Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos

La planta de tratamiento de agua potable (PTAP) de la ciudad de Tunja, Boyacá suministra agua a una población de aproximadamente 172,548 habitantes. La PTAP tiene procesos de aireación, coagulación, floculación, sedimentación, filtración y desinfección .Sin embargo, las características fisicoquímica...

Full description

Autores:
Avila Ruiz, Fernando Libardo
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2022
Institución:
Universidad Santo Tomás
Repositorio:
Universidad Santo Tomás
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/48232
Acceso en línea:
http://hdl.handle.net/11634/48232
Palabra clave:
Turbidity
Flocculation
Velocity Gradient
Factorial Desing
Turbiedad
Floculación
Gradiente de velocidad
Diseño factorial
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SantoToma2_f3af27348295c7b29d87119a3db98d04
oai_identifier_str oai:repository.usta.edu.co:11634/48232
network_acronym_str SantoToma2
network_name_str Universidad Santo Tomás
repository_id_str
dc.title.spa.fl_str_mv Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos
title Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos
spellingShingle Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos
Turbidity
Flocculation
Velocity Gradient
Factorial Desing
Turbiedad
Floculación
Gradiente de velocidad
Diseño factorial
title_short Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos
title_full Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos
title_fullStr Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos
title_full_unstemmed Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos
title_sort Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de Teatinos
dc.creator.fl_str_mv Avila Ruiz, Fernando Libardo
dc.contributor.advisor.none.fl_str_mv Gonzalez, Juan Pablo
dc.contributor.author.none.fl_str_mv Avila Ruiz, Fernando Libardo
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás Tunja
dc.subject.keyword.spa.fl_str_mv Turbidity
Flocculation
Velocity Gradient
Factorial Desing
topic Turbidity
Flocculation
Velocity Gradient
Factorial Desing
Turbiedad
Floculación
Gradiente de velocidad
Diseño factorial
dc.subject.proposal.spa.fl_str_mv Turbiedad
Floculación
Gradiente de velocidad
Diseño factorial
description La planta de tratamiento de agua potable (PTAP) de la ciudad de Tunja, Boyacá suministra agua a una población de aproximadamente 172,548 habitantes. La PTAP tiene procesos de aireación, coagulación, floculación, sedimentación, filtración y desinfección .Sin embargo, las características fisicoquímicas del agua proveniente de la represa teatinos hacen difícil su tratamiento usando coagulación, floculación y sedimentación dado a su baja alcalinidad (4 – 6 mg/L como CaCO3) y su relativo bajo pH (5,7 – 6,3). El objetivo de esta investigación fue el de hacer una optimización de procesos de floculación y de sedimentación a escala de laboratorio usando un ensayo convencional de jarras, con la ayuda de un diseño factorial, para mejorar la remoción de turbiedad. El diseño factorial permitió evaluar tres diferentes gradientes de velocidad (G) en floculación o mezcla lenta(10, 50 y 100 s-1), tres diferentes tiempos de floculación (TF) (10, 15 y 20 minutos) y tres diferentes tiempos de sedimentación (TS) (20, 30 y 40 minutos) observando su impacto sobre la remoción de turbiedad en la prueba de jarras. De acuerdo con los resultados del estudio, las condiciones óptimas de operación encontradas fueron: (G= 100s-1mezcla lenta, TF = 20 minutos y TS = 20 minutos), con las cuales se logró obtener una turbiedad residual de 0,77 UNT, correspondiente a un 78% de remoción. Adicionalmente, aplicando una superficie de respuesta se pudo predecir valores de turbiedades finales de hasta 0,20 UNT en la jarra usando parámetros operacionales de (G=78 s-1, TF= 23minutos y TS = 30 minutos), respectivamente.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-12-01T21:16:31Z
dc.date.available.none.fl_str_mv 2022-12-01T21:16:31Z
dc.date.issued.none.fl_str_mv 2022-11-23
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
format http://purl.org/coar/resource_type/c_bdcc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Avila, F., Gonzales, J.,(2022).Optimización Procesos de Floculación y Sedimentación con un Diseño Factorial Tratando Agua del Embalse de Teatinos. Tesis posgrado, Universidad Santo Tomas, Tunja.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/48232
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Avila, F., Gonzales, J.,(2022).Optimización Procesos de Floculación y Sedimentación con un Diseño Factorial Tratando Agua del Embalse de Teatinos. Tesis posgrado, Universidad Santo Tomas, Tunja.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/48232
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbas, H. (2009). Natural organic matter removal from Tigris River water in Baghdad. Iraq. ScienceDirect, 155–168.
