Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2
En este trabajo se tomó una muestra de poliestireno expandido (EPS) de una matriz de residuos sólidos, este material se utilizó como materia prima para la síntesis de poliamino estireno (PSNH2) en un proceso de dos pasos. Primero, se llevó a cabo la nitración de PS para obtener polinitro estireno (P...
- Autores:
-
Murcia Patiño, Andrés Felipe
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2019
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/16630
- Acceso en línea:
- http://hdl.handle.net/11634/16630
- Palabra clave:
- CO2 capture
Expanded polystyrene
Nitration
Polyamine styrene
Reduction of NO2
Urban solid waste
Poliestireno
Conversión de residuos
Nitración
Captura de CO2
Nitración
Poliestireno expandido
Poliamino estireno
Reducción de grupos NO2
Residuos sólidos urbanos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SantoToma2_9d4c17b3a899654fcef9de0324cdd056 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/16630 |
network_acronym_str |
SantoToma2 |
network_name_str |
Universidad Santo Tomás |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 |
title |
Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 |
spellingShingle |
Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 CO2 capture Expanded polystyrene Nitration Polyamine styrene Reduction of NO2 Urban solid waste Poliestireno Conversión de residuos Nitración Captura de CO2 Nitración Poliestireno expandido Poliamino estireno Reducción de grupos NO2 Residuos sólidos urbanos |
title_short |
Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 |
title_full |
Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 |
title_fullStr |
Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 |
title_full_unstemmed |
Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 |
title_sort |
Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 |
dc.creator.fl_str_mv |
Murcia Patiño, Andrés Felipe |
dc.contributor.advisor.spa.fl_str_mv |
Merchán Arenas, Diego Rolando |
dc.contributor.author.spa.fl_str_mv |
Murcia Patiño, Andrés Felipe |
dc.subject.keyword.spa.fl_str_mv |
CO2 capture Expanded polystyrene Nitration Polyamine styrene Reduction of NO2 Urban solid waste |
topic |
CO2 capture Expanded polystyrene Nitration Polyamine styrene Reduction of NO2 Urban solid waste Poliestireno Conversión de residuos Nitración Captura de CO2 Nitración Poliestireno expandido Poliamino estireno Reducción de grupos NO2 Residuos sólidos urbanos |
dc.subject.lemb.spa.fl_str_mv |
Poliestireno Conversión de residuos Nitración |
dc.subject.proposal.spa.fl_str_mv |
Captura de CO2 Nitración Poliestireno expandido Poliamino estireno Reducción de grupos NO2 Residuos sólidos urbanos |
description |
En este trabajo se tomó una muestra de poliestireno expandido (EPS) de una matriz de residuos sólidos, este material se utilizó como materia prima para la síntesis de poliamino estireno (PSNH2) en un proceso de dos pasos. Primero, se llevó a cabo la nitración de PS para obtener polinitro estireno (PSNO2) con un rendimiento de 10.18 % en función de grupos NO2 obtenidos. Seguidamente, el PSNO2 se redujo utilizando HCl/Sn, con un rendimiento del 50 % en función de grupos NO2 reducidos del precursor. La materia prima, el precursor y el producto final obtenido se caracterizaron mediante técnicas analíticas como IR, 1H-RMN, SEM-EDS y TGA. Con el material en nuestras manos, se evaluó su actividad de captura de CO2, obteniendo una capacidad de adsorción de 1.05 mmol g-1 de PSNH2. |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-05-11T01:26:28Z |
dc.date.available.spa.fl_str_mv |
2019-05-11T01:26:28Z |
dc.date.issued.spa.fl_str_mv |
2019-05-09 |
dc.type.local.spa.fl_str_mv |
Tesis de maestría |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
