2007-1019123
Luo, B., Song, X. J., Zhang, F., Xia, A., Yang, W. L., Hu, J. H., & Wang, C. C. (2010). Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. In Langmuir (Vol. 26, Issue 3, pp. 1674–1679). https://doi.org/10.1021/la902635k
Mahmoudi, M., Simchi, A., & Imani, M. (2009). Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. Journal of Physical Chemistry C, 113(22), 9573–9580. https://doi.org/10.1021/jp9001516
Maldonado-Camargo, L., Unni, M., & Rinaldi, C. (2017). Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications (pp. 47–71). https://doi.org/10.1007/978-1-4939-6840-4_4
Mathieu, Coppel, Respaud, Nguyen, Boutry, Laurent, Stanicki, Henoumont, Novio, Lorenzo, Montpeyó, & Amiens. (2019). Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T2 Weighted Magnetic Resonance Imaging. Molecules, 24(24), 4629. https://doi.org/10.3390/molecules24244629
McAteer, M. A., Sibson, N. R., von zur Muhlen, C., Schneider, J. E., Lowe, A. S., Warrick, N., Channon, K. M., Anthony, D. C., & Choudhury, R. P. (2007). In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nature Medicine, 13(10), 1253–1258. https://doi.org/10.1038/nm1631
McConnell, H. L., Schwartz, D. L., Richardson, B. E., Woltjer, R. L., Muldoon, L. L., & Neuwelt, E. A. (2016). Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(6), 1535–1542. https://doi.org/10.1016/j.nano.2016.03.009
McQualter, J. L., & Bernard, C. C. A. (2007). Multiple sclerosis: A battle between destruction and repair. Journal of Neurochemistry, 100(2), 295–306. https://doi.org/10.1111/j.1471-4159.2006.04232.x
Menezes, M. J., McClenahan, F. K., Leiton, C. V., Aranmolate, A., Shan, X., & Colognato, H. (2014). The Extracellular Matrix Protein Laminin 2 Regulates the Maturation and Function of the Blood-Brain Barrier. Journal of Neuroscience, 34(46), 15260–15280. https://doi.org/10.1523/JNEUROSCI.3678-13.2014
Millward, J. M., Schnorr, J., Taupitz, M., Wagner, S., Wuerfel, J. T., & Infante-Duarte, C. (2013). Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation. ASN Neuro, 5(2), 89–98. https://doi.org/10.1042/AN20120081
Miner, J. H., Li, C., Mudd, J. L., Go, G., & Sutherland, A. E. (2004). Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development, 131(10), 2247–2256. https://doi.org/10.1242/dev.01112
Mirzaei, S., Hadadi, Z., Attar, F., Mousavi, S. E., Zargar, S. S., Tajik, A., Saboury, A. A., Rezayat, S. M., & Falahati, M. (2018). ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics, 36(16), 4235–4245. https://doi.org/10.1080/07391102.2017.1411832
Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-Circulating and Target-Specific Nanoparticles : Theory to Practice. 53(2), 283–318.
Moura, M. De, & Houten, B. Van. (2010). Review Article. Environmental and Molecular Mutagenesis, 405(April), 391–405. https://doi.org/10.1002/em
Naegele, M., & Martin, R. (2014). The good and the bad of neuroinflammation in multiple sclerosis. In Handbook of Clinical Neurology (1st ed., Vol. 122, Issue 0). Elsevier B.V. https://doi.org/10.1016/B978-0-444-52001-2.00003-0
Neuberger, T., Scho, B., Hofmann, M., & Rechenberg, B. Von. (2005). Superparamagnetic nanoparticles for biomedical applications : Possibilities and limitations of a new drug delivery system. 293, 483–496. https://doi.org/10.1016/j.jmmm.2005.01.064
Nirwane, A., & Yao, Y. (2019). Laminins and their receptors in the CNS. Biological Reviews, 94(1), 283–306. https://doi.org/10.1111/brv.12454
Patil, R. M., Thorat, N. D., Shete, P. B., & Bedge, P. A. (2018). Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports, 13(December 2017), 63–72. https://doi.org/10.1016/j.bbrep.2017.12.002
Petry, K. G., Boiziau, C., Dousset, V., & Brochet, B. (2007). Magnetic Resonance Imaging of Human Brain Macrophage Infiltration. Neurotherapeutics, 4(3), 434–442. https://doi.org/10.1016/j.nurt.2007.05.005
Petry, K., VARGAS-SANCHEZ, K., & VEKRIS, A. (2016). DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomarker Insights, 19.https://doi.org/10.4137/BMI.S32188
Quenault, A., Martinez de Lizarrondo, S., Etard, O., Gauberti, M., Orset, C., Haelewyn, B., Segal, H. C., Rothwell, P. M., Vivien, D., Touzé, E., & Ali, C. (2017). Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain : A Journal of Neurology, 140(1), 146–157. https://doi.org/10.1093/brain/aww260
Ramge, P., Petrov, V., Hamm, S., Gelperina, S. E., Engelhardt, B., Alyautdin, R., Von, H., & Begley, D. J. (2003). Direct Evidence that Poly ( Butylcyanoacrylate ) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles. Pharmaceutical Research, 20(3), 409–416.