Abbaszadegan, M., Mayer, B. K., Ryu, H., & Nwachuku, N. (2007). Efficacy of removal of CCL viruses under enhanced coagulation conditions. Environmental Science & Technology, 41(3), 971–977. https://doi.org/10.1021/es061517z
Aguilar, M. I., Sáez, J., Lloréns, M., Soler, A., & Ortuño, J. F. (2003). Microscopic observationof particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferricsulphate as coagulant and different coagulant aids. Water Research, 37(9), 2233–2241.https://doi.org/10.1016/S0043-1354(02)00525-0
AQinstruments. (2021). aquateknica. Qué Es Un Colorímetro, Cómo Funciona y Para Qué Sirve. https://www.aquateknica.com/que-es-un-colorimetro-como-funciona-y-para-quesirve/
Arjona, S. (2012). EFECTO DEL PUNTO DE PRECLORACION SOBRE LA FORMACION DE TRIHALOMETANOS EN PROCESOS CONVENCIONALES DE POTABILIZACION DE AGUA. Revista Ingenierias Universidad de Medellin, 11, 57.
Batt, A. L., Furlong, E. T., Mash, H. E., Glassmeyer, S. T., & Kolpin, D. W. (2017). The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples. Science of The Total Environment, 579, 1618–1628. https://doi.org/10.1016/J.SCITOTENV.2016.02.127
Birhanu, Y., & Leta, S. (2021). Application of response surface methodology to optimize removal efficiency of water turbidity by low-cost natural coagulant (Odaracha soil) from Saketa District, Ethiopia. Results in Chemistry, 3. https://doi.org/10.1016/j.rechem.2021.100108
Chakraborti, R. J., Atkinson, J. F. & Van Benschoten, J. E. (2000). Characterisation of alum floc by image analysis. Environmental Science and Technology. 34, 3969–3976.
Chen, Xiang. (2000). Instrumental traditions and theories of light : the uses of instruments in the optical revolution. 211.
DANE. (2018). https://www.dane.gov.co/
Dayarathne, H. N. P., Angove, M. J., Jeong, S., Aryal, R., Paudel, S. R., & Mainali, B. (2022). Effect of temperature on turbidity removal by coagulation: Sludge recirculation for rapid settling. Journal of Water Process Engineering, 46, 102559. https://doi.org/https://doi.org/10.1016/j.jwpe.2022.102559
de Wit, H. A., Valinia, S., Weyhenmeyer, G. A., Futter, M. N., Kortelainen, P., Austnes, K., Hessen, D. O., Räike, A., Laudon, H., & Vuorenmaa, J. (2016). Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate. Environmental Science and Technology Letters, 3(12), 430–435. https://doi.org/10.1021/acs.estlett.6b00396
Delpla, I., Jung, A.-V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int, 35.
Denver, C. O. (2011). AWWA . Manual M37—Operational Control of Coagulation and Filtration Works Assocciation,.
Drinan, J. E., & Spellman, F. R. (2013a). Water and Wastewater Treatment A Guide for the Nonengineering Professional Second Edition Chapter 2.
Drinan, J. E., & Spellman, F. R. (2013b). Water and Wastewater Treatment A Guide for the Nonengineering Professional Second Edition Chapter 5 (Vol. 2).
Evans, C., Monteith, D., & Cooper, M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ. Pollut, 137.
Ferretto, A., Brooker, R., Matthews, R., & Smith, P. (2021). Climate change and drinking water from Scottish peatlands: Where increasing DOC is an issue? Journal of Environmental Management, 300, 113688. https://doi.org/10.1016/J.JENVMAN.2021.113688
Filella, M. (1976). Freshwaters: which NOM matters? Environ. Chem. Lett, 7.
uzman J. (2017). Evaluación técnica de la etapa coagulación-floculación para el mejoramiento en el proceso de potabilización de la planta galán de la eaaaz. FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTA DE INGENIERIAS PROGRAMA INGENIERÍA QUÍMICA.
urst, S. M., McLoughlin, R. M., Monslow, J., Owens, S., Morgan, L., Fuller, G. M., Topley, N., & Jones, S. A. (2002). Secretion of oncostatin M by infiltrating neutrophils: regulation of IL-6 and chemokine expression in human mesothelial cells. Journal of Immunology (Baltimore, Md. : 1950), 169(9), 5244–5251. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&L inkName=pubmed_pubmed&LinkReadableName=Related Articles&IdsFromResult=12391243&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubme d.Pubmed_ResultsPanel.Pubmed_RVDocSum
J P Ritson. (2011). The impact of climate change on the treatability of dissolved organic matter(DOM) in upland water supplies: a UK perspective.