http://purl.org/coar/resource_type/c_bdcc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Murcia Patiño, A. F. (2019). Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/16630 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Murcia Patiño, A. F. (2019). Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombia reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/16630 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aaron D. & Tsouris C. (2005). Separation of CO2 from Flue Gas: A Review. Sep. Sci. Technol., 40(1), 321–348. Ahn H., Moon J., Hyun S.-H. & Lee C. (2004). Diffusion Mechanism of Carbon Dioxide in Zeolite 4A and CaX Pellets. Adsorption, 10, 111–128. AIST. (1999). N,N-dimethylcyclohexylamine. Albright L. F., Carr R. V. C. & Scmitht R. J. (1996). Nitration: Recent Laboratory and Industrial Developments. Washington: American Chemical Society. Altares T., Wyman D. P. & Allen V. R. (1964). Synthesis of Low Molecular Weight Polystyrene by Anionic Techniques and Intrinsic Viscosity-Molecular Weight Relations Over a Broad Range in Molecular Weight. J. Polym. Sci. Part A Polym. Chem., 2, 4533–4544. Amianti M. & Botaro V. R. (2008). Recycling of EPS: A new methodology for production of concrete impregnated with polystyrene (CIP). Cem. Concr. Compos., 30(1), 23–28. Antzara A., Arregi A., Heracleous E. & Lemonidou A. A. (2018). In-depth evaluation of a ZrO2 promoted CaO-based CO2 sorbent in fluidized bed reactor tests. Chem. Eng. J., 333, 697–711. Atkins P. & de Paula J. (2014). Processes on solid surfaces. In Physical Chemistry: Thermodynamics, Structure, and Change (10th ed., pp. 938–945). Bevington J. C. & Huckerby T. N. (2006). Studies of end-groups in polystyrene using 1H NMR. Eur. Polym. J., 42, 1433–1436. Bongaarts J. (1992). Population Growth and Global Warming. Popul. Counc., 18(2), 299–319. Boonpoke A., Chiarakorn S., Laosiripojana N., Towprayoon S. & Chidthaisong A. (2012). Investigation of CO2 adsorption by bagasse-based activated carbon. Korean J. Chem. Eng., 29(1), 89–94. Brandrup J., Immergut E. H., Grulke E. A., Abe A. & Bloch D. R. (1998). Polymer Handbook. Browne M. A., Dissanayake A., Galloway T. S., Lowe D. M. & Thompson R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environ. Sci. Technol., 42(13), 5026–5031. Bruckner R. (2002). Advanced Organic Chemistry. Elsevier. Brunauer S., Deming L. S., Deming W. E. & Teller E. (1940). On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc., 62(7), 1723–1732. Brundtland G. (1987). Report of the World Commision on Environement and Development: Our Common Future. Oxford paperbacks (New York). Cavenati S., Grande C. A. & Rodrigues A. E. (2004). Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. J. Chem. Eng. Data, 49, 1095–1101. Chee K. K. (1987). Novel approach to Mark-Houwink-Sakurada constants and related parameters of polystyrene solutions. Polymer, 28, 977–979. Chen C., Son W. J., You K. S., Ahn J. W. & Ahn W. S. (2010). Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J., 161(1–2), 46–52. Choi N. W. & Ohama Y. (2004). Development and testing of polystyrene mortars using waste EPS solution-based binders. Constr. Build. Mater., 18(4), 235–241. Choi S., Drese J. H. & Jones C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854. Chowdhury S. I., Ali R. & Hasan T. (2015). Synthesis of Well-Defined Vinyl End-Functional Polystyrene Using Multifunctional Initiator by Atom Transfer Radical Polymerization. Am. J. Appl. Sci., 12(8), 581–587. Clayden J., Greeves N. & Warren S. (2012). Organic Chemistry (2nd ed.). New York: Oxford. Creamer A. E., Gao B. & Wang S. (2016). Carbon dioxide capture using various metal oxyhydroxide-biochar composites. Chem. Eng. J., 283, 826–832. Creamer A. E., Gao B. & Zhang M. (2014). Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem. Eng. J., 249, 174–179. da Costa Ores J., Sala L., Cerveira G. P. & Kalil S. J. (2012). Purification of carbonic anhydrase from bovine erythrocytes and its application in the enzymic capture of carbon dioxide. Chemosphere, 88(2), 255–259. Da̧browski A. (2001). Adsorption - From theory to practice. Adv. Colloid Interface Sci., 93(1–3), 135–224. Dardouri M., Ammari F., Amor A. B. & Meganem F. (2018). Adsorption of cadmium (II), zinc (II) and iron (III) from water by new cross- linked reusable polystyrene adsorbents. Mater. Chem. Phys., 216(May), 435–445. Davis F. J., Hosier I. L., Vaughan A. S., Mitchell G. R. & Sisipitayananon J. (2004). Polymer characterization. In Polymer Chemistry (pp. 1–33). Deane P. (1979). The first industrial revolution. Cambridge: Press Syndicate of the University of Cambridge. Derraik J. G. B. (2002). The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull., 44(9), 842–852. Descamps C., Bouallou C. & Kanniche M. (2008). Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal. Energy, 33(6), 874–881. Do D. D. (1998). Adsorption Analysis: Equilibria and Kinetics. (R. Yang, Ed.) (Vol. 2). Queensland. Dutcher B., Fan M. & Russell A. G. (2015). Amine-based CO2 capture technology development from the beginning of 2013-A review. ACS Appl. Mater. Interfaces, 7(4), 2137–2148. Ebewele R. O. (2000). Chapter One: Introduction. In Polym. Sci. Technol. (pp. 14–37). Benin. EPA. (2017). Greenhouse Gas Emissions. Retrieved from https://www.epa.gov/ghgemissions/overview-greenhouse-gases Eriksson C. & Burton H. (2003). Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. Ambio, 32(6), 380–384. Eskander S. B. & Tawfik M. E. (2011). Polymer-Cement Composite Based on Recycled Expanded Polystyrene Foam Waste. Polym. Compos., 1430–1438. Fernandez de la Ossa M. A., Torre M. & García-Ruiz C. (2012). Nitrocellulose in propellants: Characteristics and thermal properties. Adv. Mater. Sci. Res., 7, 201–220. Franchi R. S., Harlick P. J. E. & Sayari A. (2005). Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res., 44(21), 8007–8013. Fu Z., Jia J., Li J. & Liu C. (2017). Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chem. Eng. J., 323, 557–564. Fu Z., Mohamed I. M. A., Li J. & Liu C. (2019). Novel adsorbents derived from recycled waste polystyrene via cross-linking reaction for enhanced adsorption capacity and separation selectivity of CO2. J. Taiwan Inst. Chem. Eng., 1–8. Goeppert A., Czaun M., May R. B., Prakash G. K. S., Olah G. A. & Narayanan S. R. (2011). Carbon Dioxide Capture from the Air Using a Polyamine Based. J. Am. Chem. Soc., 133, 20164–20167. Gómez-Coma L., Garea A. & Irabien Á. (2017). Hybrid Solvent ([emim][Ac]+water) to Improve the CO2 Capture Efficiency in a PVDF Hollow Fiber Contactor. ACS Sustain. Chem. Eng., 5(1), 734–743. Gregg S. J. & Sing K. S. W. (1982). Adsorption, Surface Area and Porosity. New York, Academic Press. Academy Press. Gregory M. R. (1977). Plastic pellets on New Zealand beaches. Mar. Pollut. Bull., 8(4), 82–84. Gregory M. R. (1983). Accumulation and distribution of virgin plastic granules on New Zealand beaches. Mar. Environ. Res., 10(2), 73–92. Gregory M. R. (1991). The hazards of persistent marine pollution: drift plastics and conservation islands. J. R. Soc. New Zeal., 21(2), 83–100. Gross R. A. & Kalra B. (2002). Biodegradable Polymers for the Enviroment. Science, 297, 803–807. Guo F., Ji M., Zhang P. & Guo Z. (2017). Facile nitration of aromatic compounds using Bi(NO3)3*5H2O/MgSO4 under mechanochemical conditions. Green Process Synth, 1–8. Hasib-ur-Rahman M., Siaj M. & Larachi F. (2010). Ionic liquids for CO2 capture-Development and progress. Chem. Eng. Process. Process Intensif., 49(4), 313–322. Herrera-Sandoval G. M., Baez-Angarita D. B., Correa-Torres S. N., Primera-Pedrozo O. M. & Hernández-Rivera S. P. (2013). Novel EPS/TiO2 Nanocomposite Prepared from Recycled Polystyrene. Mater. Sci. Appl., 04(03), 179–185. Hoggett V. J. G., Moodie R. B., Penton J. R. & Schofield K. (1971). Nitration and aromatic reactivity. Great Britain: Cambridge. Hornberger L., Hight T. & Walawalker A. (1996). Recycled EPS foam processing. Polym. Recycl., 2(3), 151–157. Igwe J. C. & Abia A. (2007). Adsorption kinetics and intraparticulate diffusivities for bioremediation of Co (II), Fe (II) and Cu (II) ions from waste water using modified and unmodified maize cob. Int. J. Phys. Sci., 2(5), 119–127. Imtiaz-Ul-Islam M., Hong L. & Langrish T. (2011). CO2 capture using whey protein isolate. Chem. Eng. J., 171(3), 1069–1081. International Energy Agency. (2018). CO2 Emissions from Fuel Combustion 2018 Highlights. Int. energy agency (Vol. 1). International Energy Authority. (2004). Coal Market Outlook. In World Energy Outlook 2004 (Vol. 23, p. 577). Jessop P. G. (2015). Switchable Solvents as Media for Synthesis and Separations. Aldrichimica Acta, 48(1), 18–21. Jessop P. G., Kozycz L., Rahami Z. G., Schoenmakers D., Boyd A. R., Wechsler D. & Holland A. M. (2011). Tertiary amine solvents having switchable hydrophilicity. Green Chem., 13(3), 619–623. Jin Y., Uhlik F., Roovers J., Chang T. & Jeong Y. (2017). Intrinsic Viscosity of Cyclic Polystyrene. Macromolecules, 50(19), 7770–7776. Jo D. H., Lee C. H., Jung H., Jeon S. & Hyun S. (2015). Effect of Amine Surface Density on CO2 Adsorption Behaviors of Amine-Functionalized Polystyrene. Bull. Chem. Soc. Jpn., 88, 1317–1322. Kan A. & Demirboǧa R. (2009). A new technique of processing for waste-expanded polystyrene foams as aggregates. J. Mater. Process. Technol., 209(6), 2994–3000. Kannan P., Biernacki J. J. & Visco D. P. (2007). A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process. J. Anal. Appl. Pyrolysis., 78(1), 162–171. Keller J. U. & Staudt R. (2005). Gas adsorption equilibria: Experimental methods and adsorptive isotherms. Springer. Khot K. M., Heer P. K. K. S., Biniwale R. B. & Gaikar V. G. (2014). Equilibrium Adsorption Studies of CO2 , CH4 , and N2 on Amine Functionalized Polystyrene. Sep. Sci. Technol., 49, 2376_2388. Kim S., Shi H. & Lee J. Y. (2016). CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent. Int. J. Greenh. Gas Control, 45, 181–188. Kučera F. & Jancář J. (1996). Preliminary Study of Sulfonation of Polystyrene by Homogeneous and Heterogeneous Reaction. Chem. Pap., 50(4), 224–227. Lagoviyer O. S., Krishtopa L., Schoenitz M., Trivedi N. J. & Dreizin E. L. (2017). Mechanochemical Nitration of Aromatic Compounds. J. Energ. Mater., 1–11. Lan G., Zhang X., Zhang X., Li M., Li Y. & Yang Q. (2015). Yolk-shell nanospheres with soluble amino-polystyrene as a reservoir for Pd NPs. RSC Adv., 5, 35730–35736. Latifa M., Pestov A. V, Mekhaev A. V, Marchuk A. A., Bosenko S. N., Petrova Y. S. & Neudachina L. K. (2019). Sulfoethylated polyaminostyrene – polymer ligand with high selective interaction with silver ions in multicomponent solutions. J. Environ. Chem. Eng., 7(1), 1–9. Lepaumier H., Picq D. & Carrette P.-L. (2009). New Amines for CO2 Capture. I. Mechanisms of Amine Degradation in the Presence of CO2. Ind. Eng. Chem. Res., 48(20), 9061–9067. Li H., Li Q., Hao J., Xu Z. & Sun D. (2016). Preparation of CO2-responsive emulsions with switchable hydrophobic tertiary amine. Colloids Surfaces A Physicochem. Eng. Asp., 502, 107–113. Li X., Wang X., Ye G., Xia W. & Wang X. (2010). Polystyrene-based diazonium salt as adhesive: A new approach for enzyme immobilization on polymeric supports. Polymer, 51(4), 860–867. Lin K. Y. A. & Park A. H. A. (2011). Effects of Bonding Types and Functional Groups on CO2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials. Environ. Sci. Technol., 45(15), 6633–6639. Liu Y., Ye Q., Shen M., Shi J., Chen J., Pan H. & Shi Y. (2011). Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Simulated Flue Gas Conditions. Environ. Sci. Technol., 45, 5710–5716. Liu Z., Du Z., Zou W., Li H., Mi J. & Zhang C. (2013). Easily collected nano-absorbents for carbon dioxide capture. Chem. Eng. J., 223, 915–920. Mangalara S. C. H. & Varughese S. (2016). Green recycling approach to obtain nano and microparticles from expanded polystyrene waste. ACS Sustain. Chem. Eng., 4(11), 1–31. Maroto-Valer M. (2010). Developments and Innovation in Carbon Dioxide Capture and Storage Technology. Cambridge: Woodhead Publishing Limited. Maroto-valer M. M., Lu Z., Zhang Y. & Tang Z. (2008). Sorbents for CO2 capture from high carbon fly ashes. Waste Manag., 28, 2320–2328. Mckay G. & Poots V. J. P. (1980). Kinetics and Diffusion Processes in Colour Removal from Effluent Using Wood as an Adsorbent. J. Chem. Tech. Biotechnol., 30, 279–292. McMurry J. (2000a). Amines. In Organic Chemistry (5th ed., pp. 976–1014). California: Brooks/Cole. McMurry J. (2000b). Organic Chemistry (5th ed.). Brooks/Cole. Merchan-Arenas D. R., Murcia-Patiño A. F., Cortés-Castillo L. E. & Kouznetsov V. V. (2017). Sulfonation of Expanded Polystyrene Post Consumption, Structural Analysis and Its Application in Chemical Enhanced Oil Recovery. Chem. Eng. Trans., 57, 631–636. Meth S., Goeppert A., Prakash G. K. S. & Olah G. A. (2012). Silica Nanoparticles as Supports for Regenerable CO2 Sorbents. Energy Fuels, 26, 3082–3090. Midgley T. J., Henne A. L. & Leicester H. M. (1961). Natural and Synthetic Rubber. XVI. The Structure of Polystyrene. J. Am. Chem. Soc., 2757(3), 1935–1937. Mikulčić H., Klemeš J. J., Vujanović M., Urbaniec K. & Duić N. (2016). Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process. J. Clean. Prod., 136, 119–132. Munusamy K., Sethia G., Patil D. V., Somayajulu Rallapalli P. B., Somani R. S. & Bajaj H. C. (2012). Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): Volumetric measurements and dynamic adsorption studies. Chem. Eng. J., 195–196, 359–368. Nasri N. S., Hamza U. D., Ismail S. N., Ahmed M. M. & Mohsin R. (2014). Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J. Clean. Prod., 71, 148–157. Noguchi T., Miyashita M., Lnagaki Y. & Watanabe H. (1998). A New Recycling System for Expanded Polystyrene using a Natural Solvent. Part 1. A New Recycling Technique. Packag. Technol. Sci., 11(1), 19–27. Novidesa P. (2016). Msds Expandable Polystyrene (Eps). Ciudad de México. Olah G. A. (1971). Mechanism of electrophilic aromatic substitutions. Acc. Chem. Res., 4(7), 240–248. Olah G. A., Malhortra R. & Narang S. C. (1989). Nitration, Methods and Mechanisms: Oganic Nitro Chemistry Series. Weinheim: WILEY-VCH. Park S., Min J., Lee M. G., Jo H. & Park J. (2013). Characteristics of CO2 fixation by chemical conversion to carbonate salts. Chem. Eng. J., 231, 287–293. Philippides A., Budd P. M., Price C. & Cuncliffe A. V. (1993). The nitration of polystyrene. Polymer, 34(16), 3509–3513. Pinheiro H. M., Touraud E. & Thomas O. (2004). Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dye. Pigment., 61(2), 121–139. Privalova E. I., Karjalainen E., Nurmi M., Mäki-arvela P. & Eränen K. (2013). Imidazolium-Based Poly (ionic liquid)s as New Alternatives for CO2 Capture. ChemSusChem, 1–11. Qiu H., Lv L., Pan B., Zhang Q., Zhang W. & Zhang Q. (2009). Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A, 10(5), 716–724. Rajeev A., Erapalapati V., Madhavan N. & Basavaraj M. G. (2016). Conversion of expanded polystyrene waste to nanoparticles via nanoprecipitation. J. Appl. Polym. Sci, 133(4), 1–5. Rashidi N. A., Yusup S. & Hameed B. H. (2013). Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon. Energy, 61, 440–446. Rice S. A. (2003). Health Effects of Acute and Prolonged CO2 Exposure in Normal and Sensitive Populations. In Second Annual Conference on Carbon Sequestration (pp. 1–10). Ridd H. (1971). Mechanism of Aromatic Nitration. Acc. Chem. Res., 4(7), 248–253. Rochelle G. T. (2009). Amine Scrubbing for CO2 Capture. Science, 325, 1652–1654. Rouquerol F., Rouquerol J. & Sing K. (1999). Adsorption by Powders & Porous Solids. Ruebner A., Statton G. L. & Consaga J. P. (2003). Polymeric Cyclodextrin Nitrate Esters. Estados Unidos. Sacristán J., Reinecke H., Mijangos C., Spells S. & Yarwood J. (2002). Surface modification of polystyrene films. Depth profiling and mapping by raman microscopy. Macromol. Chem. Phys., 203(4), 678–685. Samanta A., Zhao A., Shimizu G. K. H., Sarkar P. & Gupta R. (2012). Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res., 51(4), 1438–1463. Sandru M., Kim T. J. & Hägg M. B. (2009). High molecular fixed-site-carrier PVAm membrane for CO2 capture. Desalination, 240(1–3), 298–300. Sarbu A., Dima S. O., Dobre T., Udrea I., Bradu C., Avramescu S., Mihalache N., Radu A. L., Nicolescu T. V., Lungu A. & Melinte S. (2009). Polystyrene wastes recycling by lightweight concrete production. Revista de Chimie, 60(12), 1350–1356. Saunders C. W. & Taylor L. T. (2005). Determination of the Degree of Nitration of Cellulose Nitrates via GPC/FT-IR Using an On-Line Flow Cell. Appl. Spectrosc., 45(5), 900–905. Schneider S. H. (1989). Greenhouse Effect : Science and Policy. Science, 243, 771–781. Serna-Guerrero R. & Sayari A. (2010). Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chem. Eng. J., 161(1–2), 182–190. Shakerian F., Kim K. H., Szulejko J. E. & Park J. W. (2015). A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl. Energy, 148, 10–22. Shin C. (2005). A new recycling method for expanded polystyrene. Packag. Technol. Sci., 18(6), 331–335. Shin C. (2006). Filtration application from recycled expanded polystyrene. J. Colloid Interface Sci., 302(1), 267–271. Shin C. & Chase G. G. (2005). Nanofibers from recycle waste expanded polystyrene using natural solvent. Polym. Bull., 55(3), 209–215. Shyaa A. A. (2012). Synthesis, Characterization and Thermal Study of Polyimides Derived from Polystyrene. J. Univ. Anbar for Pure Science, 6(1), 1–8. Siavashi K. (2011). The Effect of Casting Parameters on the Fluidity and Porosity of Aluminium Alloys in the Lost Foam Casting Process. Silverstein R. M., Webster F. X. & Kiemle D. J. (2005). Spectrometric Identification of Organic Compunds (7th ed.). John Wiley & Sons, INC. Singh H., Gupta P., Soni A., Joshi R., Yadav R. J. & Singh A. (2018). Capturing carbon dioxide from air by using Sodium hydroxide. IRJET, 5(4), 870–876. Siriwardane R. V, Shen M. & Fisher E. P. (2003). Adsorption of CO2, N2, and O2 on Natural Zeolites. Energy & Fuels, 17(5), 571–576. Speight J. G. (2006). History and Terminology. In The chemistry and technology of petroleum (Fourth edi, pp. 325–326). Taylor & Francis. Srisang W., Osei P. A., Decardi-Nelson B., Tontiwachwuthikul A. A. P. & Idem R. (2017). Effect of Acid Catalysts on CO2 Absorption Process by Mixed Amines. Energy Procedia, 114(November 2016), 1514–1522. Stanger R., Wall T., Spörl R., Paneru M., Grathwohl S., Weidmann M., Scheffknecht G., McDonald D., Myöhänen K., Ritvanen J., Rahiala S., Hyppänen T., Mletzko J., Kather A. & Santos S. (2015). Oxyfuel combustion for CO2 capture in power plants. Int. J. Greenh. Gas Control, 40, 55–125. Stolaroff J. K., Keith D. W. & Lowry G. V. (2008). Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray. Environ. Sci. Technol., 42(8), 2728–2735. Stone M. L., Rae C., Stewart F. F. & Wilson A. D. (2013). Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 312, 124–129. Styring P., Quadrelli E. A. & Armstrong K. (2014). What is CO2? Thermodynamics, Basic Reactions and Physical Chemistry. In Carbon Dioxide Utilisation: Closing the Carbon Cycle (1st ed., pp. 3–15). Amsterdam: Elsevier B.V. Sułkowski W. W., Nowak K., Sułkowska A., Wolińska A., Bajdur W. M., Pentak D. & Mikuła B. (2009). Study of the sulfonation of expanded polystyrene waste and of properties of the products obtained. Pure Appl. Chem., 81(12), 2417–2424. Sumida K., Rogow D. L., Mason J. A., McDonald T. M., Bloch E. D., Herm Z. R., Bae T. H. & Long J. R. (2012). Carbon dioxide capture in metal-organic frameworks. Chem. Rev., 112(2), 724–781. Sze L. L., Pandey S., Ravula S., Pandey S., Zhao H., Baker G. A. & Baker S. N. (2014). Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. ACS Sustain. Chem. Eng., 2(9), 2117–2123. Taguchi Y. & Tanaka M. (2001). Preparation of microcapsules composed of waste-expanded polystyrene and paper fiber by semichemical recycle. J. Appl. Polym. Sci., 80(14), 2662–2669. Tan I. A., Ahmad A. & Hameed B. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater., 154, 337–346. Ünveren E. E., Monkul B. Ö., Sarıoğlan Ş., Karademir N. & Alper E. (2017). Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum, 3(1), 37–50. Vodicka P., Koskinen M., Naccarati A., Oesch-Bartlomowicz B., Vodickova L., Hemminki K. & Oesch F. (2006). Styrene metabolism, genotoxicity, and potential carcinogenicity. Drug Metab. Rev., 38(4), 805–853. Wagner H. L. (1985). The Mark–Houwink–Sakurada Equation for the Viscosity of Atactic Polystyrene. J. Phys. Chem. Ref. Data, 14(4), 1101–1106. Wang H. B., Jessop P. G. & Liu G. (2012). Support-free porous polyamine particles for CO2 capture. ACS Macro Lett., 1(8), 944–948. Wang J., Wang M., Zhao B., Qiao W., Long D. & Ling L. (2013). Mesoporous Carbon-Supported Solid Amine Sorbents for Low-Temperature Carbon Dioxide Capture. Ind. Eng. Chem. Res., 52, 5437–5444. Wang L., Liu Z., Li P., Yu J. & Rodrigues A. E. (2012). Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem. Eng. J., 197, 151–161. Wang Y., Zhao L., Otto A., Robinius M. & Stolten D. (2017). A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, 114, 650–665. Wilson A. D. & Stewart F. F. (2014). Structure-function study of tertiary amines as switchable polarity solvents. RSC Adv., 4(22), 11039–11049. Xiong Z., Gu T. & Wang X. (2014). Self-assembled multilayer films of sulfonated graphene and polystyrene-based diazonium salt as photo-cross-linkable supercapacitor electrodes. Langmuir, 30(2), 522–532. Yadav G. & Sen R. (2017). Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production : Recent technological advances in climate research. J. CO2 Util., 17, 188–206. Yahia M. Ben, Torkia Y. Ben, Knani S., Hachicha M. A., Khalfaoui M. & Lamine A. Ben. (2013). Models for Type VI Adsorption Isotherms from a Statistical Mechanical Formulation. Adsorpt. Sci. Technol., 31(4), 341–357. Yi Q., Lu B., Feng J., Wu Y. & Li W. (2012). Evaluation of Newly Designed Polygeneration System with CO2 Recycle. Energy & Fuels, 26, 1459–1469. Yu C.-H., Huang C.-H. & Tan C.-S. (2012). A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res., 12, 745–769. Yukie Y., Yuki I., Osamu Y., Shu-Yun Z., Watanabe G., Taya K., Mei Li C., Inotsume Y., Kamijima M., Gonzalez F. J. & Nakajima T. (2008). Styrene Trimer May Increase Thyroid Hormone Levels via Down-Regulation of the Aryl Hydrocarbon Receptor (AhR) Target Gene UDP-Glucuronosyltranferase. Environ. Health Perspect., 116(6), 740–745. Zenftman H. & McLean A. (1951). Production of Nitropolystyrene. Great Britain. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bucaramanga |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Maestría Ciencias y Tecnologías Ambientales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Química Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/16630/8/license.txt https://repository.usta.edu.co/bitstream/11634/16630/5/2019MurciaAndr%c3%a9s.pdf https://repository.usta.edu.co/bitstream/11634/16630/6/2019MurciaAndr%c3%a9s1.pdf https://repository.usta.edu.co/bitstream/11634/16630/7/2019MurciaAndr%c3%a9s2.pdf https://repository.usta.edu.co/bitstream/11634/16630/9/2019MurciaAndr%c3%a9s.pdf.jpg https://repository.usta.edu.co/bitstream/11634/16630/10/2019MurciaAndr%c3%a9s1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/16630/11/2019MurciaAndr%c3%a9s2.pdf.jpg |
bitstream.checksum.fl_str_mv |
f6b8c5608fa6b2f649b2d63e10c5fa73 5e4e56229e1269da60b1d5773dd704e5 b0e14acc4d4a7263f9804dee25662d3c fd87f78c98dd669a66fc45f077295f28 5e8bb28d7c2a479b2ba284b52c8dc3c2 68cc9f260a4fe6e5931cce48c7d91746 1113560f590581f9102a82a7501eb4bb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1800786329725829120 |
spelling |
