Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora

Brain-computer interface (BCI) systems based on electroencephalography (EEG) and motor imagination (MI), have shown promising advances for the motor rehabilitation of lower extremities. However, in the state of the art there has been little explored about the MR of the lower limb, especially little...

Full description

Autores:
Triana Guzmán, Nayid
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Antonio Nariño
Repositorio:
Repositorio UAN
Idioma:
spa
OAI Identifier:
oai:repositorio.uan.edu.co:123456789/8023
Acceso en línea:
http://repositorio.uan.edu.co/handle/123456789/8023
Palabra clave:
interfaz cerebro-computadora (ICC)
computadora (ICC), electroencefalografía (EEG),
imaginación motora (IM), sentarse-pararse, procesamiento digital de señales, reconocimiento de patrones
600
brain-computer interface (BCI), electroencephalography (EEG
motor imagery (MI), sit-stand, digital signal processing, pattern recognition
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
id UAntonioN2_031b6240bcc5525778b9cf1c410193c0
oai_identifier_str oai:repositorio.uan.edu.co:123456789/8023
network_acronym_str UAntonioN2
network_name_str Repositorio UAN
repository_id_str
dc.title.es_ES.fl_str_mv Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora
title Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora
spellingShingle Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora
interfaz cerebro-computadora (ICC)
computadora (ICC), electroencefalografía (EEG),
imaginación motora (IM), sentarse-pararse, procesamiento digital de señales, reconocimiento de patrones
600
brain-computer interface (BCI), electroencephalography (EEG
motor imagery (MI), sit-stand, digital signal processing, pattern recognition
title_short Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora
title_full Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora
title_fullStr Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora
title_full_unstemmed Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora
title_sort Sistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadora
dc.creator.fl_str_mv Triana Guzmán, Nayid
dc.contributor.advisor.spa.fl_str_mv Jutinico Alarcón, Andrés Leonardo
Orjuela Cañón, Álvaro David
Reyes Guzmán, Edwin Alfredo
dc.contributor.author.spa.fl_str_mv Triana Guzmán, Nayid
dc.subject.es_ES.fl_str_mv interfaz cerebro-computadora (ICC)
computadora (ICC), electroencefalografía (EEG),
imaginación motora (IM), sentarse-pararse, procesamiento digital de señales, reconocimiento de patrones
topic interfaz cerebro-computadora (ICC)
computadora (ICC), electroencefalografía (EEG),
imaginación motora (IM), sentarse-pararse, procesamiento digital de señales, reconocimiento de patrones
600
brain-computer interface (BCI), electroencephalography (EEG
motor imagery (MI), sit-stand, digital signal processing, pattern recognition
dc.subject.ddc.es_ES.fl_str_mv 600
dc.subject.keyword.es_ES.fl_str_mv brain-computer interface (BCI), electroencephalography (EEG
motor imagery (MI), sit-stand, digital signal processing, pattern recognition
description Brain-computer interface (BCI) systems based on electroencephalography (EEG) and motor imagination (MI), have shown promising advances for the motor rehabilitation of lower extremities. However, in the state of the art there has been little explored about the MR of the lower limb, especially little is known about MR for standing and sitting. By Therefore, this paper presents an EEG-based ICC system for MI interpretation of these types of movements. The purpose of this system is to restore some mobility to people with disorders severe neuromuscular disorders that cannot exert the force required to move the physical interface (mouse, keyboard, joystick, microphone, or other peripherals) that use standing devices to perform transition from sitting to bipedal position
