Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)

Propia

Autores:
Meneses Real, Hernán David
Patarroyo Querales, Laura Alejandra
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/2134
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/2134
Palabra clave:
Convección
Conducción
Radiación
Temperatura
Transferencia de calor
Modelación numérica
Puentes
Convection
Conduction
Radiation
Temperature
Heat transfer
Numerical modeling
Bridge
Rights
openAccess
License
Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
id UAntonioN2_09cfda4259148e3fdf3c9faa57d9c5c9
oai_identifier_str oai:repositorio.uan.edu.co:123456789/2134
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
title Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
spellingShingle Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
Convección
Conducción
Radiación
Temperatura
Transferencia de calor
Modelación numérica
Puentes
Convection
Conduction
Radiation
Temperature
Heat transfer
Numerical modeling
Bridge
title_short Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
title_full Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
title_fullStr Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
title_full_unstemmed Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
title_sort Temperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)
dc.creator.fl_str_mv Meneses Real, Hernán David
Patarroyo Querales, Laura Alejandra
dc.contributor.advisor.spa.fl_str_mv Osorio Bustamante, Edison
dc.contributor.author.spa.fl_str_mv Meneses Real, Hernán David
Patarroyo Querales, Laura Alejandra
dc.subject.es_ES.fl_str_mv Convección
Conducción
Radiación
Temperatura
Transferencia de calor
Modelación numérica
Puentes
topic Convección
Conducción
Radiación
Temperatura
Transferencia de calor
Modelación numérica
Puentes
Convection
Conduction
Radiation
Temperature
Heat transfer
Numerical modeling
Bridge
dc.subject.keyword.es_ES.fl_str_mv Convection
Conduction
Radiation
Temperature
Heat transfer
Numerical modeling
Bridge
description Propia
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-07-05
dc.date.accessioned.none.fl_str_mv 2021-03-01T21:36:46Z
dc.date.available.none.fl_str_mv 2021-03-01T21:36:46Z
dc.type.spa.fl_str_mv Trabajo de grado (Pregrado y/o Especialización)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/2134
dc.identifier.bibliographicCitation.spa.fl_str_mv Apuntes de Geotecnia con Énfasis en Laderas: El Diseño Racional en la Ingeniería Geotécnica (I). (2012). http://geotecnia-sor.blogspot.com/2012/11/el-diseno-racional-en-la-ingenieria.html
Atlas Interactivo - Radiación IDEAM. (2019). http://atlas.ideam.gov.co/visorAtlasRadiacion.html
Bayane, I., Mankar, A., Brühwiler, E., & Sørensen, J. D. (2019). Quantification of traffic and temperature effects on the fatigue safety of a reinforced-concrete bridge deck based on monitoring data. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109357
Bustamante, E. O. (2018). Avances en la regionalización de las cargas térmicas para el diseño de puentes en Colombia.
Castaño, J. C. (1999). Universidad Nacional de Colombia: Repositorio institucional UN. http://www.bdigital.unal.edu.co/23972/
CCP-14, A. C. de I. S. (2014). SECCION 3: Cargas y Factores de Carga. Norma Colombiana de Diseño de Puentes, CCP 14, 140.
Cengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor y masa : fundamentos y aplicaciones. McGraw-Hill Interamericana. http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3214430
Cheng, W., Wenchao, L., & Chen, Z. (2020). Calculation and Analysis of Box Girder Temperature Effect of Large Cantilever Bridge under the Solar Radiation. IOP Conference Series: Materials Science and Engineering, 780(2). https://doi.org/10.1088/1757-899X/780/2/022010
Childs, D. (2020). Bridge Design| Temperature Effects in Bridge Decks. http://bridgedesign.org.uk/tutorial/temperature-effects.php
Colombia Weather History | Weather Underground. (2020). https://www.wunderground.com/history/monthly/co/neiva/SKNV/date/2019-12
Eddyhrbs. (2010). INGENIERIA CIVIL: Puentes Cantiléver. https://www.ingenierocivilinfo.com/2011/01/puentes-cantilever.html
Feng, H., Liu, X., Wu, B., Wu, D., Zhang, X., & He, C. (2019). Temperature-insensitive cable tension monitoring during the construction of a cable-stayed bridge with a custom-developed pulse elasto-magnetic instrument. Structural Health Monitoring, 18(5–6), 1982–1994. https://doi.org/10.1177/1475921718814733
Giovanni. (2020). https://giovanni.gsfc.nasa.gov/giovanni/
Google Earth. (2020). https://earth.google.com/web/@0,0,0a,22251752.77375655d,35y,0h,0t,0r
Grishyn, I. V., Ivanov, G. P., & Kayumov, R. A. (2020). Durability of bridge asphaltic concrete pavements under temperature loads. IOP Conference Series: Materials Science and Engineering, 786(1). https://doi.org/10.1088/1757-899X/786/1/012032
Guard, P. (2009). File:Gateway Bridge aerial3.JPG - Wikipedia. https://en.wikipedia.org/wiki/File:Gateway_Bridge_aerial3.JPG
Hossain, T., Segura, S., & Okeil, A. M. (2020). Structural effects of temperature gradient on a continuous prestressed concrete girder bridge: analysis and field measurements. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2020.1713167
Huang, W., Guo, W., & Wei, Y. (2019). Thermal Effect on Rheological Properties of Epoxy Asphalt Mixture and Stress Prediction for Bridge Deck Paving. Journal of Materials in Civil Engineering, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002861
Infercal - Ingenieros Constructores. (2011). http://www.infercal.com/portal/
Kennedybrücke - Bonn, NRW, Germany Image. (2017). https://www.waymarking.com/gallery/image.aspx?f=1&guid=1b009955-1e51-45ad-9606-65038213ca47&gid=3