Jarvis, P., Jefferson, B., & Parsons, S. A. (2005). How the natural organic matter to coagulant ratio impacts on floc structural properties. Environmental Science and Technology, 39(22), 8919–8924. https://doi.org/10.1021/es0510616
John Crit. (2012). MWH’s Water Treatment Principles and Design Third Edition Chapter 9. In MWH’s Water Treatment (pp. 1869–1901). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118131473.index
Kaiser, K., Guggenberger, M., Kaupenjohann, M., & Zech, W. (2002). Refractory Organic Substances in Aggregated Forest Soils Retention Verses Translocation. Refractory Organic Substances in the Environment WileyVCH Weinhe.
kasalab. (2021). Beaker, Beaker Colombia, Vidrieria De Laboratorio, Vaso Precipitado. https://www.kasalab.com/producto/vaso-precipitado-25ml-forma-baja-en-vidrio/
Kawamura, Susumu. (2000). Integrated design and operation of water treatment facilities. 691.
Khan, S. U., & Hussain, I. (2021). Impact of safe drinking water and clean fuels on health and wellbeing in Pakistan: A spatial analysis. Groundwater for Sustainable Development, 15, 100677. https://doi.org/10.1016/J.GSD.2021.100677
Krzeminski, P., Vogelsang, C., Meyn, T., Köhler, S. J., Poutanen, H., de Wit, H. A., & Uhl, W. (2019). Natural organic matter fractions and their removal in full-scale drinking water treatment under cold climate conditions in Nordic capitals. Journal of Environmental Management, 241, 427–438. https://doi.org/10.1016/j.jenvman.2019.02.024
Kulthanan, K., Nuchkull, P., & Varothai, S. (2013). The pH of water from various sources: an overview for recommendation for patients with atopic dermatitis. Asia Pacific Allergy, 3(3), 155–160. https://doi.org/10.5415/APALLERGY.2013.3.3.155
Leenheer, J., & Crou, J.-P. (2003). Peer reviewed: characterizing aquatic dissolved organic matter. Environ. Sci. Technol, 37.
Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. In Advances in Colloid and Interface Science (Vol. 159, Issue 2, pp. 189–197). Elsevier B.V. https://doi.org/10.1016/j.cis.2010.06.007
Metsämuuronen, S., Sillanpää, M., Bhatnagar, A., & Mänttäri, M. (2014). Natural organic matter removal from drinking water by membrane technology Chapter 2. Separation and Purification Reviews, 43(1), 1–61. https://doi.org/10.1080/15422119.2012.712080
Minitab. (2021). Introducción a Minitab 19 para Windows Contents.
Mohd Khairi, M. T., Ibrahim, S., Md Yunus, M. A., & Faramarzi, M. (2015). A review on the design and development of turbidimeter. Sensor Review, 35(1), 98–105. https://doi.org/10.1108/SR-01-2014-604/FULL/XML
Montoya, J. (2013). Fraccionamiento y cuantificacion de la materia organica en Andisoles bajo diferentes sistemas de produccion. Ciencias Del Suelo, 333–343.
Nadella, M., Sharma, R., & Chellam, S. (2020). Fit-for-purpose treatment of produced water with iron and polymeric coagulant for reuse in hydraulic fracturing: Temperature effects on aggregation and high-rate sedimentation. Water Research, 170, 115330. https://doi.org/10.1016/J.WATRES.2019.115330
Nkambule, T. I., Krause, R. W. M., Haarhoff, J., & Mamba, B. B. (2012). Natural organic matter (NOM) in South African waters: NOM characterisation using combined assessment techniques. Water SA, 38(5), 697–706. https://doi.org/10.4314/wsa.v38i5.7
Owen D. (1997). NOM characterization and treatability.
Pakale, A. A. (2018). DIGITAL PH METER. Electronic Design Engineering, 4(1).
Papacosta, K. (2008). TURBIDITY CALIBRATION STANDARDS EVALUATED FROM A DIFFERENT PERSPECTIVE.
Paradis, E., & Ahumada, J. A. (2002). R para Principiantes.
Park, S., & Yoon, T. (2009). Desalination ;146. 239.
Parker, D. S. ; K., Jenkins, W. J. ;, & D. (1972). Floc Breakup in Turbulent Flocculation Processes. J. Sanit. Eng. Div., Am. Soc. Civ. Eng. 1972, SA, 1, 79–99.
phere G. (2008). Stets and J Cotner Littoral Zones as Sources, 45 SRC-, 865–873.
R. Gough d, C. F. (2013). The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: A UK perspective.
Ranasinghe, D. M. A., & Ariyaratne, T. R. (2012). Design and Construction of Cost Effective Turbidimeter … Proceedings of the Technical Sessions. 28, 65–70.