publishDate 2022
dc.date.issued.spa.fl_str_mv 2022-12-07
dc.date.accessioned.none.fl_str_mv 2023-05-18T20:45:06Z
dc.date.available.none.fl_str_mv 2023-05-18T20:45:06Z
dc.type.spa.fl_str_mv Tesis y disertaciones (Maestría y/o Doctorado)
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://repositorio.uan.edu.co/handle/123456789/8023
dc.identifier.bibliographicCitation.spa.fl_str_mv Abdulkader, S. N., Atia, A., & Mostafa, M.-S. M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213–230. https://doi.org/10.1016/j.eij.2015.06.002
Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–computer interface paradigms. Journal of Neural Engineering, 16(1), 1–43. https://doi.org/10.1088/1741-2552/aaf12e
Aggarwal, S., & Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1–2, 1–12. https://doi.org/10.1016/j.array.2019.100003
Aggarwal, S., & Chugh, N. (2022). Review of Machine Learning Techniques for EEG Based Brain Computer Interface. Archives of Computational Methods in Engineering, 29(5), 3001–3020. https://doi.org/10.1007/s11831-021-09684-6
Ahn, M., Lee, M., Choi, J., & Jun, S. (2014). A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users. Sensors, 14(8), 14601–14633. https://doi.org/10.3390/s140814601
Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., Walter, B. L., Sweet, J. A., Hoyen, H. A., Keith, M. W., Peckham, P. H., Simeral, J. D., Donoghue, J. P., Hochberg, L. R., & Kirsch, R. F. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet, 389(10081), 1821–1830. https://doi.org/10.1016/S0140- 6736(17)30601-3
Al-Fahoum, A. S., & Al-Fraihat, A. A. (2014). Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neuroscience, 2014, 1–7. https://doi.org/10.1155/2014/730218
Al-Saegh, A., Dawwd, S. A., & Abdul-Jabbar, J. M. (2021). Deep learning for motor imagery EEGbased classification: A review. Biomedical Signal Processing and Control, 63, 1–21. https://doi.org/10.1016/j.bspc.2020.102172
Allison, B. Z., & Neuper, C. (2010). Could Anyone Use a BCI? In D. S. Tan & A. Nijholt (Eds.), Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction (1st ed., pp. 35–54). Springer, London. https://doi.org/10.1007/978-1-84996-272-8_3
Alyasseri, Z. A. A., Khadeer, A. T., Al-Betar, M. A., Abasi, A., Makhadmeh, S., & Ali, N. S. (2019). The Effects of EEG Feature Extraction Using Multi-Wavelet Decomposition for Mental Tasks Classification. Proceedings of the International Conference on Information and Communication Technology - ICICT ’19, 139–146. https://doi.org/10.1145/3321289.3321327
dc.identifier.instname.spa.fl_str_mv instname:Universidad Antonio Nariño
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UAN
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uan.edu.co/
url http://repositorio.uan.edu.co/handle/123456789/8023
identifier_str_mv Abdulkader, S. N., Atia, A., & Mostafa, M.-S. M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213–230. https://doi.org/10.1016/j.eij.2015.06.002
Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–computer interface paradigms. Journal of Neural Engineering, 16(1), 1–43. https://doi.org/10.1088/1741-2552/aaf12e
Aggarwal, S., & Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1–2, 1–12. https://doi.org/10.1016/j.array.2019.100003
Aggarwal, S., & Chugh, N. (2022). Review of Machine Learning Techniques for EEG Based Brain Computer Interface. Archives of Computational Methods in Engineering, 29(5), 3001–3020. https://doi.org/10.1007/s11831-021-09684-6