Kong, L. Y., Huang, L. H., Dai, L., & Yu, M. (2020). Coupling effect of temperature and roughness on the pull-out strength of concrete bridge deck inter-layer. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 40(2), 21–29. https://doi.org/10.19721/j.cnki.1671-8879.2020.02.003 Kuryłowicz-Cudowska, A., Wilde, K., & Chróścielewski, J. (2020). Prediction of cast-in-place concrete strength of the extradosed bridge deck based on temperature monitoring and numerical simulations. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119224
Lee, J., Loh, K. J., Choi, H. S., & An, H. (2019). Effect of Structural Change on Temperature Behavior of a Long-Span Suspension Bridge Pylon. International Journal of Steel Structures, 19(6), 2073–2089. https://doi.org/10.1007/s13296-019-00279-3
Lei, X., Jiang, H., Wang, J., Zhang, D., & Jiang, R. (2020). Pavement Rut Depth Prediction for a Three-Span Suspension Steel Box Girder Bridge Based on Two-Year Temperature Monitoring Data. Journal of Transportation Engineering Part B: Pavements, 146(3). https://doi.org/10.1061/JPEODX.0000177
Li, J., Hu, R., Yang, J., & Liu, Y. (2019). Effect of temperature gradient on competitive growth behavior of Si and YSi2 in a Si–Y eutectic alloy prepared by Bridgeman method. Ceramics International, 45(14), 16776–16783. https://doi.org/10.1016/j.ceramint.2019.05.213
Lin, J., Briseghella, B., Xue, J., Tabatabai, H., Huang, F., & Chen, B. (2020). Temperature Monitoring and Response of Deck-Extension Side-by-Side Box Girder Bridges. Journal of Performance of Constructed Facilities, 34(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001399
Liu, J., Liu, Y., Zhang, C., Zhao, Q., Lyu, Y., & Jiang, L. (2020). Temperature action and effect of concrete-filled steel tubular bridges: A review. In Journal of Traffic and Transportation Engineering (English Edition) (Vol. 7, Issue 2, pp. 174–191). Periodical Offices of Chang- an University. https://doi.org/10.1016/j.jtte.2020.03.001
Liu, Y. J., & Liu, J. (2020). Review on temperature action and effect of steel-concrete composite girder bridge. In Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering (Vol. 20, Issue 1, pp. 42–59). Chang’an University. https://doi.org/10.19818/j.cnki.1671-1637.2020.01.003
Monleón Cremades, S. (2017). Diseño estructural de puentes. Universidad Politécnica de Valencia.
Puente Britannia - Puente | RouteYou. (2006). https://www.routeyou.com/es-gb/location/view/48035182/puente-britannia
Puente de Forth - EcuRed. (2017). https://www.ecured.cu/Puente_de_Forth
Puente Verrazano-Narrows - Megaconstrucciones, Extreme Engineering. (2012). https://megaconstrucciones.net/?construccion=puente-verrazano-narrows
Repositorio Institucional IDU: Búsquedas. (2007). https://webidu.idu.gov.co/jspui/simple-search?query=Puente+avenida+de++las+amercias+con+boyaca+
Salazar, P. (2012). CAPÍTULO IV APLICACIÓN DE LAS NORMAS AASHTO LRFD AL DISEÑO ESTRUCTURAL DE PUENTES 4.1.-INTRODUCCIÓN AL AASHTO LRFD.
Sheng, X. W., Zheng, W. Q., Zhu, Z. H., Yang, Y., & Li, S. (2019). Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge. Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 19(4), 24–34.
Shi, T., Zheng, J., Deng, N., Chen, Z., Guo, X., & Wang, S. (2020). Temperature Load Parameters and Thermal Effects of a Long-Span Concrete-Filled Steel Tube Arch Bridge in Tibet. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/9710613
Somenson, H. M. (2017). Estudio y proyecto de puentes de hormigón armado. Díaz de Santos.
Stahlwerk Annahutte Max Aicher GmbH & Co.KG. (n.d.). Puente Gateway, Brisbane, Australia. Retrieved February 10, 2020, from https://www.annahuette.com/es/home/proyectos-de-referencia/sistemas-sas-proyectos/puente-gateway
Sumargo, & Harahap, A. H. S. (2019). Loading Test and Temperature Effect on Steel Arch Bridge. IOP Conference Series: Materials Science and Engineering, 650(1). https://doi.org/10.1088/1757-899X/650/1/012035
VOSviewer. (2020). https://universoabierto.org/2020/02/18/vosviewer-es-una-herramienta-de-software-para-construir-y-visualizar-redes-bibliometricas/
Wang, G. X., & Ding, Y. L. (2019). Long-term monitoring of temperature effect on horizontal rotation angle at beam ends of a railway steel truss bridge. Journal of Bridge Engineering, 24(10). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001484
Wang, J. F., Zhang, J. T., Xu, R. Q., & Yang, Z. X. (2019). Evaluation of Thermal Effects on Cable Forces of a Long-Span Prestressed Concrete Cable-Stayed Bridge. Journal of Performance of Constructed Facilities, 33(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001348
Wang, J. feng, Zhang, J. tao, Yang, Z. xuan, & Xu, R. qiao. (2020). Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges. Journal of Zhejiang University: Science A, 21(4), 255–267. https://doi.org/10.1631/jzus.A1900310 Wayne, D. J. (1999). The male analyst on the maternal erotic playground. In Gender & Psychoanalysis (Vol. 4, Issue 1). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=2000-03615-002
Xia, Q., Xia, Y., Wan, H. P., Zhang, J., & Ren, W. X. (2020). Condition analysis of expansion joints of a long-span suspension bridge through metamodel-based model updating considering thermal effect. Structural Control and Health Monitoring, 27(5). https://doi.org/10.1002/stc.2521
Xu, X., Ren, Y., Huang, Q., Zhao, D. Y., Tong, Z. J., & Chang, W. J. (2020). Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies. Journal of Civil Structural Health Monitoring. https://doi.org/10.1007/s13349-020-00402-7
Yang, J. N., He, X. J., Yang, J. H. L., Wang, Y. D., & Zhang, Z. (2020). Analysis of Temperature Effect on an S Cable-Stayed Bridge with Steel Box Girder During Asphalt Concrete Placement. Bridge Construction, 50(2), 37–42.