Satterfield, Z. (2021). What is jar testing? Jar Testing. www.nesc.wvu.edu/
Savarese, C., Drosos, M., Spaccini, R., Cozzolino, V., & Piccolo, A. (2021). Molecular characterization of soil organic matter and its extractable humic fraction from long-term field experiments under different cropping systems. Geoderma, 383(July 2020). https://doi.org/10.1016/j.geoderma.2020.114700
Sillanpää, M., Ncibi, M. C., Matilainen, A., & Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. In Chemosphere (Vol. 190, pp. 54–71). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2017.09.113
Sinha, R., Gupta, A. K., & Ghosal, P. S. (2021). A review on Trihalomethanes and Haloacetic acids in drinking water: Global status, health impact, insights of control and removal technologies. Journal of Environmental Chemical Engineering, 9(6), 106511. https://doi.org/10.1016/J.JECE.2021.106511
Standards, A., & Philadelphia, P. A. (2008). ASTM . Standard Recommended Practice for Coagulation-Flocculation Jar Test of Water, in Book of ,. D2035-08 SRC-BaiduScholar FG-0.
Stets, E. G., & Cotner, J. B. (2008). Littoral zones as sources of biodegradable dissolved organiccarbon in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65(11), 2454–2460. https://doi.org/10.1139/F08-142
Swietlik, J., & Sikorska, E. (2004). Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone. Water Research, 38(17), 3791–3799. https://doi.org/10.1016/j.watres.2004.06.010
Teixeira, M. R., Rosa, S. M., & Sousa, V. (2011). Natural Organic Matter and Disinfection Byproducts Formation Potential in Water Treatment. Water Resources Management, 25(12), 3005–3015. https://doi.org/10.1007/s11269-011-9795-0
Thurman, R. G., & Kauffman, F. C. (1985). Sublobular compartmentation of pharmacologic events (SCOPE): metabolic fluxes in periportal and pericentral regions of the liver lobule. Hepatology (Baltimore, Md.), 5(1), 144–151. https://doi.org/10.1002/hep.1840050128
TP Laboratorio Quimico. (2022). PHmetro (Medidor de PH) » TP - Laboratorio Químico. https://www.tplaboratorioquimico.com/laboratorio-quimico/materiales-e-instrumentos-deun-laboratorio-quimico/phmetro.html
Turbidimeter for drinking water. (2008). Filtration & Separation, 45(5), 13. https://doi.org/10.1016/S0015-1882(08)70172-1
Uyguner, C. S., Bekbolet, M., & Selcuk, H. (2007). A Comparative Approach to the Application of a Physico‐Chemical and Advanced Oxidation Combined System to Natural Water Samples. http://www.tandfonline.com/doi/full/10.1080/01496390701289807 LK - link%7Chttp://www.tandfonline.com/doi/full/10.1080/01496390701289807 SRC - BaiduScholar FG - 0
Vicker, J. C. (2005). Microfiltration and Ultrafiltration Membranes for Drinking Water (1st, Ed.). American Water Works Association Research Foundation and American Water Works Association, Denver, CO.
Villanueva, C. M., Garfí, M., Milà, C., Olmos, S., Ferrer, I., & Tonne, C. (2021). Health and environmental impacts of drinking water choices in Barcelona, Spain: A modelling study. Science of The Total Environment, 795, 148884. https://doi.org/10.1016/J.SCITOTENV.2021.148884
Winterdahl, M. (2013). Intra-annual Variability of Natural Organic Matter in Boreal Streams Patterns and Controls. Faculty of Natural Resources and Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala (Doctoral thesis).
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Tunja
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Ingeniería Civil con Énfasis en Hidroambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Civil
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/48232/1/2022fernandoavila.pdf
https://repository.usta.edu.co/bitstream/11634/48232/2/Derechos%20de%20Autor.pdf
https://repository.usta.edu.co/bitstream/11634/48232/3/Autorizacion%20Facultad.pdf
https://repository.usta.edu.co/bitstream/11634/48232/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/48232/5/license.txt
https://repository.usta.edu.co/bitstream/11634/48232/6/2022fernandoavila.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/48232/7/Derechos%20de%20Autor.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/48232/8/Autorizacion%20Facultad.pdf.jpg
bitstream.checksum.fl_str_mv fb39d08b42147a26b13bc8c2f5ae29bf
5cba2641e1aa6ce8d87bc40468a59699
706df4c727d2406acfd3e91a2cef1b20
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
e38a30731380ceaad2058c2a095999ed
d66b6ab8b3366febfcbebaf7dc0c6381
