Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas

The rising greenhouse gas emission in the atmosphere is a serious environmental problem. Particularly, the rising carbon dioxide (CO2) emissions heavily affect our planet and contribute to global warming. For this reason, the scientists face the challenge to develop alternative methods to decrease t...

Full description

Autores:
Mora León, Oswan Duvan
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/6835
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/6835
Palabra clave:
fotobiorreactor
recirculación, venturi,
transferencia de masa
microalgas, Chlorella sp-
620
photobioreactor
recirculation
Venturi
mass transfer
photobioreactor
Chlorella sp, carbon dioxide, biogas, biofixation, rice and hull.
Rights
closedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_1275782efe19a90947ef4a96dc412fb1
oai_identifier_str oai:repositorio.uan.edu.co:123456789/6835
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas
title Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas
spellingShingle Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas
fotobiorreactor
recirculación, venturi,
transferencia de masa
microalgas, Chlorella sp-
620
photobioreactor
recirculation
Venturi
mass transfer
photobioreactor
Chlorella sp, carbon dioxide, biogas, biofixation, rice and hull.
title_short Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas
title_full Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas
title_fullStr Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas
title_full_unstemmed Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas
title_sort Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijas
dc.creator.fl_str_mv Mora León, Oswan Duvan
dc.contributor.advisor.spa.fl_str_mv Valderrama Rincón, Juan Daniel
Reyes Guzmán, Edwin Alfredo
dc.contributor.author.spa.fl_str_mv Mora León, Oswan Duvan
dc.subject.es_ES.fl_str_mv fotobiorreactor
recirculación, venturi,
transferencia de masa
microalgas, Chlorella sp-
topic fotobiorreactor
recirculación, venturi,
transferencia de masa
microalgas, Chlorella sp-
620
photobioreactor
recirculation
Venturi
mass transfer
photobioreactor
Chlorella sp, carbon dioxide, biogas, biofixation, rice and hull.
dc.subject.ddc.es_ES.fl_str_mv 620
dc.subject.keyword.es_ES.fl_str_mv photobioreactor
recirculation
Venturi
mass transfer
photobioreactor
Chlorella sp, carbon dioxide, biogas, biofixation, rice and hull.
description The rising greenhouse gas emission in the atmosphere is a serious environmental problem. Particularly, the rising carbon dioxide (CO2) emissions heavily affect our planet and contribute to global warming. For this reason, the scientists face the challenge to develop alternative methods to decrease the emitting sources and the carbon dioxide emissions. One option is CO2 sequestration by microalgae. Thus, the biological carbon dioxide sequestration is recommended as an environmentally friendly approach to capturing and converting CO2 into products with added value, through refineries based on the harvesting of PMs (photosynthetic microorganisms).
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-25T21:13:54Z
dc.date.available.none.fl_str_mv 2022-08-25T21:13:54Z
dc.date.issued.spa.fl_str_mv 2022-06-28
dc.type.spa.fl_str_mv Tesis y disertaciones (Maestría y/o Doctorado)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/6835
dc.identifier.bibliographicCitation.spa.fl_str_mv Aghaalipour, E., Akbulut, A., & Güllü, G. (2020). Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems. Biochemical Engineering Journal, 163(July), 107741. https://doi.org/10.1016/j.bej.2020.107741
Almomani, F., Al Ketife, A., Judd, S., Shurair, M., Bhosale, R. R., Znad, H., & Tawalbeh, M. (2019). Impact of CO 2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Science of the Total Environment, 662, 662–671. https://doi.org/10.1016/j.scitotenv.2019.01.144
Atay, I., Lewandowski, G., & Trattner, R. (1987). Fluid flow and gas absorption in an ejector venturi scrubber. Environmental Progress, 6(3), 198–203. https://doi.org/10.1002/ep.670060332