Yang, K., Ding, Y., Sun, P., Zhao, H., & Geng, F. (2019). Modeling of Temperature Time-Lag Effect for Concrete Box-Girder Bridges. Applied Sciences, 9(16), 3255. https://doi.org/10.3390/app9163255
Yepes, V. (2017). Puente arco. https://victoryepes.blogs.upv.es/tag/puente-arco/
Zhang, W. M., Tian, G. M., & Liu, Z. (2019). Analytical Study of Uniform Thermal Effects on Cable Configuration of a Suspension Bridge during Construction. Journal of Bridge Engineering, 24(11). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001493
Zhang, W. M., Yang, C. Y., Tian, G. M., & Liu, Z. (2020). Analytical Assessment of Main Cable Shape for Three-Pylon Suspension Bridge with Unequal Main-Span Lengths: Thermal Effect Consideration. Journal of Bridge Engineering, 25(1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001522
Zhou, L., Zhang, G., Yu, Z., Zhao, L., Wei, T., & Yang, L. (2020). Model Experiments of Ballastless Track-bridge Structure under Cyclic Temperature Load. Tiedao Xuebao/Journal of the China Railway Society, 42(1), 82–88. https://doi.org/10.3969/j.issn.1001-8360.2020.01.012
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/2134
identifier_str_mv Apuntes de Geotecnia con Énfasis en Laderas: El Diseño Racional en la Ingeniería Geotécnica (I). (2012). http://geotecnia-sor.blogspot.com/2012/11/el-diseno-racional-en-la-ingenieria.html
Atlas Interactivo - Radiación IDEAM. (2019). http://atlas.ideam.gov.co/visorAtlasRadiacion.html
Bayane, I., Mankar, A., Brühwiler, E., & Sørensen, J. D. (2019). Quantification of traffic and temperature effects on the fatigue safety of a reinforced-concrete bridge deck based on monitoring data. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109357
Bustamante, E. O. (2018). Avances en la regionalización de las cargas térmicas para el diseño de puentes en Colombia.
Castaño, J. C. (1999). Universidad Nacional de Colombia: Repositorio institucional UN. http://www.bdigital.unal.edu.co/23972/
CCP-14, A. C. de I. S. (2014). SECCION 3: Cargas y Factores de Carga. Norma Colombiana de Diseño de Puentes, CCP 14, 140.
Cengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor y masa : fundamentos y aplicaciones. McGraw-Hill Interamericana. http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3214430
Cheng, W., Wenchao, L., & Chen, Z. (2020). Calculation and Analysis of Box Girder Temperature Effect of Large Cantilever Bridge under the Solar Radiation. IOP Conference Series: Materials Science and Engineering, 780(2). https://doi.org/10.1088/1757-899X/780/2/022010
Childs, D. (2020). Bridge Design| Temperature Effects in Bridge Decks. http://bridgedesign.org.uk/tutorial/temperature-effects.php
Colombia Weather History | Weather Underground. (2020). https://www.wunderground.com/history/monthly/co/neiva/SKNV/date/2019-12
Eddyhrbs. (2010). INGENIERIA CIVIL: Puentes Cantiléver. https://www.ingenierocivilinfo.com/2011/01/puentes-cantilever.html
Feng, H., Liu, X., Wu, B., Wu, D., Zhang, X., & He, C. (2019). Temperature-insensitive cable tension monitoring during the construction of a cable-stayed bridge with a custom-developed pulse elasto-magnetic instrument. Structural Health Monitoring, 18(5–6), 1982–1994. https://doi.org/10.1177/1475921718814733
Giovanni. (2020). https://giovanni.gsfc.nasa.gov/giovanni/
Google Earth. (2020). https://earth.google.com/web/@0,0,0a,22251752.77375655d,35y,0h,0t,0r
Grishyn, I. V., Ivanov, G. P., & Kayumov, R. A. (2020). Durability of bridge asphaltic concrete pavements under temperature loads. IOP Conference Series: Materials Science and Engineering, 786(1). https://doi.org/10.1088/1757-899X/786/1/012032
Guard, P. (2009). File:Gateway Bridge aerial3.JPG - Wikipedia. https://en.wikipedia.org/wiki/File:Gateway_Bridge_aerial3.JPG
Hossain, T., Segura, S., & Okeil, A. M. (2020). Structural effects of temperature gradient on a continuous prestressed concrete girder bridge: analysis and field measurements. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2020.1713167
Huang, W., Guo, W., & Wei, Y. (2019). Thermal Effect on Rheological Properties of Epoxy Asphalt Mixture and Stress Prediction for Bridge Deck Paving. Journal of Materials in Civil Engineering, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002861
Infercal - Ingenieros Constructores. (2011). http://www.infercal.com/portal/
Kennedybrücke - Bonn, NRW, Germany Image. (2017). https://www.waymarking.com/gallery/image.aspx?f=1&guid=1b009955-1e51-45ad-9606-65038213ca47&gid=3
Kong, L. Y., Huang, L. H., Dai, L., & Yu, M. (2020). Coupling effect of temperature and roughness on the pull-out strength of concrete bridge deck inter-layer. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 40(2), 21–29. https://doi.org/10.19721/j.cnki.1671-8879.2020.02.003 Kuryłowicz-Cudowska, A., Wilde, K., & Chróścielewski, J. (2020). Prediction of cast-in-place concrete strength of the extradosed bridge deck based on temperature monitoring and numerical simulations. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119224