Roco, M. C. (2011). Erratum to: The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years (Journal of Nanoparticle Research (2011) 13, (427-445) DOI: 10.1007/s11051-010-0192-z). Journal of Nanoparticle Research, 13(3), 1335. https://doi.org/10.1007/s11051-011-0323-1
Rojas, H. A., Martínez, J. J., & Vargas, A. Y. (2014). Selección de soportes magnéticos para la inmovilización de Ureasa Magnetic supports selection for Urease inmobilization. Ingeniería y Competitividad, 296(2), 289–296. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332014000200026
Schéele, S., Nyström, A., Durbeej, M., Talts, J. F., Ekblom, M., & Ekblom, P. (2007). Laminin isoforms in development and disease. Journal of Molecular Medicine, 85(8), 825–836. https://doi.org/10.1007/s00109-007-0182-5
Sharifi, S., Seyednejad, H., Laurent, S., Atyabi, F., Saei, A. A., & Mahmoudi, M. (2015). Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media and Molecular Imaging, 10(5), 329–355. https://doi.org/10.1002/cmmi.1638
Sicotte, N. L. (2011). Neuroimaging in Multiple Sclerosis : Neurotherapeutic Implications. 8(January), 54–62. https://doi.org/10.1007/s13311-010-0008-y
Song, J., Zhang, X., Buscher, K., Wang, Y., Wang, H., Di Russo, J., Li, L., Lütke-Enking, S., Zarbock, A., Stadtmann, A., Striewski, P., Wirth, B., Kuzmanov, I., Wiendl, H., Schulte, D., Vestweber, D., & Sorokin, L. (2017). Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Reports, 18(5), 1256–1269. https://doi.org/10.1016/j.celrep.2016.12.092
Stoll, G., & Bendszus, M. (2009). Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience, 158(3), 1151–1160. https://doi.org/10.1016/j.neuroscience.2008.06.045
Van Rooy, I., Cakir-Tascioglu, S., Couraud, P. O., Romero, I. A., Weksler, B., Storm, G., Hennink, W. E., Schiffelers, R. M., & Mastrobattista, E. (2010). Identification of peptide ligands for targeting to the blood-brain barrier. Pharmaceutical Research, 27(4), 673–682. https://doi.org/10.1007/s11095-010-0053-6
Van Rooy, I., Cakir-Tascioglu, S., Hennink, W. E., Storm, G., Schiffelers, R. M., & Mastrobattista, E. (2011). In vivo methods to study uptake of nanoparticles into the brain. Pharmaceutical Research, 28(3), 456–471. https://doi.org/10.1007/s11095-010-0291-7
Varatharaj, A., & Galea, I. (2017). The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity, 60, 1–12. https://doi.org/10.1016/j.bbi.2016.03.010
Vellinga, M. M., Oude Engberink, R. D., Seewann, A., Pouwels, P. J. W., Wattjes, M. P., Van Der Pol, S. M. A., Pering, C., Polman, C. H., De Vries, H. E., Geurts, J. J. G., & Barkhof, F. (2008). Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain, 131(3), 800–807. https://doi.org/10.1093/brain/awn009
Wahajuddin, & Arora. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 3445. https://doi.org/10.2147/IJN.S30320
Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H., & Josephson, L. (1990). Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology, 175(2), 489–493. https://doi.org/10.1148/radiology.175.2.2326474
Willner, I., & Willner, B. (2002). Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure and Applied Chemistry, 74(9), 1773–1783.
Wong, H. L., Wu, X. Y., & Bendayan, R. (2012a). Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews, 64(7), 686–700. https://doi.org/10.1016/j.addr.2011.10.007
Wong, H. L., Wu, X. Y., & Bendayan, R. (2012b). Nanotechnological advances for the delivery of CNS therapeutics. In Advanced Drug Delivery Reviews (Vol. 64, Issue 7, pp. 686–700). https://doi.org/10.1016/j.addr.2011.10.007
Xiao, Y. (2019). Superparamagnetic nanoparticles for biomedical applications. https://doi.org/10.1039/c9tb01955c
Yi, P., Chen, G., Zhang, H., Tian, F., Tan, B., Dai, J., Wang, Q., & Deng, Z. (2013). Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials, 34(12), 3010–3019. https://doi.org/10.1016/j.biomaterials.2013.01.022
Zaharchuk, G. (2007). Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. American Journal of Neuroradiology, 28(10), 1850–1858. https://doi.org/10.3174/ajnr.A0831
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Bioquímica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/a76079ee-bcee-49b3-814d-4949dfa01f94/download
https://repositorio.uan.edu.co/bitstreams/5e6b5a25-d0c5-4104-a608-e707c09dca6a/download
https://repositorio.uan.edu.co/bitstreams/806503b4-c28c-429e-8e66-752bc84a7c5e/download
https://repositorio.uan.edu.co/bitstreams/ccc4de97-ab5a-408b-b7d5-9021f8e35c55/download
bitstream.checksum.fl_str_mv c6346eaff178d3c866defdfdecdb412b
f3dd3e5e8c6a50c3ab77dfbb2f87911b