Ahn, M., Lee, M., Choi, J., & Jun, S. (2014). A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users. Sensors, 14(8), 14601–14633. https://doi.org/10.3390/s140814601
Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., Walter, B. L., Sweet, J. A., Hoyen, H. A., Keith, M. W., Peckham, P. H., Simeral, J. D., Donoghue, J. P., Hochberg, L. R., & Kirsch, R. F. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet, 389(10081), 1821–1830. https://doi.org/10.1016/S0140- 6736(17)30601-3
Al-Fahoum, A. S., & Al-Fraihat, A. A. (2014). Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neuroscience, 2014, 1–7. https://doi.org/10.1155/2014/730218
Al-Saegh, A., Dawwd, S. A., & Abdul-Jabbar, J. M. (2021). Deep learning for motor imagery EEGbased classification: A review. Biomedical Signal Processing and Control, 63, 1–21. https://doi.org/10.1016/j.bspc.2020.102172
Allison, B. Z., & Neuper, C. (2010). Could Anyone Use a BCI? In D. S. Tan & A. Nijholt (Eds.), Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction (1st ed., pp. 35–54). Springer, London. https://doi.org/10.1007/978-1-84996-272-8_3
Alyasseri, Z. A. A., Khadeer, A. T., Al-Betar, M. A., Abasi, A., Makhadmeh, S., & Ali, N. S. (2019). The Effects of EEG Feature Extraction Using Multi-Wavelet Decomposition for Mental Tasks Classification. Proceedings of the International Conference on Information and Communication Technology - ICICT ’19, 139–146. https://doi.org/10.1145/3321289.3321327
instname:Universidad Antonio Nariño
reponame:Repositorio Institucional UAN
repourl:https://repositorio.uan.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv Acceso abierto
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Acceso abierto
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad Antonio Nariño
dc.publisher.program.spa.fl_str_mv Doctorado en Ciencia Aplicada
dc.publisher.faculty.spa.fl_str_mv Doctorado en Ciencia Aplicada
dc.publisher.campus.spa.fl_str_mv Bogotá - Circunvalar
institution Universidad Antonio Nariño
bitstream.url.fl_str_mv https://repositorio.uan.edu.co/bitstreams/e48456a4-9506-4319-b31c-1effd40d3398/download
https://repositorio.uan.edu.co/bitstreams/36538b80-55d2-4f07-a9c5-edf5d5301c02/download
https://repositorio.uan.edu.co/bitstreams/e793c3d8-df0b-46f6-b053-1750286901e5/download
https://repositorio.uan.edu.co/bitstreams/57b19d8e-2a69-4d76-beac-0e9eb2e49d89/download
https://repositorio.uan.edu.co/bitstreams/d80f7444-a1a4-4c3b-aa34-1013d28c958f/download
https://repositorio.uan.edu.co/bitstreams/40d22dba-e7fc-445e-8153-17c7cf0ffc40/download
https://repositorio.uan.edu.co/bitstreams/0d95403e-1ef8-4965-b81c-893276f6f3ff/download
https://repositorio.uan.edu.co/bitstreams/115e6f67-2b3d-44da-8363-c7ca601bb720/download
https://repositorio.uan.edu.co/bitstreams/22949f7d-e41c-4458-9f75-bac14842366f/download
bitstream.checksum.fl_str_mv 60e9fe3378e878e56aee08e25fff114d
37338645371ae16e52ff51160065f54e
9455262b2c54591ae0058870435e7bd0
77af881be083db3205b450db3345cd7c
6d93d3216dc4a7f5df47d4876fbec4d3
40733989ee73f97ecd5aaa4fb81db7a8
3d787a325add37d07d29dc8baf360190
2dcb2b114e7130b5b47a9e5c16797a03
6287563a45757225c7d6eefae7575eaa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UAN
repository.mail.fl_str_mv alertas.repositorio@uan.edu.co
_version_ 1814300428992512000