Lee, J., Loh, K. J., Choi, H. S., & An, H. (2019). Effect of Structural Change on Temperature Behavior of a Long-Span Suspension Bridge Pylon. International Journal of Steel Structures, 19(6), 2073–2089. https://doi.org/10.1007/s13296-019-00279-3
Lei, X., Jiang, H., Wang, J., Zhang, D., & Jiang, R. (2020). Pavement Rut Depth Prediction for a Three-Span Suspension Steel Box Girder Bridge Based on Two-Year Temperature Monitoring Data. Journal of Transportation Engineering Part B: Pavements, 146(3). https://doi.org/10.1061/JPEODX.0000177
Li, J., Hu, R., Yang, J., & Liu, Y. (2019). Effect of temperature gradient on competitive growth behavior of Si and YSi2 in a Si–Y eutectic alloy prepared by Bridgeman method. Ceramics International, 45(14), 16776–16783. https://doi.org/10.1016/j.ceramint.2019.05.213
Lin, J., Briseghella, B., Xue, J., Tabatabai, H., Huang, F., & Chen, B. (2020). Temperature Monitoring and Response of Deck-Extension Side-by-Side Box Girder Bridges. Journal of Performance of Constructed Facilities, 34(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001399
Liu, J., Liu, Y., Zhang, C., Zhao, Q., Lyu, Y., & Jiang, L. (2020). Temperature action and effect of concrete-filled steel tubular bridges: A review. In Journal of Traffic and Transportation Engineering (English Edition) (Vol. 7, Issue 2, pp. 174–191). Periodical Offices of Chang- an University. https://doi.org/10.1016/j.jtte.2020.03.001
Liu, Y. J., & Liu, J. (2020). Review on temperature action and effect of steel-concrete composite girder bridge. In Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering (Vol. 20, Issue 1, pp. 42–59). Chang’an University. https://doi.org/10.19818/j.cnki.1671-1637.2020.01.003
Monleón Cremades, S. (2017). Diseño estructural de puentes. Universidad Politécnica de Valencia.
Puente Britannia - Puente | RouteYou. (2006). https://www.routeyou.com/es-gb/location/view/48035182/puente-britannia
Puente de Forth - EcuRed. (2017). https://www.ecured.cu/Puente_de_Forth
Puente Verrazano-Narrows - Megaconstrucciones, Extreme Engineering. (2012). https://megaconstrucciones.net/?construccion=puente-verrazano-narrows
Repositorio Institucional IDU: Búsquedas. (2007). https://webidu.idu.gov.co/jspui/simple-search?query=Puente+avenida+de++las+amercias+con+boyaca+
Salazar, P. (2012). CAPÍTULO IV APLICACIÓN DE LAS NORMAS AASHTO LRFD AL DISEÑO ESTRUCTURAL DE PUENTES 4.1.-INTRODUCCIÓN AL AASHTO LRFD.
Sheng, X. W., Zheng, W. Q., Zhu, Z. H., Yang, Y., & Li, S. (2019). Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge. Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 19(4), 24–34.
Shi, T., Zheng, J., Deng, N., Chen, Z., Guo, X., & Wang, S. (2020). Temperature Load Parameters and Thermal Effects of a Long-Span Concrete-Filled Steel Tube Arch Bridge in Tibet. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/9710613
Somenson, H. M. (2017). Estudio y proyecto de puentes de hormigón armado. Díaz de Santos.
Stahlwerk Annahutte Max Aicher GmbH & Co.KG. (n.d.). Puente Gateway, Brisbane, Australia. Retrieved February 10, 2020, from https://www.annahuette.com/es/home/proyectos-de-referencia/sistemas-sas-proyectos/puente-gateway
Sumargo, & Harahap, A. H. S. (2019). Loading Test and Temperature Effect on Steel Arch Bridge. IOP Conference Series: Materials Science and Engineering, 650(1). https://doi.org/10.1088/1757-899X/650/1/012035
VOSviewer. (2020). https://universoabierto.org/2020/02/18/vosviewer-es-una-herramienta-de-software-para-construir-y-visualizar-redes-bibliometricas/
Wang, G. X., & Ding, Y. L. (2019). Long-term monitoring of temperature effect on horizontal rotation angle at beam ends of a railway steel truss bridge. Journal of Bridge Engineering, 24(10). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001484
Wang, J. F., Zhang, J. T., Xu, R. Q., & Yang, Z. X. (2019). Evaluation of Thermal Effects on Cable Forces of a Long-Span Prestressed Concrete Cable-Stayed Bridge. Journal of Performance of Constructed Facilities, 33(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001348
Wang, J. feng, Zhang, J. tao, Yang, Z. xuan, & Xu, R. qiao. (2020). Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges. Journal of Zhejiang University: Science A, 21(4), 255–267. https://doi.org/10.1631/jzus.A1900310 Wayne, D. J. (1999). The male analyst on the maternal erotic playground. In Gender & Psychoanalysis (Vol. 4, Issue 1). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=2000-03615-002
Xia, Q., Xia, Y., Wan, H. P., Zhang, J., & Ren, W. X. (2020). Condition analysis of expansion joints of a long-span suspension bridge through metamodel-based model updating considering thermal effect. Structural Control and Health Monitoring, 27(5). https://doi.org/10.1002/stc.2521
Xu, X., Ren, Y., Huang, Q., Zhao, D. Y., Tong, Z. J., & Chang, W. J. (2020). Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies. Journal of Civil Structural Health Monitoring. https://doi.org/10.1007/s13349-020-00402-7
Yang, J. N., He, X. J., Yang, J. H. L., Wang, Y. D., & Zhang, Z. (2020). Analysis of Temperature Effect on an S Cable-Stayed Bridge with Steel Box Girder During Asphalt Concrete Placement. Bridge Construction, 50(2), 37–42.