9868ccc48a14c8d591352b6eaf7f6239
2e388663398085f69421c9e4c5fcf235
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300318897274880
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Losada Barragán, MónicaLlamosa Pérez, DanielMedina Castillo, Yehidi Julieth10306494172021-02-18T18:33:52Z2021-02-18T18:33:52Z2020-11-18http://repositorio.uan.edu.co/handle/123456789/1494Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7(1), 41–53. https://doi.org/10.1038/nrn1824Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A. R., Ali, J. S., & Hussain, A. (2016). Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications, 9, 49–67. https://doi.org/10.2147/NSA.S99986Alvear, D., Galeas, S., & Debut, A. (2017). Síntesis y Caracterización de Nanopartículas de Magnetita. Revista Politécnica, 39(2), 61–66. https://doi.org/10.33333/rp.v39i2.545Balistreri, C. R., Carruba, G., Calabrò, M., Campisi, I., Carlo, D. Di, Lio, D., Colonna-Romano, G., Candore, G., & Caruso, C. (2009). CCR5 proinflammatory allele in prostate cancer risk: A pilot study in patients and centenarians from sicily. Annals of the New York Academy of Sciences, 1155, 289–292. https://doi.org/10.1111/j.1749-6632.2008.03691.xBarkhof, F., Calabresi, P. A., Miller, D. H., & Reingold, S. C. (2009). Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nature Reviews Neurology, 5(5), 256–266. https://doi.org/10.1038/nrneurol.2009.41Berger, C., Hiestand, P., Kindler-Baumann, D., Rudin, M., & Rausch, M. (2006). Analysis of lesion development during acute inflammation and remission in a rat model of experimental autoimmune encephalomyelitis by visualization of macrophage infiltration, demyelination and blood-brain barrier damage. NMR in Biomedicine, 19(1), 101–107. https://doi.org/10.1002/nbm.1007Berry, C. C. (2005). Possible exploitation of magnetic nanoparticle-cell interaction for biomedical applications. Journal of Materials Chemistry, 15(5), 543–547. https://doi.org/10.1039/b409715gBoiziau, C., Nikolski, M., Mordelet, E., Aussudre, J., Vargas-Sanchez, K., & Petry, K. G. (2018). A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis. Inflammation, 41(3), 932–947. https://doi.org/10.1007/s10753-018-0748-0by Dove Press, published. (2014). Oh NPark J. 51–63. http://dx.doi.org/10.2147/IJN.S26592Chen, Fang, Hableel, G., Zhao, E. R., & Jokerst, J. V. (2018). Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. Journal of Colloid and Interface Science, 521, 261–279. https://doi.org/10.1016/j.jcis.2018.02.053Chen, Feng, Bu, W., Chen, Y., Fan, Y., He, Q., Zhu, M., Liu, X., Zhou, L., Zhang, S., Peng, W., & Shi, J. (2009). A Sub-50-nm Monosized Superparamagnetic Fe 3 O 4 @SiO 2 T 2 -Weighted MRI Contrast Agent: Highly Reproducible Synthesis of Uniform Single-Loaded Core-Shell Nanostructures. Chemistry - An Asian Journal, 4(12), 1809–1816. https://doi.org/10.1002/asia.200900276Zhang, L., Shao, H. ping, Zheng, H., Lin, T., & Guo, Z. meng. (2016). Synthesis and characterization of Fe3O4@SiO2 magnetic composite nanoparticles by a one-pot process. International Journal of Minerals, Metallurgy and Materials, 23(9), 1112–1118. https://doi.org/10.1007/s12613-016-1329-6Zhang, S., Li, J., Lykotrafitis, G., Bao, G., & Suresh, S. (2009). Size-dependent endocytosis of nanoparticles. Advanced Materials, 21(4), 419–424. https://doi.org/10.1002/adma.200801393Zinnhardt, B., Wiesmann, M., Honold, L., Barca, C., Schäfers, M., Kiliaan, A. J., & Jacobs, A. H. (2018). In vivo imaging biomarkers of neuroinflammation in the development and assessment of stroke therapies - towards clinical translation. Theranostics, 8(10), 2603–2620. https://doi.org/10.7150/thno.24128Zlokovic, B. V. (2008). Review The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. 2, 178–201. https://doi.org/10.1016/j.neuron.2008.01.003Costa, C., Brandão, F., Bessa, M. J., Costa, S., Valdiglesias, V., Kiliç, G., Fernández-Bertólez, N., Quaresma, P., Pereira, E., Pásaro, E., Laffon, B., & Teixeira, J. P. (2016). In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. Journal of Applied Toxicology, 36(3), 361–372. https://doi.org/10.1002/jat.3213Daneman, R., & Prat, A. (2015). The Blood–Brain Barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412Deutscher, S. L. (2010). Phage display in molecular imaging and diagnosis of cancer. Chemical Reviews, 110(5), 3196–3211. https://doi.org/10.1021/cr900317fDi Russo, J., Luik, A., Yousif, L., Budny, S., Oberleithner, H., Hofschröer, V., Klingauf, J., Bavel, E., Bakker, E. N., Hellstrand, P., Bhattachariya, A., Albinsson, S., Pincet, F., Hallmann, R., & Sorokin, L. M. (2017). Endothelial