spelling Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)Acceso abiertohttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Jutinico Alarcón, Andrés LeonardoOrjuela Cañón, Álvaro DavidReyes Guzmán, Edwin AlfredoTriana Guzmán, Nayid130018257362023-05-18T20:45:06Z2023-05-18T20:45:06Z2022-12-07http://repositorio.uan.edu.co/handle/123456789/8023Abdulkader, S. N., Atia, A., & Mostafa, M.-S. M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213–230. https://doi.org/10.1016/j.eij.2015.06.002Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–computer interface paradigms. Journal of Neural Engineering, 16(1), 1–43. https://doi.org/10.1088/1741-2552/aaf12eAggarwal, S., & Chugh, N. (2019). Signal processing techniques for motor imagery brain computer interface: A review. Array, 1–2, 1–12. https://doi.org/10.1016/j.array.2019.100003Aggarwal, S., & Chugh, N. (2022). Review of Machine Learning Techniques for EEG Based Brain Computer Interface. Archives of Computational Methods in Engineering, 29(5), 3001–3020. https://doi.org/10.1007/s11831-021-09684-6Ahn, M., Lee, M., Choi, J., & Jun, S. (2014). A Review of Brain-Computer Interface Games and an Opinion Survey from Researchers, Developers and Users. Sensors, 14(8), 14601–14633. https://doi.org/10.3390/s140814601Ajiboye, A. B., Willett, F. R., Young, D. R., Memberg, W. D., Murphy, B. A., Miller, J. P., Walter, B. L., Sweet, J. A., Hoyen, H. A., Keith, M. W., Peckham, P. H., Simeral, J. D., Donoghue, J. P., Hochberg, L. R., & Kirsch, R. F. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. The Lancet, 389(10081), 1821–1830. https://doi.org/10.1016/S0140- 6736(17)30601-3Al-Fahoum, A. S., & Al-Fraihat, A. A. (2014). Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neuroscience, 2014, 1–7. https://doi.org/10.1155/2014/730218Al-Saegh, A., Dawwd, S. A., & Abdul-Jabbar, J. M. (2021). Deep learning for motor imagery EEGbased classification: A review. Biomedical Signal Processing and Control, 63, 1–21. https://doi.org/10.1016/j.bspc.2020.102172Allison, B. Z., & Neuper, C. (2010). Could Anyone Use a BCI? In D. S. Tan & A. Nijholt (Eds.), Brain-Computer Interfaces: Applying our Minds to Human-Computer Interaction (1st ed., pp. 35–54). Springer, London. https://doi.org/10.1007/978-1-84996-272-8_3Alyasseri, Z. A. A., Khadeer, A. T., Al-Betar, M. A., Abasi, A., Makhadmeh, S., & Ali, N. S. (2019). The Effects of EEG Feature Extraction Using Multi-Wavelet Decomposition for Mental Tasks Classification. Proceedings of the International Conference on Information and Communication Technology - ICICT ’19, 139–146. https://doi.org/10.1145/3321289.3321327instname:Universidad Antonio Nariñoreponame:Repositorio Institucional UANrepourl:https://repositorio.uan.edu.co/Brain-computer interface (BCI) systems based on electroencephalography (EEG) and motor imagination (MI), have shown promising advances for the motor rehabilitation of lower extremities. However, in the state of the art there has been little explored about the MR of the lower limb, especially little is known about MR for standing and sitting. By Therefore, this paper presents an EEG-based ICC system for MI interpretation of these types of movements. The purpose of this system is to restore some mobility to people with disorders severe neuromuscular disorders that cannot exert the force required to move the physical interface (mouse, keyboard, joystick, microphone, or other peripherals) that use standing devices to perform transition from sitting to bipedal positionLos sistemas de interfaz cerebro-computadora (ICC) basados en electroencefalografía (EEG) e imaginación motora (IM), han mostrado avances prometedores para la rehabilitación motriz de las extremidades inferiores. Sin embargo, en el estado del arte ha sido poco explorado sobre la IM del miembro inferior, especialmente se sabe poco acerca de la IM para la