Camacho Rubio, F., Acién Fernández, F. G., Sánchez Pérez, J. A., García Camacho, F., & Molina Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62(1), 71–86. https://doi.org/10.1002/(SICI)1097- 0290(19990105)62:1<71
Chaudhary, R., Dikshit, A. K., & Tong, Y. W. (2018). Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environmental Science and Pollution Research, 25(21), 20399–20406. https://doi.org/10.1007/s11356-017-9575-3
Chen, M., Al-Maktoumi, A., & Izady, A. (2022). Assessment of integrated CO2 geologic storage and geothermal harvest in a semi-closed thin reservoir. Sustainable Energy Technologies and Assessments, 49(August 2021), 101773. https://doi.org/10.1016/j.seta.2021.101773
Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50(3), 324–329. https://doi.org/10.1016/j.seppur.2005.12.006
Chou, H. H., Su, H. Y., Song, X. Di, Chow, T. J., Chen, C. Y., Chang, J. S., & Lee, T. M. (2019). Isolation and characterization of Chlorella sp. mutants with enhanced thermoAnd CO2 tolerances for CO2 sequestration and utilization of flue gases. Biotechnology for Biofuels, 12(1), 1–14. https://doi.org/10.1186/s13068-019-1590-9
Energy Information Administration. (2019). The National Energy Modeling System : An Overview 2018 (Issue April). https://www.eia.gov/outlooks/aeo/nems/overview/pdf/0581(2018).pdf
FEDEARROZ. (2017). IV Censo nacional arrocero 2016. In Division de investigaciones económicas. http://www.fedearroz.com.co/doc_economia/Libro zona Bajo Cauca.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/6835
identifier_str_mv Aghaalipour, E., Akbulut, A., & Güllü, G. (2020). Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems. Biochemical Engineering Journal, 163(July), 107741. https://doi.org/10.1016/j.bej.2020.107741
Almomani, F., Al Ketife, A., Judd, S., Shurair, M., Bhosale, R. R., Znad, H., & Tawalbeh, M. (2019). Impact of CO 2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Science of the Total Environment, 662, 662–671. https://doi.org/10.1016/j.scitotenv.2019.01.144
Atay, I., Lewandowski, G., & Trattner, R. (1987). Fluid flow and gas absorption in an ejector venturi scrubber. Environmental Progress, 6(3), 198–203. https://doi.org/10.1002/ep.670060332
Camacho Rubio, F., Acién Fernández, F. G., Sánchez Pérez, J. A., García Camacho, F., & Molina Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62(1), 71–86. https://doi.org/10.1002/(SICI)1097- 0290(19990105)62:1<71
Chaudhary, R., Dikshit, A. K., & Tong, Y. W. (2018). Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environmental Science and Pollution Research, 25(21), 20399–20406. https://doi.org/10.1007/s11356-017-9575-3
Chen, M., Al-Maktoumi, A., & Izady, A. (2022). Assessment of integrated CO2 geologic storage and geothermal harvest in a semi-closed thin reservoir. Sustainable Energy Technologies and Assessments, 49(August 2021), 101773. https://doi.org/10.1016/j.seta.2021.101773
Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50(3), 324–329. https://doi.org/10.1016/j.seppur.2005.12.006
Chou, H. H., Su, H. Y., Song, X. Di, Chow, T. J., Chen, C. Y., Chang, J. S., & Lee, T. M. (2019). Isolation and characterization of Chlorella sp. mutants with enhanced thermoAnd CO2 tolerances for CO2 sequestration and utilization of flue gases. Biotechnology for Biofuels, 12(1), 1–14. https://doi.org/10.1186/s13068-019-1590-9
Energy Information Administration. (2019). The National Energy Modeling System : An Overview 2018 (Issue April). https://www.eia.gov/outlooks/aeo/nems/overview/pdf/0581(2018).pdf
FEDEARROZ. (2017). IV Censo nacional arrocero 2016. In Division de investigaciones económicas. http://www.fedearroz.com.co/doc_economia/Libro zona Bajo Cauca.pdf
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso a solo metadatos
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso a solo metadatos
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Doctorado en Ciencia Aplicada