Yang, K., Ding, Y., Sun, P., Zhao, H., & Geng, F. (2019). Modeling of Temperature Time-Lag Effect for Concrete Box-Girder Bridges. Applied Sciences, 9(16), 3255. https://doi.org/10.3390/app9163255
Yepes, V. (2017). Puente arco. https://victoryepes.blogs.upv.es/tag/puente-arco/
Zhang, W. M., Tian, G. M., & Liu, Z. (2019). Analytical Study of Uniform Thermal Effects on Cable Configuration of a Suspension Bridge during Construction. Journal of Bridge Engineering, 24(11). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001493
Zhang, W. M., Yang, C. Y., Tian, G. M., & Liu, Z. (2020). Analytical Assessment of Main Cable Shape for Three-Pylon Suspension Bridge with Unequal Main-Span Lengths: Thermal Effect Consideration. Journal of Bridge Engineering, 25(1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001522
Zhou, L., Zhang, G., Yu, Z., Zhao, L., Wei, T., & Yang, L. (2020). Model Experiments of Ballastless Track-bridge Structure under Cyclic Temperature Load. Tiedao Xuebao/Journal of the China Railway Society, 42(1), 82–88. https://doi.org/10.3969/j.issn.1001-8360.2020.01.012
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Civil
dc.publisher.campus.spa.fl_str_mv Bogotá - Sur
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/caefeb42-b367-46f5-b80f-588a650bd505/download
https://repositorio.uan.edu.co/bitstreams/7f813ea2-d02b-46a7-bc0a-09f995c01961/download
https://repositorio.uan.edu.co/bitstreams/2fdc64a2-c912-428f-8fa7-aabbf20c4091/download
https://repositorio.uan.edu.co/bitstreams/7bdd8ee2-1420-4b5c-bcc3-20977d62a240/download
https://repositorio.uan.edu.co/bitstreams/4d2df086-4fd7-4337-9cbd-444cf560befb/download
bitstream.checksum.fl_str_mv e202ba5048294f1aa3da366d8971032c
1a97764b762b78d9b402b905b86406c1
00d9f83b6ed1e3d8af95b72cfa6436ab
5812a2eee99d5585fc0c26f0033099bb
2e388663398085f69421c9e4c5fcf235
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1812928322084012032
spelling Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Bustamante, EdisonMeneses Real, Hernán DavidPatarroyo Querales, Laura Alejandra2021-03-01T21:36:46Z2021-03-01T21:36:46Z2020-07-05http://repositorio.uan.edu.co/handle/123456789/2134Apuntes de Geotecnia con Énfasis en Laderas: El Diseño Racional en la Ingeniería Geotécnica (I). (2012). http://geotecnia-sor.blogspot.com/2012/11/el-diseno-racional-en-la-ingenieria.htmlAtlas Interactivo - Radiación IDEAM. (2019). http://atlas.ideam.gov.co/visorAtlasRadiacion.htmlBayane, I., Mankar, A., Brühwiler, E., & Sørensen, J. D. (2019). Quantification of traffic and temperature effects on the fatigue safety of a reinforced-concrete bridge deck based on monitoring data. Engineering Structures, 196. https://doi.org/10.1016/j.engstruct.2019.109357Bustamante, E. O. (2018). Avances en la regionalización de las cargas térmicas para el diseño de puentes en Colombia.Castaño, J. C. (1999). Universidad Nacional de Colombia: Repositorio institucional UN. http://www.bdigital.unal.edu.co/23972/CCP-14, A. C. de I. S. (2014). SECCION 3: Cargas y Factores de Carga. Norma Colombiana de Diseño de Puentes, CCP 14, 140.Cengel, Y. A., & Ghajar, A. J. (2011). Transferencia de calor y masa : fundamentos y aplicaciones. McGraw-Hill Interamericana. http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=3214430Cheng, W., Wenchao, L., & Chen, Z. (2020). Calculation and Analysis of Box Girder Temperature Effect of Large Cantilever Bridge under the Solar Radiation. IOP Conference Series: Materials Science and Engineering, 780(2). https://doi.org/10.1088/1757-899X/780/2/022010Childs, D. (2020). Bridge Design| Temperature Effects in Bridge Decks. http://bridgedesign.org.uk/tutorial/temperature-effects.phpColombia Weather History | Weather Underground. (2020). https://www.wunderground.com/history/monthly/co/neiva/SKNV/date/2019-12Eddyhrbs. (2010). INGENIERIA CIVIL: Puentes Cantiléver. https://www.ingenierocivilinfo.com/2011/01/puentes-cantilever.htmlFeng, H., Liu, X., Wu, B., Wu, D., Zhang, X., & He, C. (2019). Temperature-insensitive cable tension monitoring during the construction of a cable-stayed bridge with a custom-developed pulse elasto-magnetic instrument. Structural Health Monitoring, 18(5–6), 1982–1994. https://doi.org/10.1177/1475921718814733Giovanni. (2020). https://giovanni.gsfc.nasa.gov/giovanni/Google Earth. (2020). https://earth.google.com/web/@0,0,0a,22251752.77375655d,35y,0h,0t,0rGrishyn, I. V., Ivanov, G. P., & Kayumov, R. A. (2020). Durability of bridge asphaltic concrete pavements under temperature loads. IOP Conference Series: Materials Science and Engineering, 786(1). https://doi.org/10.1088/1757-899X/786/1/012032Guard, P. (2009). File:Gateway Bridge aerial3.JPG - Wikipedia. https://en.wikipedia.org/wiki/File:Gateway_Bridge_aerial3.JPGHossain, T., Segura, S., & Okeil, A. M. (2020). Structural