basement membrane laminin 511 is essential for shear stress response. The EMBO Journal, 36(2), 183–201. https://doi.org/10.15252/embj.201694756Di Virgilio, F., Ceruti, S., Bramanti, P., & Abbracchio, M. P. (2009). Purinergic signalling in inflammation of the central nervous system. Trends in Neurosciences, 32(2), 79–87. https://doi.org/10.1016/j.tins.2008.11.003Dijkhuizen, R. M. (2011). Advances in MRI-Based Detection of Cerebrovascular Changes after Experimental Traumatic Brain Injury. Translational Stroke Research, 2(4), 524–532. https://doi.org/10.1007/s12975-011-0130-0Dijkhuizen, R. M., & Nicolay, K. (2003). Magnetic Resonance Imaging in Experimental Models of Brain Disorders. Journal of Cerebral Blood Flow and Metabolism, 23(12), 1383–1402. https://doi.org/10.1097/01.WCB.0000100341.78607.EBDing, H. L., Zhang, Y. X., Wang, S., Xu, J. M., Xu, S. C., & Li, G. H. (2012). Fe 3 O 4 @SiO 2 Core/Shell Nanoparticles: The Silica Coating Regulations with a Single Core for Different Core Sizes and Shell Thicknesses. Chemistry of Materials, 24(23), 4572–4580. https://doi.org/10.1021/cm302828dDomogatskaya, A., Rodin, S., & Tryggvason, K. (2012). Functional diversity of laminins. Annual Review of Cell and Developmental Biology, 28, 523–553. https://doi.org/10.1146/annurev-cellbio-101011-155750Dousset, V., Brochet, B., Deloire, M. S. A., Lagoarde, L., Barroso, B., Caille, J. M., & Petry, K. G. (2006). MR imaging of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. American Journal of Neuroradiology, 27(5), 1000–1005.Dresco, P. A., Zaitsev, V. S., Gambino, R. J., & Chu, B. (1999). Preparation and properties of magnetite and polymer magnetite nanoparticles. Langmuir, 15(6), 1945–1951. https://doi.org/10.1021/la980971gEngelhardt, B., & Ransohoff, R. M. (2012). Capture, crawl, cross: The T cell code to breach the blood-brain barriers. Trends in Immunology, 33(12), 579–589. https://doi.org/10.1016/j.it.2012.07.004Estelrich, J., Escribano, E., Queralt, J., & Busquets, M. A. (2015). Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International Journal of Molecular Sciences, 16(4), 8070–8101. https://doi.org/10.3390/ijms16048070Estrada-rojo, F., Escoto, S. I., & Navarro, L. (2018). Neuroin amación : el ying-yang de la neuroinmunología. 44–53. http://www.scielo.org.mx/pdf/facmed/v61n5/2448-4865-facmed-61-05-44.pdfFilippi, M., Preziosa, P., & Rocca, M. A. (2014). Magnetic resonance outcome measures in multiple sclerosis trials: Time to rethink? Current Opinion in Neurology, 27(3), 290–299. https://doi.org/10.1097/WCO.0000000000000095Floris, S., Blezer, E. L. A., Schreibelt, G., Do, E., Dijkstra, K. N. C. D., & Vries, H. E. De. (2004). Blood ± brain barrier permeability and monocyte in ® ltration in experimental allergic encephalomyelitis A quantitative MRI study. 127(3), 616–627. https://doi.org/10.1093/brain/awh068Garre Olmo, J. (2018). Epidemiología de la enfermedad de Alzheimer y otras demencias. Revista de Neurología, 66(11), 377. https://doi.org/10.33588/rn.6611.2017519Gauberti, M., Montagne, A., Marcos-Contreras, O. A., Le Béhot, A., Maubert, E., & Vivien, D. (2013). Ultra-Sensitive Molecular MRI of Vascular Cell Adhesion Molecule-1 Reveals a Dynamic Inflammatory Penumbra After Strokes. Stroke, 44(7), 1988–1996. https://doi.org/10.1161/STROKEAHA.111.000544Gendelman, H. E. (2002). Neural immunity: Friend or foe? Journal of NeuroVirology, 8(6), 474–479. https://doi.org/10.1080/13550280290168631Ghosh, D., Upmanyu, N., Shukla, T., & Shrivastava, T. P. (2019). Cell and organ drug targeting. In Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00015-1Gupta, A. K., & Wells, S. (2004). Surface-Modified Superparamagnetic Nanoparticles for Drug Delivery: Preparation, Characterization, and Cytotoxicity Studies. IEEE Transactions on Nanobioscience, 3(1), 66–73. https://doi.org/10.1109/TNB.2003.820277Han, Q., Li, B., Feng, H., Xiao, Z., Chen, B., Zhao, Y., Huang, J., & Dai, J. (2011). The promotion of cerebral ischemia recovery in rats by laminin-binding BDNF. Biomaterials, 32(22), 5077–5085. https://doi.org/10.1016/j.biomaterials.2011.03.072He, J., Huang, M., Wang, D., Zhang, Z., & Li, G. (2014). Magnetic separation techniques in sample preparation for biological analysis: A review. Journal of Pharmaceutical and Biomedical Analysis, 101, 84–101. https://doi.org/10.1016/j.jpba.2014.04.017Heneka, M. T., Carson, M. J., Khoury, J. El, Landreth, G. E., Brosseron, F., Feinstein, D. L., Jacobs, A. H., Wyss-Coray, T., Vitorica, J., Ransohoff, R. M., Herrup, K., Frautschy, S. A., Finsen, B., Brown, G. C., Verkhratsky, A., Yamanaka, K., Koistinaho, J., Latz, E., Halle, A., … Heneka, M. (2015). Neuroinflammation in Alzheimer’s Disease HHS Public Access. Lancet Neurol, 14(4), 388–405. https://doi.org/10.1016/S1474-4422(15)70016-5Hilger, I., Frühauf, S., Linß, W., Hiergeist, R., Andrä, W., Hergt, R., & Kaiser, W. A. (2003). Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. Journal of Magnetism and Magnetic Materials, 261(1–2), 7–12. https://doi.org/10.1016/S0304-8853(01)00258-XHirsch, E. C., Vyas, S., St´, S., & Hunot, S. (2012). Parkinsonism and Related Disorders 18S1 (2012) S210-S212. 1, 210–212. https://doi.org/10.1016/S1353-8020(11)70065-7Husemann, J., Loike, J. D., Anankov, R., Febbraio, M., & Silverstein, S. C. (2002). Scavenger receptors in neurobiology and neuropathology: Their role on microglia and other cells of the nervous system. Glia, 40(2), 195–205. https://doi.org/10.1002/glia.10148Issa, B., & M. Obaidat, I. (2019). Magnetic Nanoparticles as MRI Contrast Agents. Magnetic Resonance Imaging, 1–16. https://doi.org/10.5772/intechopen.84649Iv, M., Telischak, N., Feng, D., Holdsworth, S. J., Yeom, K. W., & Daldrup-Link, H. E. (2015). Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine, 10(6), 993–1008. https://doi.org/10.2217/nnm.14.203Jeng, H. A., & Swanson, J. (2006). Toxicity of metal oxide nanoparticles in mammalian cells. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 41(12), 2699–2711. https://doi.org/10.1080/10934520600966177Ji, K., & Tsirka, S. E. (2012a). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9, 1–12. https://doi.org/10.1186/1742-2094-9-159Ji, K., & Tsirka, S. E. (2012b). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9(1), 610. https://doi.org/10.1186/1742-2094-9-159Jo, D. H., Kim, J. H., Lee, T. G., & Kim, J. H. (2015). Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 11(7), 1603–1611. https://doi.org/10.1016/j.nano.2015.04.015Kandelaki, E., Kavlashvili, N., Kherkheulidze, M., & Chkhaidze, I. (2015). Prevalence of Atopic Dermatitis Symptoms in Children With Developmental and Behavioral Problems. Georgian Medical News, 6(243), 29–33.Karina, J., & Sanchez, V. (2013). IN VIVO PEPTIDE BIOMARKER SCREENING FOR MOLECULAR IMAGING IN EAE NEUROINFLAMMATION. the Bordeaux Segalen University.Karlik, S. J., Roscoe, W. A., Patinote, C., & Contino-pépin, C. (2012). Targeting Vascular Changes in Lesions in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. 7–14.Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science and Technology, 43(12), 4555–4560. https://doi.org/10.1021/es9006383Kharisov, B. I., Rasika Dias, H. V., Kharissova, O. V., Manuel Jiménez-Pérez, V., Olvera Pérez, B., & Muñoz Flores, B. (2012). Iron-containing nanomaterials: synthesis, properties, and environmental applications. RSC Advances, 2(25), 9325. https://doi.org/10.1039/c2ra20812aKiliç, G., Fernández-Bertólez, N., Costa, C., Brandão, F., Teixeira, J. P., Pásaro, E., Laffon, B., & Valdiglesias, V. (2016). The Application, Neurotoxicity, and Related Mechanism of Iron Oxide Nanoparticles. In Neurotoxicity of Nanomaterials and Nanomedicine. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804598-5.00006-4Koffie, R. M., Farrar, C. T., Saidi, L. J., William, C. M., Hyman, B. T., & Spires-Jones, T. L. (2011). Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18837–18842. https://doi.org/10.1073/pnas.1111405108Krishnan, K. M. (2010). Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Transactions on Magnetics, 46(7), 2523–2558. https://doi.org/10.1109/TMAG.2010.2046907Lewczuk, P., Mroczko, B., Fagan, A., & Kornhuber, J. (2015). Biomarkers of Alzheimer’s disease and mild cognitive impairment: A current perspective. Advances in Medical Sciences, 60(1), 76–82. https://doi.org/10.1016/j.advms.2014.11.002Li, Q., Kartikowati, C. W., Horie, S., Ogi, T., Iwaki, T., & Okuyama, K. (2017). Correlation between particle size/domain structure and magnetic properties of highly crystalline Fe3O4 nanoparticles. Scientific Reports, 7(1), 9894. https://doi.org/10.1038/s41598-017-09897-5Lombardo, S. M., Schneider, M., Türeli, A. E., & Türeli, N. G. (2020). Key for crossing the BBB with nanoparticles: The rational design. Beilstein Journal of Nanotechnology, 11(866), 866–883. https://doi.org/10.3762/BJNANO.11.72Lourenço, I. M., Pieretti, J. C., Nascimento, M. H. M., Lombello, C. B., & Seabra, A. B. (2019). Eco-friendly synthesis of iron nanoparticles by green tea extract and cytotoxicity effects on tumoral and non-tumoral cell lines. Energy, Ecology and Environment, 4(6), 261–270. https://doi.org/10.1007/s40974-019-00134-5Lucchinetti, C. F. (2008). Multiple sclerosis and the spectrum of CNS inflammatory demyelinating diseases. Seminars in Neurology, 28(1), 3–6. https://doi.org/10.1055/s-2007-1019123Luo, B., Song, X. J., Zhang, F., Xia, A., Yang, W. L., Hu, J. H., & Wang, C. C. (2010). Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. In Langmuir (Vol. 26, Issue 3, pp. 1674–1679). https://doi.org/10.1021/la902635kMahmoudi, M., Simchi, A., & Imani, M. (2009). Cytotoxicity of uncoated and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles. Journal of Physical Chemistry C, 113(22), 9573–9580. https://doi.org/10.1021/jp9001516Maldonado-Camargo, L., Unni, M., & Rinaldi, C. (2017). Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications (pp. 47–71). https://doi.org/10.1007/978-1-4939-6840-4_4Mathieu, Coppel, Respaud, Nguyen, Boutry, Laurent, Stanicki, Henoumont, Novio, Lorenzo, Montpeyó, & Amiens. (2019). Silica Coated Iron/Iron Oxide Nanoparticles as a Nano-Platform for T2 Weighted Magnetic Resonance Imaging. Molecules, 24(24), 4629. https://doi.org/10.3390/molecules24244629McAteer, M. A., Sibson, N. R., von zur Muhlen, C., Schneider, J. E., Lowe, A. S., Warrick, N., Channon, K. M., Anthony, D. C., & Choudhury, R. P. (2007). In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nature Medicine, 13(10), 1253–1258. https://doi.org/10.1038/nm1631McConnell, H. L., Schwartz, D. L., Richardson, B. E., Woltjer, R. L., Muldoon, L. L., & Neuwelt, E. A. (2016). Ferumoxytol nanoparticle uptake in brain during acute neuroinflammation is cell-specific. Nanomedicine: Nanotechnology, Biology, and Medicine, 12(6), 1535–1542. https://doi.org/10.1016/j.nano.2016.03.009McQualter, J. L., & Bernard, C. C. A. (2007). Multiple sclerosis: A battle between destruction and repair. Journal of Neurochemistry, 100(2), 295–306. https://doi.org/10.1111/j.1471-4159.2006.04232.xMenezes, M. J., McClenahan, F. K., Leiton, C. V., Aranmolate, A., Shan, X., & Colognato, H. (2014). The Extracellular Matrix Protein Laminin 2 Regulates the Maturation and Function of the Blood-Brain Barrier. Journal of Neuroscience, 34(46), 15260–15280. https://doi.org/10.1523/JNEUROSCI.3678-13.2014Millward, J. M., Schnorr, J., Taupitz, M., Wagner, S., Wuerfel, J. T., & Infante-Duarte, C. (2013). Iron oxide magnetic nanoparticles highlight early involvement of the choroid plexus in central nervous system inflammation. ASN Neuro, 5(2), 89–98. https://doi.org/10.1042/AN20120081Miner, J. H., Li, C., Mudd, J. L., Go, G., & Sutherland, A. E. (2004). Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development, 131(10), 2247–2256. https://doi.org/10.1242/dev.01112Mirzaei, S., Hadadi, Z., Attar, F., Mousavi, S. E., Zargar, S. S., Tajik, A., Saboury, A. A., Rezayat, S. M., & Falahati, M. (2018). ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets. Journal of Biomolecular Structure and Dynamics, 36(16), 4235–4245. https://doi.org/10.1080/07391102.2017.1411832Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2001). Long-Circulating and Target-Specific Nanoparticles : Theory to Practice. 53(2), 283–318.Moura, M. De, & Houten, B. Van. (2010). Review Article. Environmental and Molecular Mutagenesis, 405(April), 391–405. https://doi.org/10.1002/emNaegele, M., & Martin, R. (2014). The good and the bad of neuroinflammation in multiple sclerosis. In Handbook of Clinical Neurology (1st ed., Vol. 122, Issue 0). Elsevier B.V. https://doi.org/10.1016/B978-0-444-52001-2.00003-0Neuberger, T., Scho, B., Hofmann, M., & Rechenberg, B. Von. (2005). Superparamagnetic nanoparticles for biomedical applications : Possibilities and limitations of a new drug delivery system. 293, 483–496. https://doi.org/10.1016/j.jmmm.2005.01.064Nirwane, A., & Yao, Y. (2019). Laminins and their receptors in the CNS. Biological Reviews, 94(1), 283–306. https://doi.org/10.1111/brv.12454Patil, R. M., Thorat, N. D., Shete, P. B., & Bedge, P. A. (2018). Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports, 13(December 2017), 63–72. https://doi.org/10.1016/j.bbrep.2017.12.002Petry, K. G., Boiziau, C., Dousset, V., & Brochet, B. (2007). Magnetic Resonance Imaging of Human Brain Macrophage Infiltration. Neurotherapeutics, 4(3), 434–442. https://doi.org/10.1016/j.nurt.2007.05.005Petry, K., VARGAS-SANCHEZ, K., & VEKRIS, A. (2016). DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomarker Insights, 19.https://doi.org/10.4137/BMI.S32188Quenault, A., Martinez de Lizarrondo, S., Etard, O., Gauberti, M., Orset, C., Haelewyn, B., Segal, H. C., Rothwell, P. M., Vivien, D., Touzé, E., & Ali, C. (2017). Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain : A Journal of Neurology, 140(1), 146–157. https://doi.org/10.1093/brain/aww260Ramge, P., Petrov, V., Hamm, S., Gelperina, S. E., Engelhardt, B., Alyautdin, R., Von, H., & Begley, D. J. (2003). Direct Evidence that Poly ( Butylcyanoacrylate ) Nanoparticles Deliver Drugs to the CNS via Specific Mechanisms Requiring Prior Binding of Drug to the Nanoparticles. Pharmaceutical Research, 20(3), 409–416.Roco, M. C. (2011). Erratum to: The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years (Journal of Nanoparticle Research (2011) 13, (427-445) DOI: 10.1007/s11051-010-0192-z). Journal of Nanoparticle Research, 13(3), 1335. https://doi.org/10.1007/s11051-011-0323-1Rojas, H. A., Martínez, J. J., & Vargas, A. Y. (2014). Selección de soportes magnéticos para la inmovilización de Ureasa Magnetic supports selection for Urease inmobilization. Ingeniería y Competitividad, 296(2), 289–296. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332014000200026Schéele, S., Nyström, A., Durbeej, M., Talts, J. F., Ekblom, M., & Ekblom, P. (2007). Laminin isoforms in development and disease. Journal of Molecular Medicine, 85(8), 825–836. https://doi.org/10.1007/s00109-007-0182-5Sharifi, S., Seyednejad, H., Laurent, S., Atyabi, F., Saei, A. A., & Mahmoudi, M. (2015). Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. Contrast Media and Molecular Imaging, 10(5), 329–355. https://doi.org/10.1002/cmmi.1638Sicotte, N. L. (2011). Neuroimaging in Multiple Sclerosis : Neurotherapeutic Implications. 8(January), 54–62. https://doi.org/10.1007/s13311-010-0008-ySong, J., Zhang, X., Buscher, K., Wang, Y., Wang, H., Di Russo, J., Li, L., Lütke-Enking, S., Zarbock, A., Stadtmann, A., Striewski, P., Wirth, B., Kuzmanov, I., Wiendl, H., Schulte, D., Vestweber, D., & Sorokin, L. (2017). Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Reports, 18(5), 1256–1269. https://doi.org/10.1016/j.celrep.2016.12.092Stoll, G., & Bendszus, M. (2009). Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience, 158(3), 1151–1160. https://doi.org/10.1016/j.neuroscience.2008.06.045Van Rooy, I., Cakir-Tascioglu, S., Couraud, P. O., Romero, I. A., Weksler, B., Storm, G., Hennink, W. E., Schiffelers, R. M., & Mastrobattista, E. (2010). Identification of peptide ligands for targeting to the blood-brain barrier. Pharmaceutical Research, 27(4), 673–682. https://doi.org/10.1007/s11095-010-0053-6Van Rooy, I., Cakir-Tascioglu, S., Hennink, W. E., Storm, G., Schiffelers, R. M., & Mastrobattista, E. (2011). In vivo methods to study uptake of nanoparticles into the brain. Pharmaceutical Research, 28(3), 456–471. https://doi.org/10.1007/s11095-010-0291-7Varatharaj, A., & Galea, I. (2017). The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity, 60, 1–12. https://doi.org/10.1016/j.bbi.2016.03.010Vellinga, M. M., Oude Engberink, R. D., Seewann, A., Pouwels, P. J. W., Wattjes, M. P., Van Der Pol, S. M. A., Pering, C., Polman, C. H., De Vries, H. E., Geurts, J. J. G., & Barkhof, F. (2008). Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain, 131(3), 800–807. https://doi.org/10.1093/brain/awn009Wahajuddin, & Arora. (2012). Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. International Journal of Nanomedicine, 3445. https://doi.org/10.2147/IJN.S30320Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H., & Josephson, L. (1990). Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology, 175(2), 489–493. https://doi.org/10.1148/radiology.175.2.2326474Willner, I., & Willner, B. (2002). Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications. Pure and Applied Chemistry, 74(9), 1773–1783.Wong, H. L., Wu, X. Y., & Bendayan, R. (2012a). Nanotechnological advances for the delivery of CNS therapeutics. Advanced Drug Delivery Reviews, 64(7), 686–700. https://doi.org/10.1016/j.addr.2011.10.007Wong, H. L., Wu, X. Y., & Bendayan, R. (2012b). Nanotechnological advances for the delivery of CNS therapeutics. In Advanced Drug Delivery Reviews (Vol. 64, Issue 7, pp. 686–700). https://doi.org/10.1016/j.addr.2011.10.007Xiao, Y. (2019). Superparamagnetic nanoparticles for biomedical applications. https://doi.org/10.1039/c9tb01955cYi, P., Chen, G., Zhang, H., Tian, F., Tan, B., Dai, J., Wang, Q., & Deng, Z. (2013). Magnetic resonance imaging of Fe3O4@SiO2-labeled human mesenchymal stem cells in mice at 11.7 T. Biomaterials, 34(12), 3010–3019. https://doi.org/10.1016/j.biomaterials.2013.01.022Zaharchuk, G. (2007). Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. American Journal of Neuroradiology, 28(10), 1850–1858. https://doi.org/10.3174/ajnr.A0831instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/InternaNeuroinflammation is characterized by presenting alterations in the blood-brain barrier, and activation of glial cells, leading to brain tissue alterations generating a pathology, this has led to the need to improve the magnetic resonance imaging technique that allows understanding the development and progression of alterations of the blood-brain barrier in real time, under neuroinflammatory conditions. As an alternative to this solution, it is proposed to establish the binding of a neuroinflammation marker peptide with its target protein and its conjugation with superparamagnetic nanoparticles. The results show that the magnetic nanoparticles have a spherical shape with a size of 54 ± 10 nm, the chemical composition Fe @ SiO2 and a magnetic hysteresis curve indicating a superparamagnetic behavior; The evaluation of the binding of peptide-88 with its possible receptor protein showed a greater binding between peptide-88 with laminin β1, likewise the binding of peptide-88 with the nanoparticles was studied, demonstrating a greater binding unlike the target. The present study showed that by establishing the functionalization of superparamagnetic nanoparticles conjugated to a neuroinflammation biomarker peptide, they can be used for early diagnosis and real-time evolution of the mechanisms triggered under neuroinflammatory conditions.La neuroinflamación es caracterizada por presentar alteraciones en la barrera hematoencefálica, y activación de las células glía, conduciendo a eventos patológicos, esto ha llevado a la necesidad de mejorar la técnica de imagen por resonancia magnética que permitan comprender el desarrollo y progresión de las alteraciones de la barrera hematoencefálica en tiempo real, bajo condiciones neuroinflamatorias. Como una alternativa a esta solución, se propone establecer la unión de un péptido marcador de neuroinflamación con su proteína blanco y su conjugación con nanopartículas superparamagnéticas. Los resultados muestran que las nanopartículas magnéticas presentan una forma esférica con un tamaño 54 ± 10 nm, la composición química Fe@SiO2 y una curva de histéresis magnética indicando un comportamiento superparamagnético; la evaluación de la unión del péptido-88 con su posible proteína receptora mostró una mayor unión entre el peptido-88 con laminina β1, igualmente se estudió la unión del péptido-88 con las nanopartículas demostrando una mayor unión a diferencia del blanco. El presente estudio evidenció que al establecer la funcionalización de nanopartículas superparamagnéticas conjugadas a un péptido biomarcador de neuroinflamación, pueden ser utilizadas para el diagnóstico temprano y evolución en tiempo real de los mecanismos desencadenados bajo condiciones neuroinflamatorias.UAN Proyectos de ciencia, tecnología, innovación y creación artísticaBioquímico(a)PregradoCT-672-2018, código 123377757091PresencialspaUniversidad Antonio NariñoBioquímicaFacultad de CienciasBogotá - CircunvalarNeuroinflamación, barrera hematoencefálica, nanopartículas superparamagnéticas, péptido biomarcador, proteínas blanco, cultivos in vitro.Neuroinflammation, blood-brain barrier, superparamagnetic nanoparticles, biomarker peptide, target proteins, in vitro cultures.Evaluación de la unión de un péptido marcador de neuroinflamación con diferentes proteínas blanco y su conjugación con nanopartículas superparamagnéticasTrabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020YehidiJuliethMedinaCastillo.pdf2020YehidiJuliethMedinaCastillo.pdfTrabajo de gradoapplication/pdf1255928https://repositorio.uan.edu.co/bitstreams/a76079ee-bcee-49b3-814d-4949dfa01f94/downloadc6346eaff178d3c866defdfdecdb412bMD512020AutorizaciondeAutores.pdf2020AutorizaciondeAutores.pdfFormato de autorización de autoresapplication/pdf282321https://repositorio.uan.edu.co/bitstreams/5e6b5a25-d0c5-4104-a608-e707c09dca6a/downloadf3dd3e5e8c6a50c3ab77dfbb2f87911bMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.uan.edu.co/bitstreams/806503b4-c28c-429e-8e66-752bc84a7c5e/download9868ccc48a14c8d591352b6eaf7f6239MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/ccc4de97-ab5a-408b-b7d5-9021f8e35c55/download2e388663398085f69421c9e4c5fcf235MD55123456789/1494oai:repositorio.uan.edu.co:123456789/14942024-10-09 22:43:05.156https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==