bipedestación y la sedestación. Por lo tanto, este trabajo presenta un sistema de ICC basado en EEG para la interpretación de la IM de estos tipos de movimientos. El propósito de este sistema es devolver cierta movilidad a personas con trastornos neuromusculares graves que no pueden imprimir la fuerza que se requiere para mover la interfaz física (ratón, teclado, joystick, micrófono, u otros periféricos) que usan dispositivos bipedestadores para realizar la transición de la posición sedente-bípedaDoctor(a) en Ciencia AplicadaDoctoradoPresencialInvestigaciónspaUniversidad Antonio NariñoDoctorado en Ciencia AplicadaDoctorado en Ciencia AplicadaBogotá - Circunvalarinterfaz cerebro-computadora (ICC)computadora (ICC), electroencefalografía (EEG),imaginación motora (IM), sentarse-pararse, procesamiento digital de señales, reconocimiento de patrones600brain-computer interface (BCI), electroencephalography (EEGmotor imagery (MI), sit-stand, digital signal processing, pattern recognitionSistema y método para la interpretación de la imaginación motora de los movimientos de ponerse de pie y sentarse basado en interfaz cerebro computadoraTesis y disertaciones (Maestría y/o Doctorado)http://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Tesis/Trabajo de grado - Monografía - DoctoradoEspecializadaORIGINAL2022_NayidTrianaGuzman.pdf2022_NayidTrianaGuzman.pdfTesis Doctorado Nayid Trianaapplication/pdf3344652https://repositorio.uan.edu.co/bitstreams/e48456a4-9506-4319-b31c-1effd40d3398/download60e9fe3378e878e56aee08e25fff114dMD512022_NayidTrianaGuzma_Autorizacion.pdf2022_NayidTrianaGuzma_Autorizacion.pdfFormato autorización publicación tesisapplication/pdf538369https://repositorio.uan.edu.co/bitstreams/36538b80-55d2-4f07-a9c5-edf5d5301c02/download37338645371ae16e52ff51160065f54eMD522022_NayidTrianaGuzma_Acta.pdf2022_NayidTrianaGuzma_Acta.pdfActa de sustentación tesisapplication/pdf549127https://repositorio.uan.edu.co/bitstreams/e793c3d8-df0b-46f6-b053-1750286901e5/download9455262b2c54591ae0058870435e7bd0MD53TEXT2022_NayidTrianaGuzman.pdf.txt2022_NayidTrianaGuzman.pdf.txtExtracted texttext/plain101806https://repositorio.uan.edu.co/bitstreams/57b19d8e-2a69-4d76-beac-0e9eb2e49d89/download77af881be083db3205b450db3345cd7cMD542022_NayidTrianaGuzma_Autorizacion.pdf.txt2022_NayidTrianaGuzma_Autorizacion.pdf.txtExtracted texttext/plain6https://repositorio.uan.edu.co/bitstreams/d80f7444-a1a4-4c3b-aa34-1013d28c958f/download6d93d3216dc4a7f5df47d4876fbec4d3MD562022_NayidTrianaGuzma_Acta.pdf.txt2022_NayidTrianaGuzma_Acta.pdf.txtExtracted texttext/plain270https://repositorio.uan.edu.co/bitstreams/40d22dba-e7fc-445e-8153-17c7cf0ffc40/download40733989ee73f97ecd5aaa4fb81db7a8MD58THUMBNAIL2022_NayidTrianaGuzman.pdf.jpg2022_NayidTrianaGuzman.pdf.jpgGenerated Thumbnailimage/jpeg6788https://repositorio.uan.edu.co/bitstreams/0d95403e-1ef8-4965-b81c-893276f6f3ff/download3d787a325add37d07d29dc8baf360190MD552022_NayidTrianaGuzma_Autorizacion.pdf.jpg2022_NayidTrianaGuzma_Autorizacion.pdf.jpgGenerated Thumbnailimage/jpeg16814https://repositorio.uan.edu.co/bitstreams/115e6f67-2b3d-44da-8363-c7ca601bb720/download2dcb2b114e7130b5b47a9e5c16797a03MD572022_NayidTrianaGuzma_Acta.pdf.jpg2022_NayidTrianaGuzma_Acta.pdf.jpgGenerated Thumbnailimage/jpeg18590https://repositorio.uan.edu.co/bitstreams/22949f7d-e41c-4458-9f75-bac14842366f/download6287563a45757225c7d6eefae7575eaaMD59123456789/8023oai:repositorio.uan.edu.co:123456789/80232024-10-09 23:22:01.313https://creativecommons.org/licenses/by-nc-nd/4.0/Acceso abiertoopen.accesshttps://repositorio.uan.edu.coRepositorio Institucional UANalertas.repositorio@uan.edu.co