effects of temperature gradient on a continuous prestressed concrete girder bridge: analysis and field measurements. Structure and Infrastructure Engineering. https://doi.org/10.1080/15732479.2020.1713167Huang, W., Guo, W., & Wei, Y. (2019). Thermal Effect on Rheological Properties of Epoxy Asphalt Mixture and Stress Prediction for Bridge Deck Paving. Journal of Materials in Civil Engineering, 31(10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002861Infercal - Ingenieros Constructores. (2011). http://www.infercal.com/portal/Kennedybrücke - Bonn, NRW, Germany Image. (2017). https://www.waymarking.com/gallery/image.aspx?f=1&guid=1b009955-1e51-45ad-9606-65038213ca47&gid=3Kong, L. Y., Huang, L. H., Dai, L., & Yu, M. (2020). Coupling effect of temperature and roughness on the pull-out strength of concrete bridge deck inter-layer. Chang’an Daxue Xuebao (Ziran Kexue Ban)/Journal of Chang’an University (Natural Science Edition), 40(2), 21–29. https://doi.org/10.19721/j.cnki.1671-8879.2020.02.003 Kuryłowicz-Cudowska, A., Wilde, K., & Chróścielewski, J. (2020). Prediction of cast-in-place concrete strength of the extradosed bridge deck based on temperature monitoring and numerical simulations. Construction and Building Materials, 254. https://doi.org/10.1016/j.conbuildmat.2020.119224Lee, J., Loh, K. J., Choi, H. S., & An, H. (2019). Effect of Structural Change on Temperature Behavior of a Long-Span Suspension Bridge Pylon. International Journal of Steel Structures, 19(6), 2073–2089. https://doi.org/10.1007/s13296-019-00279-3Lei, X., Jiang, H., Wang, J., Zhang, D., & Jiang, R. (2020). Pavement Rut Depth Prediction for a Three-Span Suspension Steel Box Girder Bridge Based on Two-Year Temperature Monitoring Data. Journal of Transportation Engineering Part B: Pavements, 146(3). https://doi.org/10.1061/JPEODX.0000177Li, J., Hu, R., Yang, J., & Liu, Y. (2019). Effect of temperature gradient on competitive growth behavior of Si and YSi2 in a Si–Y eutectic alloy prepared by Bridgeman method. Ceramics International, 45(14), 16776–16783. https://doi.org/10.1016/j.ceramint.2019.05.213Lin, J., Briseghella, B., Xue, J., Tabatabai, H., Huang, F., & Chen, B. (2020). Temperature Monitoring and Response of Deck-Extension Side-by-Side Box Girder Bridges. Journal of Performance of Constructed Facilities, 34(2). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001399Liu, J., Liu, Y., Zhang, C., Zhao, Q., Lyu, Y., & Jiang, L. (2020). Temperature action and effect of concrete-filled steel tubular bridges: A review. In Journal of Traffic and Transportation Engineering (English Edition) (Vol. 7, Issue 2, pp. 174–191). Periodical Offices of Chang- an University. https://doi.org/10.1016/j.jtte.2020.03.001Liu, Y. J., & Liu, J. (2020). Review on temperature action and effect of steel-concrete composite girder bridge. In Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering (Vol. 20, Issue 1, pp. 42–59). Chang’an University. https://doi.org/10.19818/j.cnki.1671-1637.2020.01.003Monleón Cremades, S. (2017). Diseño estructural de puentes. Universidad Politécnica de Valencia.Puente Britannia - Puente | RouteYou. (2006). https://www.routeyou.com/es-gb/location/view/48035182/puente-britanniaPuente de Forth - EcuRed. (2017). https://www.ecured.cu/Puente_de_ForthPuente Verrazano-Narrows - Megaconstrucciones, Extreme Engineering. (2012). https://megaconstrucciones.net/?construccion=puente-verrazano-narrowsRepositorio Institucional IDU: Búsquedas. (2007). https://webidu.idu.gov.co/jspui/simple-search?query=Puente+avenida+de++las+amercias+con+boyaca+Salazar, P. (2012). CAPÍTULO IV APLICACIÓN DE LAS NORMAS AASHTO LRFD AL DISEÑO ESTRUCTURAL DE PUENTES 4.1.-INTRODUCCIÓN AL AASHTO LRFD.Sheng, X. W., Zheng, W. Q., Zhu, Z. H., Yang, Y., & Li, S. (2019). Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge. Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 19(4), 24–34.Shi, T., Zheng, J., Deng, N., Chen, Z., Guo, X., & Wang, S. (2020). Temperature Load Parameters and Thermal Effects of a Long-Span Concrete-Filled Steel Tube Arch Bridge in Tibet. Advances in Materials Science and Engineering, 2020. https://doi.org/10.1155/2020/9710613Somenson, H. M. (2017). Estudio y proyecto de puentes de hormigón armado. Díaz de Santos.Stahlwerk Annahutte Max Aicher GmbH & Co.KG. (n.d.). Puente Gateway, Brisbane, Australia. Retrieved February 10, 2020, from https://www.annahuette.com/es/home/proyectos-de-referencia/sistemas-sas-proyectos/puente-gatewaySumargo, & Harahap, A. H. S. (2019). Loading Test and Temperature Effect on Steel Arch Bridge. IOP Conference Series: Materials Science and Engineering, 650(1). https://doi.org/10.1088/1757-899X/650/1/012035VOSviewer. (2020). https://universoabierto.org/2020/02/18/vosviewer-es-una-herramienta-de-software-para-construir-y-visualizar-redes-bibliometricas/Wang, G. X., & Ding, Y. L. (2019). Long-term monitoring of temperature effect on horizontal rotation angle at beam ends of a railway steel truss bridge. Journal of Bridge Engineering, 24(10). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001484Wang, J. F., Zhang, J. T., Xu, R. Q., & Yang, Z. X. (2019). Evaluation of Thermal Effects on Cable Forces of a Long-Span Prestressed Concrete Cable-Stayed Bridge. Journal of Performance of Constructed Facilities, 33(6). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001348Wang, J. feng, Zhang, J. tao, Yang, Z. xuan, & Xu, R. qiao. (2020). Control measures for thermal effects during placement of span-scale girder segments on continuous steel box girder bridges. Journal of Zhejiang University: Science A, 21(4), 255–267. https://doi.org/10.1631/jzus.A1900310 Wayne, D. J. (1999). The male analyst on the maternal erotic playground. In Gender & Psychoanalysis (Vol. 4, Issue 1). http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc3&NEWS=N&AN=2000-03615-002Xia, Q., Xia, Y., Wan, H. P., Zhang, J., & Ren, W. X. (2020). Condition analysis of expansion joints of a long-span suspension bridge through metamodel-based model updating considering thermal effect. Structural Control and Health Monitoring, 27(5). https://doi.org/10.1002/stc.2521Xu, X., Ren, Y., Huang, Q., Zhao, D. Y., Tong, Z. J., & Chang, W. J. (2020). Thermal response separation for bridge long-term monitoring systems using multi-resolution wavelet-based methodologies. Journal of Civil Structural Health Monitoring. https://doi.org/10.1007/s13349-020-00402-7Yang, J. N., He, X. J., Yang, J. H. L., Wang, Y. D., & Zhang, Z. (2020). Analysis of Temperature Effect on an S Cable-Stayed Bridge with Steel Box Girder During Asphalt Concrete Placement. Bridge Construction, 50(2), 37–42.Yang, K., Ding, Y., Sun, P., Zhao, H., & Geng, F. (2019). Modeling of Temperature Time-Lag Effect for Concrete Box-Girder Bridges. Applied Sciences, 9(16), 3255. https://doi.org/10.3390/app9163255Yepes, V. (2017). Puente arco. https://victoryepes.blogs.upv.es/tag/puente-arco/Zhang, W. M., Tian, G. M., & Liu, Z. (2019). Analytical Study of Uniform Thermal Effects on Cable Configuration of a Suspension Bridge during Construction. Journal of Bridge Engineering, 24(11). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001493Zhang, W. M., Yang, C. Y., Tian, G. M., & Liu, Z. (2020). Analytical Assessment of Main Cable Shape for Three-Pylon Suspension Bridge with Unequal Main-Span Lengths: Thermal Effect Consideration. Journal of Bridge Engineering, 25(1). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001522Zhou, L., Zhang, G., Yu, Z., Zhao, L., Wei, T., & Yang, L. (2020). Model Experiments of Ballastless Track-bridge Structure under Cyclic Temperature Load. Tiedao Xuebao/Journal of the China Railway Society, 42(1), 82–88. https://doi.org/10.3969/j.issn.1001-8360.2020.01.012instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/PropiaCurrently cities such as Bogotá and Neiva have had a vehicular growth due to population and industrial development, where the infrastructure of the bridges daily supports loads such as the weight of cars, buses, trucks, dump trucks, etc., in addition to natural phenomena such as heat And the water. Taking into account that heat is transferred through convection, conduction and radiation, a photographic record was made with the help of the camera ends Flir One Pro and a numerical balance with the equations of the heat transfer methods, to finally compare the upper and lower temperatures present in the plate of the bridges made by both methods, understanding the affectations suffered by the structure due to heat, wind and other factors present in the environment, these final results are compared with what is established in the standard CCP-14 to verify if the conditions presented by the bridges comply with the provisions of the standard.Actualmente las ciudades como Bogotá y Neiva han tenido un crecimiento vehicular debido al desarrollo poblacional e industrial, donde la infraestructura de los puentes soporta diariamente cargas como el peso de los automóviles, buses, camiones, volquetas, etc., adicionalmente fenómenos naturales como el calor y el agua. Teniendo en cuenta que el calor se transfiere por medio de la convección, conducción y radiación, se realizó un registro fotográfico con ayuda de la cámara termina Flir One Pro y un balance numérico con las ecuaciones de los métodos de transferencia de calor, para así finalmente comparar las temperaturas superiores e inferiores presentes en la placa de los puentes realizados por ambos métodos, comprendiendo las afectaciones que sufre la