69de5a4bc2210c5dc5c028a5cfe96af8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1800786396068184064
spelling Gonzalez, Juan PabloAvila Ruiz, Fernando LibardoUniversidad Santo Tomás Tunja2022-12-01T21:16:31Z2022-12-01T21:16:31Z2022-11-23Avila, F., Gonzales, J.,(2022).Optimización Procesos de Floculación y Sedimentación con un Diseño Factorial Tratando Agua del Embalse de Teatinos. Tesis posgrado, Universidad Santo Tomas, Tunja.http://hdl.handle.net/11634/48232reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLa planta de tratamiento de agua potable (PTAP) de la ciudad de Tunja, Boyacá suministra agua a una población de aproximadamente 172,548 habitantes. La PTAP tiene procesos de aireación, coagulación, floculación, sedimentación, filtración y desinfección .Sin embargo, las características fisicoquímicas del agua proveniente de la represa teatinos hacen difícil su tratamiento usando coagulación, floculación y sedimentación dado a su baja alcalinidad (4 – 6 mg/L como CaCO3) y su relativo bajo pH (5,7 – 6,3). El objetivo de esta investigación fue el de hacer una optimización de procesos de floculación y de sedimentación a escala de laboratorio usando un ensayo convencional de jarras, con la ayuda de un diseño factorial, para mejorar la remoción de turbiedad. El diseño factorial permitió evaluar tres diferentes gradientes de velocidad (G) en floculación o mezcla lenta(10, 50 y 100 s-1), tres diferentes tiempos de floculación (TF) (10, 15 y 20 minutos) y tres diferentes tiempos de sedimentación (TS) (20, 30 y 40 minutos) observando su impacto sobre la remoción de turbiedad en la prueba de jarras. De acuerdo con los resultados del estudio, las condiciones óptimas de operación encontradas fueron: (G= 100s-1mezcla lenta, TF = 20 minutos y TS = 20 minutos), con las cuales se logró obtener una turbiedad residual de 0,77 UNT, correspondiente a un 78% de remoción. Adicionalmente, aplicando una superficie de respuesta se pudo predecir valores de turbiedades finales de hasta 0,20 UNT en la jarra usando parámetros operacionales de (G=78 s-1, TF= 23minutos y TS = 30 minutos), respectivamente.The water treatment plant (WTP) of Tunja, Boyacá provides drinking water for a population of approximately 172,548 in habitants. The WTP treats a flow rate of 230 L/susing processes of aeration, coagulation, flocculation, sedimentation, filtration, anddisinfection. However, the raw water physicochemical characteristics of the Teatinosreservoir makes difficult its treatment using coagulation, flocculation, and sedimentationdue to its low alkalinity (4 – 6 mg/L as CaCO3) and relatively low pH (5,7 – 6,3). Theobjective of this research was to optimize the flocculation and the sedimentation processfor turbidity removal at the laboratory level using a regular jar tester and a factorialdesign. The factorial design allowed to assess three different velocity gradients (G) inflocculation, or slow mixing (10, 50 y 100 s-1), three different flocculation times (FT)(10, 15 y 20 min.), and three different sedimentation times (ST) (20, 30 y 40 min.),respectively, and their impact on turbidity removal. The results showed that the optimaloperational conditions in the jar test were: (G= 100 s-1, TF = 20 min. y TS = 20 min.),respectively for obtaining a residual turbidity of 0,77 UNT, which correspond to 78% ofturbidity removal. In addition, it was possible to predict final turbidity values of 0,20UNT in the jar test using a surface response methodology, the low turbidity valuecorresponds to operational parameters of (G=78 s-1, TF= 23 min. y TS = 30 min.),respectively.Magíster en Ingeniería Civil con Énfasis en HidroambientalMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ingeniería Civil con Énfasis en HidroambientalFacultad de Ingeniería CivilAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Optimización procesos de floculación y sedimentación con un diseño factorial tratando agua del embalse de TeatinosTurbidityFlocculationVelocity GradientFactorial DesingTurbiedadFloculaciónGradiente de velocidadDiseño factorialTesis de maestríainfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA TunjaAbbas, H. (2009). Natural organic matter removal from Tigris River water in Baghdad. Iraq. ScienceDirect, 155–168.Abbaszadegan, M., Mayer, B. K., Ryu, H., & Nwachuku, N. (2007). Efficacy of removal of CCL viruses under enhanced coagulation conditions. Environmental Science & Technology, 41(3), 971–977. https://doi.org/10.1021/es061517zAguilar, M. I., Sáez, J., Lloréns, M., Soler, A., & Ortuño, J. F. (2003). Microscopic observationof particle reduction in slaughterhouse wastewater by coagulation-flocculation using ferricsulphate as coagulant and different coagulant aids. Water Research, 37(9), 2233–2241.https://doi.org/10.1016/S0043-1354(02)00525-0AQinstruments. (2021). aquateknica. Qué Es Un Colorímetro, Cómo Funciona y Para Qué Sirve. https://www.aquateknica.com/que-es-un-colorimetro-como-funciona-y-para-quesirve/Arjona, S. (2012). EFECTO DEL PUNTO DE PRECLORACION SOBRE LA FORMACION DE TRIHALOMETANOS EN PROCESOS CONVENCIONALES DE POTABILIZACION DE AGUA. Revista Ingenierias Universidad de Medellin, 11, 57.Batt, A. L., Furlong, E. T., Mash, H. E., Glassmeyer, S. T., & Kolpin, D. W. (2017). The importance of quality control in validating concentrations of contaminants of emerging concern in source and treated drinking water samples. Science of The Total Environment, 579, 1618–1628. https://doi.org/10.1016/J.SCITOTENV.2016.02.127Birhanu, Y., & Leta, S. (2021). Application of response surface methodology to optimize removal efficiency of water turbidity by low-cost natural coagulant (Odaracha soil) from Saketa District, Ethiopia. Results in Chemistry, 3. https://doi.org/10.1016/j.rechem.2021.100108Chakraborti, R. J., Atkinson, J. F. & Van Benschoten, J. E. (2000). Characterisation of alum floc by image analysis. Environmental Science and Technology. 34, 3969–3976.Chen, Xiang. (2000). Instrumental traditions and theories of light : the uses of instruments in the optical revolution. 211.DANE. (2018). https://www.dane.gov.co/Dayarathne, H. N. P., Angove, M. J., Jeong, S., Aryal, R., Paudel, S. R., & Mainali, B. (2022). Effect of temperature on turbidity removal by coagulation: Sludge recirculation for rapid settling. Journal of Water Process Engineering, 46, 102559. https://doi.org/https://doi.org/10.1016/j.jwpe.2022.102559de Wit, H. A., Valinia, S., Weyhenmeyer, G. A., Futter, M. N., Kortelainen, P., Austnes, K., Hessen, D. O., Räike, A., Laudon, H., & Vuorenmaa, J. (2016). Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate. Environmental Science and Technology Letters, 3(12), 430–435. https://doi.org/10.1021/acs.estlett.6b00396Delpla, I., Jung, A.-V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int, 35.Denver, C. O. (2011). AWWA . Manual M37—Operational Control of Coagulation and Filtration Works Assocciation,.Drinan, J. E., & Spellman, F. R. (2013a). Water and Wastewater Treatment A Guide for the Nonengineering Professional Second Edition Chapter 2.Drinan, J. E., & Spellman, F. R. (2013b). Water and Wastewater Treatment A Guide for the Nonengineering Professional Second Edition Chapter 5 (Vol. 2).Evans, C., Monteith, D., & Cooper, M. (2005). Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ. Pollut, 137.Ferretto, A., Brooker, R., Matthews, R., & Smith, P. (2021). Climate change and drinking water from Scottish peatlands: Where increasing DOC is an issue? Journal of Environmental Management, 300, 113688. https://doi.org/10.1016/J.JENVMAN.2021.113688Filella, M. (1976). Freshwaters: which NOM matters? Environ. Chem. Lett, 7.uzman J. (2017). Evaluación técnica de la etapa coagulación-floculación para el mejoramiento en el proceso de potabilización de la planta galán de la eaaaz. FUNDACIÓN UNIVERSIDAD DE AMÉRICA FACULTA DE INGENIERIAS PROGRAMA INGENIERÍA QUÍMICA.urst, S. M., McLoughlin, R. M., Monslow, J., Owens, S., Morgan, L., Fuller, G. M., Topley, N., & Jones, S. A. (2002). Secretion of oncostatin M by infiltrating neutrophils: regulation of IL-6 and chemokine expression in human mesothelial cells. Journal of Immunology (Baltimore, Md. : 1950), 169(9), 5244–5251. http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&DbFrom=pubmed&Cmd=Link&L inkName=pubmed_pubmed&LinkReadableName=Related Articles&IdsFromResult=12391243&ordinalpos=3&itool=EntrezSystem2.PEntrez.Pubme d.Pubmed_ResultsPanel.Pubmed_RVDocSumJ P Ritson. (2011). The impact of climate change on the treatability of dissolved organic matter(DOM) in upland water supplies: a UK perspective.Jarvis, P., Jefferson, B., & Parsons, S. A. (2005). How the natural organic matter to coagulant ratio impacts on floc structural properties. Environmental Science and Technology, 39(22), 8919–8924. https://doi.org/10.1021/es0510616John Crit. (2012). MWH’s Water Treatment Principles and Design Third Edition Chapter 9. In MWH’s Water Treatment (pp. 1869–1901). John Wiley & Sons, Inc. https://doi.org/10.1002/9781118131473.indexKaiser, K., Guggenberger, M., Kaupenjohann, M., & Zech, W. (2002). Refractory Organic Substances in Aggregated Forest Soils Retention Verses Translocation. Refractory Organic Substances in the Environment WileyVCH Weinhe.kasalab. (2021). Beaker, Beaker Colombia, Vidrieria De Laboratorio, Vaso Precipitado. https://www.kasalab.com/producto/vaso-precipitado-25ml-forma-baja-en-vidrio/Kawamura, Susumu. (2000). Integrated design and operation of water treatment facilities. 