dc.publisher.faculty.spa.fl_str_mv Doctorado en Ciencia Aplicada
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/c00d9794-d094-4464-a1a4-34503d11e642/download
https://repositorio.uan.edu.co/bitstreams/78bef7c9-5b5e-438a-9472-735f740ca3a3/download
https://repositorio.uan.edu.co/bitstreams/c0c1b760-9035-40f3-aabd-f91674defad8/download
https://repositorio.uan.edu.co/bitstreams/2f1286bc-8be1-4190-ad54-7039c90d699f/download
https://repositorio.uan.edu.co/bitstreams/950d9dc4-e69e-4ed8-8377-2c813644c3b1/download
https://repositorio.uan.edu.co/bitstreams/90e855c4-55a5-466d-bbb2-4213f1708d8e/download
https://repositorio.uan.edu.co/bitstreams/ed25f946-ecec-415c-acd3-a356902835cb/download
https://repositorio.uan.edu.co/bitstreams/0fb15ad1-9a3e-4d53-9db7-f7e24c6ebc63/download
https://repositorio.uan.edu.co/bitstreams/6aff4fa1-252f-4f08-871e-04534d3960f0/download
bitstream.checksum.fl_str_mv a6e3a06f04fb7af839c16640af0a6a8f
60969eca00cdcd6ccc5da997c4532f54
1e85bef8f0be9708401d4c0f0a1b5f0b
0da567b1b9482d57c2e941b53e1b309f
fc316af005e3519cea7394fc11bc7e94
e22526a0282ed0ba5ee2a48ba495c132
4365c3676138813ae26741065a1a9671
8761059fdb283aa00e3653b565893171
b396bbb82b32783a54927c8598ccd9a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300296340307968
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso a solo metadatoshttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbValderrama Rincón, Juan DanielReyes Guzmán, Edwin AlfredoMora León, Oswan Duvan10136239252022-08-25T21:13:54Z2022-08-25T21:13:54Z2022-06-28http://repositorio.uan.edu.co/handle/123456789/6835Aghaalipour, E., Akbulut, A., & Güllü, G. (2020). Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems. Biochemical Engineering Journal, 163(July), 107741. https://doi.org/10.1016/j.bej.2020.107741Almomani, F., Al Ketife, A., Judd, S., Shurair, M., Bhosale, R. R., Znad, H., & Tawalbeh, M. (2019). Impact of CO 2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor. Science of the Total Environment, 662, 662–671. https://doi.org/10.1016/j.scitotenv.2019.01.144Atay, I., Lewandowski, G., & Trattner, R. (1987). Fluid flow and gas absorption in an ejector venturi scrubber. Environmental Progress, 6(3), 198–203. https://doi.org/10.1002/ep.670060332Camacho Rubio, F., Acién Fernández, F. G., Sánchez Pérez, J. A., García Camacho, F., & Molina Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62(1), 71–86. https://doi.org/10.1002/(SICI)1097- 0290(19990105)62:1<71Chaudhary, R., Dikshit, A. K., & Tong, Y. W. (2018). Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environmental Science and Pollution Research, 25(21), 20399–20406. https://doi.org/10.1007/s11356-017-9575-3Chen, M., Al-Maktoumi, A., & Izady, A. (2022). Assessment of integrated CO2 geologic storage and geothermal harvest in a semi-closed thin reservoir. Sustainable Energy Technologies and Assessments, 49(August 2021), 101773. https://doi.org/10.1016/j.seta.2021.101773Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50(3), 324–329. https://doi.org/10.1016/j.seppur.2005.12.006Chou, H. H., Su, H. Y., Song, X. Di, Chow, T. J., Chen, C. Y., Chang, J. S., & Lee, T. M. (2019). Isolation and characterization of Chlorella sp. mutants with enhanced thermoAnd CO2 tolerances for CO2 sequestration and utilization of flue gases. Biotechnology for Biofuels, 12(1), 1–14. https://doi.org/10.1186/s13068-019-1590-9Energy Information Administration. (2019). The National Energy Modeling System : An Overview 2018 (Issue April). https://www.eia.gov/outlooks/aeo/nems/overview/pdf/0581(2018).pdfFEDEARROZ. (2017). IV Censo nacional arrocero 2016. In Division de investigaciones económicas. http://www.fedearroz.com.co/doc_economia/Libro zona Bajo Cauca.pdfinstname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/The rising greenhouse gas emission in the atmosphere is a serious environmental problem. Particularly, the rising carbon dioxide (CO2) emissions heavily affect our planet and contribute to global warming. For this reason, the scientists face the