estructura por el calor, el viento y otros factores presentes en el ambiente, estos resultados finales se comparan con lo establecido en la norma CCP-14 para verificar si las condiciones que presentan los puentes cumplen con lo establecido en la norma.Ingeniero(a) CivilPregradoPresencialspaUniversidad Antonio NariñoIngeniería CivilFacultad de Ingeniería CivilBogotá - SurConvecciónConducciónRadiaciónTemperaturaTransferencia de calorModelación numéricaPuentesConvectionConductionRadiationTemperatureHeat transferNumerical modelingBridgeTemperatura superficial in situ en el puente vehicular de la Avenida Américas con Avenida Boyacá (Bogotá) y en el puente Intercambiador vial el Tizón (Neiva)Trabajo de grado (Pregrado y/o Especialización)http://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2020HernanDavidMenesesReal.pdf2020HernanDavidMenesesReal.pdfTrabajo de Gradoapplication/pdf4784784https://repositorio.uan.edu.co/bitstreams/caefeb42-b367-46f5-b80f-588a650bd505/downloade202ba5048294f1aa3da366d8971032cMD522020AutorizacióndeAutores1.pdf2020AutorizacióndeAutores1.pdfAutorización de Autoresapplication/pdf1084800https://repositorio.uan.edu.co/bitstreams/7f813ea2-d02b-46a7-bc0a-09f995c01961/download1a97764b762b78d9b402b905b86406c1MD552020AutorizacióndeAutores2.pdf2020AutorizacióndeAutores2.pdfAutorización de Autoresapplication/pdf851825https://repositorio.uan.edu.co/bitstreams/2fdc64a2-c912-428f-8fa7-aabbf20c4091/download00d9f83b6ed1e3d8af95b72cfa6436abMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uan.edu.co/bitstreams/7bdd8ee2-1420-4b5c-bcc3-20977d62a240/download5812a2eee99d5585fc0c26f0033099bbMD57LICENSElicense.txtlicense.txttext/plain; charset=utf-82710https://repositorio.uan.edu.co/bitstreams/4d2df086-4fd7-4337-9cbd-444cf560befb/download2e388663398085f69421c9e4c5fcf235MD58123456789/2134oai:repositorio.uan.edu.co:123456789/21342024-10-09 22:49:24.262https://creativecommons.org/licenses/by-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.coQWwgaW5jbHVpciBpbmZvcm1hY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSAgVU5JVkVSU0lEQUQgQU5UT05JTyBOQVJJw5FPLCBlbCBhdXRvcihlcykgYXV0b3JpemEgYWwgU2lzdGVtYSBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBwYXJhIGFsbWFjZW5hciB5IG1hbnRlbmVyIGxhIGluZm9ybWFjacOzbiAsIGNvbiBmaW5lcyBhY2Fkw6ltaWNvcyB5IGRlIG1hbmVyYSBncmF0dWl0YSwgIHBvbmdhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIGNvbXVuaWRhZCBzdXMgY29udGVuaWRvcyBkw6FuZG9sZSB2aXNpYmlsaWRhZCBhIGxvcyBtaXNtb3MsIHNlIGVudGllbmRlIHF1ZSBlbChsb3MpIGF1dG9yKGVzKSBhY2VwdGEobik6IAoKMS4JUXVlIGxvcyB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBwdWVkYW4gY29uc3VsdGFyIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8gZW4gbG9zIHNpdGlvcyB3ZWIgcXVlIGFkbWluaXN0cmEgbGEgVW5pdmVyc2lkYWQgQW50b25pbyBOYXJpw7FvLCBlbiBCYXNlIGRlIERhdG9zLCBlbiBvdHJvcyBDYXTDoWxvZ29zIHkgZW4gb3Ryb3Mgc2l0aW9zIFdlYiwgUmVkZXMgeSBTaXN0ZW1hcyBkZSBJbmZvcm1hY2nDs24gbmFjaW9uYWxlcyBlIGludGVybmFjaW9uYWxlcyDigJxPcGVuIEFjY2Vzc+KAnSB5IGVuIGxhcyByZWRlcyBkZSBpbmZvcm1hY2nDs24gZGVsIHBhw61zIHkgZGVsIGV4dGVyaW9yLCBjb24gbGFzIGN1YWxlcyB0ZW5nYSBjb252ZW5pbyBsYSBVbml2ZXJzaWRhZCBBbnRvbmlvIE5hcmnDsW8uCgoyLglRdWUgc2UgcGVybWl0ZSBsYSBjb25zdWx0YSBhIGxvcyB1c3VhcmlvcyBpbnRlcmVzYWRvcyBlbiBlbCBjb250ZW5pZG8gZGUgZXN0ZSB0cmFiYWpvLCBjb24gZmluYWxpZGFkIGFjYWTDqW1pY2EsIG51bmNhIHBhcmEgdXNvcyBjb21lcmNpYWxlcywgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyB5IGEgc3UgYXV0b3IuIEVzdG8gaW5jbHV5ZSBjdWFscXVpZXIgZm9ybWF0byBkaXNwb25pYmxlIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuCgozLglRdWUgbG9zIGRlcmVjaG9zIHNvYnJlIGxvcyBkb2N1bWVudG9zIHNvbiBwcm9waWVkYWQgZGVsIGF1dG9yIG8gZGUgbG9zIGF1dG9yZXMgeSB0aWVuZW4gc29icmUgc3Ugb2JyYSwgZW50cmUgb3Ryb3MsIGxvcyBkZXJlY2hvcyBtb3JhbGVzIGEgcXVlIGhhY2VuIHJlZmVyZW5jaWEgY29uc2VydmFuZG8gbG9zIGNvcnJlc3BvbmRpZW50ZXMgZGVyZWNob3Mgc2luIG1vZGlmaWNhY2nDs24gbyByZXN0cmljY2nDs24gYWxndW5hIHB1ZXN0byBxdWUsIGRlIGFjdWVyZG8gY29uIGxhIGxlZ2lzbGFjacOzbiBjb2xvbWJpYW5hIGFwbGljYWJsZSwgZWwgcHJlc2VudGUgZXMgdW5hIGF1dG9yaXphY2nDs24gcXVlIGVuIG5pbmfDum4gY2FzbyBjb25sbGV2YSBsYSBlbmFqZW5hY2nDs24gZGVsIGRlcmVjaG8gZGUgYXV0b3IgeSBzdXMgY29uZXhvcy4KCjQuCVF1ZSBlbCBTaXN0ZW1hIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIEFudG9uaW8gTmFyacOxbyBwdWVkYSBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBwYXJhIHByb3DDs3NpdG9zIGRlIHByZXNlcnZhY2nDs24gZGlnaXRhbC4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgeSB1c2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBpbmZvcm1hY2nDs24gaW5jbHVpZGEgZW4gZXN0ZSByZXBvc2l0b3Jpby4KCjUuCVF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50byBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgVW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZTsgYXPDrSBtaXNtbyBlbCBhY8OhIGZpcm1hbnRlIGRlamFyw6EgaW5kZW1uZSBhIGxhIFVuaXZlcnNpZGFkIGRlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBwZXJqdWljaW8uCg==