691.Khan, S. U., & Hussain, I. (2021). Impact of safe drinking water and clean fuels on health and wellbeing in Pakistan: A spatial analysis. Groundwater for Sustainable Development, 15, 100677. https://doi.org/10.1016/J.GSD.2021.100677Krzeminski, P., Vogelsang, C., Meyn, T., Köhler, S. J., Poutanen, H., de Wit, H. A., & Uhl, W. (2019). Natural organic matter fractions and their removal in full-scale drinking water treatment under cold climate conditions in Nordic capitals. Journal of Environmental Management, 241, 427–438. https://doi.org/10.1016/j.jenvman.2019.02.024Kulthanan, K., Nuchkull, P., & Varothai, S. (2013). The pH of water from various sources: an overview for recommendation for patients with atopic dermatitis. Asia Pacific Allergy, 3(3), 155–160. https://doi.org/10.5415/APALLERGY.2013.3.3.155Leenheer, J., & Crou, J.-P. (2003). Peer reviewed: characterizing aquatic dissolved organic matter. Environ. Sci. Technol, 37.Matilainen, A., Vepsäläinen, M., & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment: A review. In Advances in Colloid and Interface Science (Vol. 159, Issue 2, pp. 189–197). Elsevier B.V. https://doi.org/10.1016/j.cis.2010.06.007Metsämuuronen, S., Sillanpää, M., Bhatnagar, A., & Mänttäri, M. (2014). Natural organic matter removal from drinking water by membrane technology Chapter 2. Separation and Purification Reviews, 43(1), 1–61. https://doi.org/10.1080/15422119.2012.712080Minitab. (2021). Introducción a Minitab 19 para Windows Contents.Mohd Khairi, M. T., Ibrahim, S., Md Yunus, M. A., & Faramarzi, M. (2015). A review on the design and development of turbidimeter. Sensor Review, 35(1), 98–105. https://doi.org/10.1108/SR-01-2014-604/FULL/XMLMontoya, J. (2013). Fraccionamiento y cuantificacion de la materia organica en Andisoles bajo diferentes sistemas de produccion. Ciencias Del Suelo, 333–343.Nadella, M., Sharma, R., & Chellam, S. (2020). Fit-for-purpose treatment of produced water with iron and polymeric coagulant for reuse in hydraulic fracturing: Temperature effects on aggregation and high-rate sedimentation. Water Research, 170, 115330. https://doi.org/10.1016/J.WATRES.2019.115330Nkambule, T. I., Krause, R. W. M., Haarhoff, J., & Mamba, B. B. (2012). Natural organic matter (NOM) in South African waters: NOM characterisation using combined assessment techniques. Water SA, 38(5), 697–706. https://doi.org/10.4314/wsa.v38i5.7Owen D. (1997). NOM characterization and treatability.Pakale, A. A. (2018). DIGITAL PH METER. Electronic Design Engineering, 4(1).Papacosta, K. (2008). TURBIDITY CALIBRATION STANDARDS EVALUATED FROM A DIFFERENT PERSPECTIVE.Paradis, E., & Ahumada, J. A. (2002). R para Principiantes.Park, S., & Yoon, T. (2009). Desalination ;146. 239.Parker, D. S. ; K., Jenkins, W. J. ;, & D. (1972). Floc Breakup in Turbulent Flocculation Processes. J. Sanit. Eng. Div., Am. Soc. Civ. Eng. 1972, SA, 1, 79–99.phere G. (2008). Stets and J Cotner Littoral Zones as Sources, 45 SRC-, 865–873.R. Gough d, C. F. (2013). The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: A UK perspective.Ranasinghe, D. M. A., & Ariyaratne, T. R. (2012). Design and Construction of Cost Effective Turbidimeter … Proceedings of the Technical Sessions. 28, 65–70.Satterfield, Z. (2021). What is jar testing? Jar Testing. www.nesc.wvu.edu/Savarese, C., Drosos, M., Spaccini, R., Cozzolino, V., & Piccolo, A. (2021). Molecular characterization of soil organic matter and its extractable humic fraction from long-term field experiments under different cropping systems. Geoderma, 383(July 2020). https://doi.org/10.1016/j.geoderma.2020.114700Sillanpää, M., Ncibi, M. C., Matilainen, A., & Vepsäläinen, M. (2018). Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review. In Chemosphere (Vol. 190, pp. 54–71). Elsevier Ltd. https://doi.org/10.1016/j.chemosphere.2017.09.113Sinha, R., Gupta, A. K., & Ghosal, P. S. (2021). A review on Trihalomethanes and Haloacetic acids in drinking water: Global status, health impact, insights of control and removal technologies. Journal of Environmental Chemical Engineering, 9(6), 106511. https://doi.org/10.1016/J.JECE.2021.106511Standards, A., & Philadelphia, P. A. (2008). ASTM . Standard Recommended Practice for Coagulation-Flocculation Jar Test of Water, in Book of ,. D2035-08 SRC-BaiduScholar FG-0.Stets, E. G., & Cotner, J. B. (2008). Littoral zones as sources of biodegradable dissolved organiccarbon in lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65(11), 2454–2460. https://doi.org/10.1139/F08-142Swietlik, J., & Sikorska, E. (2004). Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone. Water Research, 38(17), 3791–3799. https://doi.org/10.1016/j.watres.2004.06.010Teixeira, M. R., Rosa, S. M., & Sousa, V. (2011). Natural Organic Matter and Disinfection Byproducts Formation Potential in Water Treatment. Water Resources Management, 25(12), 3005–3015. https://doi.org/10.1007/s11269-011-9795-0Thurman, R. G., & Kauffman, F. C. (1985). Sublobular compartmentation of pharmacologic events (SCOPE): metabolic fluxes in periportal and pericentral regions of the liver lobule. Hepatology (Baltimore, Md.), 5(1), 144–151. https://doi.org/10.1002/hep.1840050128TP Laboratorio Quimico. (2022). PHmetro (Medidor de PH) » TP - Laboratorio Químico. https://www.tplaboratorioquimico.com/laboratorio-quimico/materiales-e-instrumentos-deun-laboratorio-quimico/phmetro.htmlTurbidimeter for drinking water. (2008). Filtration & Separation, 45(5), 13. https://doi.org/10.1016/S0015-1882(08)70172-1Uyguner, C. S., Bekbolet, M., & Selcuk, H. (2007). A Comparative Approach to the Application of a Physico‐Chemical and Advanced Oxidation Combined System to Natural Water Samples. http://www.tandfonline.com/doi/full/10.1080/01496390701289807 LK - link%7Chttp://www.tandfonline.com/doi/full/10.1080/01496390701289807 SRC - BaiduScholar FG - 0Vicker, J. C. (2005). Microfiltration and Ultrafiltration Membranes for Drinking Water (1st, Ed.). American Water Works Association Research Foundation and American Water Works Association, Denver, CO.Villanueva, C. M., Garfí, M., Milà, C., Olmos, S., Ferrer, I., & Tonne, C. (2021). Health and environmental impacts of drinking water choices in Barcelona, Spain: A modelling study. Science of The Total Environment, 795, 148884. https://doi.org/10.1016/J.SCITOTENV.2021.148884Winterdahl, M. (2013). Intra-annual Variability of Natural Organic Matter in Boreal Streams Patterns and Controls. Faculty of Natural Resources and Agricultural Sciences, Department of Aquatic Sciences and Assessment, Uppsala (Doctoral thesis).ORIGINAL2022fernandoavila.pdf2022fernandoavila.pdfDocumento principalapplication/pdf1961789https://repository.usta.edu.co/bitstream/11634/48232/1/2022fernandoavila.pdffb39d08b42147a26b13bc8c2f5ae29bfMD51open accessDerechos de Autor.pdfDerechos de Autor.pdfCarta cesión derechos de autorapplication/pdf201513https://repository.usta.edu.co/bitstream/11634/48232/2/Derechos%20de%20Autor.pdf5cba2641e1aa6ce8d87bc40468a59699MD52metadata only accessAutorizacion Facultad.pdfAutorizacion Facultad.pdfcarta Autorización Facultadapplication/pdf123960https://repository.usta.edu.co/bitstream/11634/48232/3/Autorizacion%20Facultad.pdf706df4c727d2406acfd3e91a2cef1b20MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/48232/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/48232/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2022fernandoavila.pdf.jpg2022fernandoavila.pdf.jpgIM Thumbnailimage/jpeg4172https://repository.usta.edu.co/bitstream/11634/48232/6/2022fernandoavila.pdf.jpge38a30731380ceaad2058c2a095999edMD56open accessDerechos de Autor.pdf.jpgDerechos de Autor.pdf.jpgIM Thumbnailimage/jpeg6105https://repository.usta.edu.co/bitstream/11634/48232/7/Derechos%20de%20Autor.pdf.jpgd66b6ab8b3366febfcbebaf7dc0c6381MD57open accessAutorizacion Facultad.pdf.jpgAutorizacion Facultad.pdf.jpgIM Thumbnailimage/jpeg8912https://repository.usta.edu.co/bitstream/11634/48232/8/Autorizacion%20Facultad.pdf.jpg69de5a4bc2210c5dc5c028a5cfe96af8MD58open access11634/48232oai:repository.usta.edu.co:11634/482322023-05-09 09:04:07.517open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K