Un modelo de regresión Poisson no lineal para extinción de especies en hábitats fragmentados.
La Bioestadística es el conjunto de métodos estadísticos utilizados principalmente en biología, incluido el diseño de experimentos biológicos, la recopilación de datos experimentales y el análisis estadístico de estos tipos datos. Un gran número de biólogos recopilan diferentes tipos de datos, de di...
- Autores:
-
Lai, Qitian
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/47424
- Acceso en línea:
- http://hdl.handle.net/11634/47424
- Palabra clave:
- Biostatistics
Habitat Fragmentation
Nonlinear Poisson Regression Model
Species Extinction
Extinción (Biología)
Estadística
Medio ambiente -- Degradación
Bioestadística
Extinción de Especies
Fragmentación de Hábitats
Modelo de Regresión Normal no Lineal
Modelo de Regresión Poisson no Lineal
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
Summary: | La Bioestadística es el conjunto de métodos estadísticos utilizados principalmente en biología, incluido el diseño de experimentos biológicos, la recopilación de datos experimentales y el análisis estadístico de estos tipos datos. Un gran número de biólogos recopilan diferentes tipos de datos, de diferentes rincones del mundo. Generalmente, estos datos contienen diferentes tipos de variables dependientes e independientes que pueden analizarse utilizando modelos de regresión lineales o no lineales. En la actualidad, las actividades humanas (construcción de presas, deforestación, etc.) y el cambio climático representan una amenaza para un gran número de especies animales y plantas, y la extinción de las especies representa una gran parte de la investigación biológica y bioestadística. En cuanto a la modelización estadística de la extinción de especies y sus posibles causas, es común encontrar en propuesta de Regresión Normal No Lineal, Lo cual reducir error, dado que la variable respuesta corresponde al número de especies en ciertas áreas de interés a lo largo del tiempo, por lo que la Regresión de Poisson no Lineal será una suposición más apropiada. En este proyecto, se propone la Regresión de Poisson No Lineal con el objetivo de ajustar los datos sobre el número de especies en hábitats fragmentados. En particular, tiene como objetivo realizar el Modelo de Gibson et al. (2013), que es un modelo No Lineal para la variable número de especies, en función del área de los fragmentos y la fragmentación del hábitat. Este proyecto demuestra que la Regresión de Poisson No Lineal es más eficiente que otros tipos de Regresiones, al ajustar tipos de datos comunes en bioestadísticas como el número de especies en función del tiempo y el área de los fragmentos. Los resultados mostraron que existe una correlación negativa entre el número de especies restantes y el tiempo. A medida que pasa el tiempo, el número de especies restantes disminuye, existe una correlación positiva entre el número de especies restantes y el área de la isla. Las islas más grandes tienen más especies restantes, pero con el paso del tiempo, la tasa de extinción de las islas más grandes es más alta que la de las islas pequeñas. Sin embargo, las especies restantes en la isla eventualmente se extinguirán hasta la situación en la que solo quedaran una o dos especies que básicamente tienden a extinguirse hasta 15 años. Para usar Regresión Normal no Lineal y Regresión de Poisson no Lineal respectivamente, comparando la Regresión Original de luke et al. (2013), el valor R2 también es más alto que las otras dos regresiones, por otro lado, la Regresión de Poisson no Lineal tiene un intervalo de confianza más pequeño y menor la desviación residual y AIC. Se puede concluir que la Regresión Poisson no lineal es más eficiente que la Regresión Normal no Lineal. |
---|