challenge to develop alternative methods to decrease the emitting sources and the carbon dioxide emissions. One option is CO2 sequestration by microalgae. Thus, the biological carbon dioxide sequestration is recommended as an environmentally friendly approach to capturing and converting CO2 into products with added value, through refineries based on the harvesting of PMs (photosynthetic microorganisms).La creciente producción de gases de efecto invernadero en la atmósfera se presenta como un grave problema ambiental. En particular, el aumento en las emisiones de dióxido de carbono (CO2) que está afectando gravemente el nuestro planeta contribuyendo con el calentamiento global. Por esta razón el mundo científico tiene como desafío desarrollar métodos alternativos para disminuir los focos productores y disminuir las emisiones de dióxido de carbono. Una de esas formas es el secuestro de CO2 utilizando microalgas. Por lo tanto, el secuestro biológico de carbono por microalgas se recomienda como un enfoque ambientalmente amigable para capturar y convertir este CO2 en productos de valor agregado, por medio de las biorrefinerías basadas en el cultivo de MFs (Microorganismos fotosintéticos).Doctor(a) en Ciencia AplicadaDoctoradoPresencialInvestigaciónspaUniversidad Antonio NariñoDoctorado en Ciencia AplicadaDoctorado en Ciencia AplicadaBogotá - Circunvalarfotobiorreactorrecirculación, venturi,transferencia de masamicroalgas, Chlorella sp-620photobioreactorrecirculationVenturimass transferphotobioreactorChlorella sp, carbon dioxide, biogas, biofixation, rice and hull.Desarrollo y evaluación de un fotobiorreactor para fijación de co2 obtenido como subproducto de la combustión de fuentes fijasTesis y disertaciones (Maestría y/o Doctorado)http://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Tesis/Trabajo de grado - Monografía - DoctoradoEspecializadaORIGINAL2022_OswanMora.pdf2022_OswanMora.pdfTesis de Doctoradoapplication/pdf6955687https://repositorio.uan.edu.co/bitstreams/c00d9794-d094-4464-a1a4-34503d11e642/downloada6e3a06f04fb7af839c16640af0a6a8fMD512022_OswanMora_Autorizacion.pdf2022_OswanMora_Autorizacion.pdfFormato autorización Uso TGapplication/pdf949171https://repositorio.uan.edu.co/bitstreams/78bef7c9-5b5e-438a-9472-735f740ca3a3/download60969eca00cdcd6ccc5da997c4532f54MD522022_OswanMora_Acta.pdf2022_OswanMora_Acta.pdfapplication/pdf647419https://repositorio.uan.edu.co/bitstreams/c0c1b760-9035-40f3-aabd-f91674defad8/download1e85bef8f0be9708401d4c0f0a1b5f0bMD53TEXT2022_OswanMora.pdf.txt2022_OswanMora.pdf.txtExtracted texttext/plain105163https://repositorio.uan.edu.co/bitstreams/2f1286bc-8be1-4190-ad54-7039c90d699f/download0da567b1b9482d57c2e941b53e1b309fMD542022_OswanMora_Autorizacion.pdf.txt2022_OswanMora_Autorizacion.pdf.txtExtracted texttext/plain8304https://repositorio.uan.edu.co/bitstreams/950d9dc4-e69e-4ed8-8377-2c813644c3b1/downloadfc316af005e3519cea7394fc11bc7e94MD562022_OswanMora_Acta.pdf.txt2022_OswanMora_Acta.pdf.txtExtracted texttext/plain1550https://repositorio.uan.edu.co/bitstreams/90e855c4-55a5-466d-bbb2-4213f1708d8e/downloade22526a0282ed0ba5ee2a48ba495c132MD58THUMBNAIL2022_OswanMora.pdf.jpg2022_OswanMora.pdf.jpgGenerated Thumbnailimage/jpeg7329https://repositorio.uan.edu.co/bitstreams/ed25f946-ecec-415c-acd3-a356902835cb/download4365c3676138813ae26741065a1a9671MD552022_OswanMora_Autorizacion.pdf.jpg2022_OswanMora_Autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg19418https://repositorio.uan.edu.co/bitstreams/0fb15ad1-9a3e-4d53-9db7-f7e24c6ebc63/download8761059fdb283aa00e3653b565893171MD572022_OswanMora_Acta.pdf.jpg2022_OswanMora_Acta.pdf.jpgGenerated Thumbnailimage/jpeg18816https://repositorio.uan.edu.co/bitstreams/6aff4fa1-252f-4f08-871e-04534d3960f0/downloadb396bbb82b32783a54927c8598ccd9a5MD59123456789/6835oai:repositorio.uan.edu.co:123456789/68352024-10-09 23:32:53.975https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso a solo metadatosrestrictedhttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co