Caracterización de las infracciones de tránsito en Bogotá en el año 2017 utilizando un modelo Cox Log - Gaussiano de patrones puntuales
El análisis espacial de patrones puntuales se usa para conocer el comportamiento de un conjunto de datos a lo largo de una ventana de observación espacial, para luego así proponer modelos que permitan hacer predicciones acerca del número de ocurrencias de un fenómeno en el lugar de estudio. En este...
- Autores:
-
Osorio Guerrero, Karen Estefany
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/35677
- Acceso en línea:
- http://hdl.handle.net/11634/35677
- Palabra clave:
- Spatio temporal
MCMC
Lgcp
Inhomogeneus point process
Spatial statistics
Trafico
Regulación de Trafico
Estadística
MCMC
Lgcp
Espacio temporal
Proceso puntual inhomogeneo
Estadística espacial
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
Summary: | El análisis espacial de patrones puntuales se usa para conocer el comportamiento de un conjunto de datos a lo largo de una ventana de observación espacial, para luego así proponer modelos que permitan hacer predicciones acerca del número de ocurrencias de un fenómeno en el lugar de estudio. En este trabajo, se hace una extensión de dichos análisis, donde no solo se estudia el comportamiento espacial, sino la dependencia de esta a través del tiempo. Para esto, se usa una base de datos de infracciones de tránsito ocurridas en la ciudad de Bogotá durante el año 2017, pero se seleccionó la infracción con mayor recurrencia durante ese año, en este caso, la infracción C02, que corresponde a parquear en sitios prohibidos. Para el análisis se consideran varias opciones: primero, observar el comportamiento puramente espacial sin incluir el tiempo como una variable de estudio, trabajar el tiempo como una marca cualitativa, una marca cuantitativa y finalmente, tratarlo como una dimensión más. Se concluyo que esta última es la opción óptima para el análisis, encontrando que tanto a nivel espacial como a nivel espacio temporal, se tiene un patrón agregado. Finalmente, se hayan los riesgos relativos del modelo, haciendo pronósticos en algunos tiempos elegidos al azar. |
---|