Merchán Arenas, Diego RolandoMurcia Patiño, Andrés Felipe2019-05-11T01:26:28Z2019-05-11T01:26:28Z2019-05-09Murcia Patiño, A. F. (2019). Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2 [Tesis de Maestría]. Universidad Santo Tomás, Bucaramanga, Colombiahttp://hdl.handle.net/11634/16630reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn este trabajo se tomó una muestra de poliestireno expandido (EPS) de una matriz de residuos sólidos, este material se utilizó como materia prima para la síntesis de poliamino estireno (PSNH2) en un proceso de dos pasos. Primero, se llevó a cabo la nitración de PS para obtener polinitro estireno (PSNO2) con un rendimiento de 10.18 % en función de grupos NO2 obtenidos. Seguidamente, el PSNO2 se redujo utilizando HCl/Sn, con un rendimiento del 50 % en función de grupos NO2 reducidos del precursor. La materia prima, el precursor y el producto final obtenido se caracterizaron mediante técnicas analíticas como IR, 1H-RMN, SEM-EDS y TGA. Con el material en nuestras manos, se evaluó su actividad de captura de CO2, obteniendo una capacidad de adsorción de 1.05 mmol g-1 de PSNH2.A sample of expanded polystyrene (EPS) was isolated from a whole solid waste sample as raw material, for the synthesis of the polyamino styrene (PSNH2) in a two steps process. Initially, it was carried out the nitration of PS to obtain polynitro styrene (PSNO2) in a 10.18 % of yield according to the NO2 groups obtained. Afterwards, PSNO2 was reduced using HCl/Sn conditions, to obtain the PSNH2 in 50 % yield according to the reduction of NO2 groups of the precursor. Raw material, intermediary and the final product were completely characterized by chemical analytical techniques. With the new material in hands, it was used as solid support to CO2 capture, showing an adsorption capacity of 1.05 mmol g-1 of PSNH2.Magister en Ciencias y Tecnologías Ambientaleshttp://www.ustabuca.edu.co/ustabmanga/presentacionMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ciencias y Tecnologías AmbientalesFacultad de Química AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Síntesis de Poliamino Estireno a Partir de Residuos Sólidos de Poliestireno Expandido y su Potencial Aplicación Como Secuestrante de CO2CO2 captureExpanded polystyreneNitrationPolyamine styreneReduction of NO2Urban solid wastePoliestirenoConversión de residuosNitraciónCaptura de CO2NitraciónPoliestireno expandidoPoliamino estirenoReducción de grupos NO2Residuos sólidos urbanosTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BucaramangaAaron D. & Tsouris C. (2005). Separation of CO2 from Flue Gas: A Review. Sep. Sci. Technol., 40(1), 321–348.Ahn H., Moon J., Hyun S.-H. & Lee C. (2004). Diffusion Mechanism of Carbon Dioxide in Zeolite 4A and CaX Pellets. Adsorption, 10, 111–128.AIST. (1999). N,N-dimethylcyclohexylamine.Albright L. F., Carr R. V. C. & Scmitht R. J. (1996). Nitration: Recent Laboratory and Industrial Developments. Washington: American Chemical Society.Altares T., Wyman D. P. & Allen V. R. (1964). Synthesis of Low Molecular Weight Polystyrene by Anionic Techniques and Intrinsic Viscosity-Molecular Weight Relations Over a Broad Range in Molecular Weight. J. Polym. Sci. Part A Polym. Chem., 2, 4533–4544.Amianti M. & Botaro V. R. (2008). Recycling of EPS: A new methodology for production of concrete impregnated with polystyrene (CIP). Cem. Concr. Compos., 30(1), 23–28.Antzara A., Arregi A., Heracleous E. & Lemonidou A. A. (2018). In-depth evaluation of a ZrO2 promoted CaO-based CO2 sorbent in fluidized bed reactor tests. Chem. Eng. J., 333, 697–711.Atkins P. & de Paula J. (2014). Processes on solid surfaces. In Physical Chemistry: Thermodynamics, Structure, and Change (10th ed., pp. 938–945).Bevington J. C. & Huckerby T. N. (2006). Studies of end-groups in polystyrene using 1H NMR. Eur. Polym. J., 42, 1433–1436.Bongaarts J. (1992). Population Growth and Global Warming. Popul. Counc., 18(2), 299–319.Boonpoke A., Chiarakorn S., Laosiripojana N., Towprayoon S. & Chidthaisong A. (2012). Investigation of CO2 adsorption by bagasse-based activated carbon. Korean J. Chem. Eng., 29(1), 89–94.Brandrup J., Immergut E. H., Grulke E. A., Abe A. & Bloch D. R. (1998). Polymer Handbook.Browne M. A., Dissanayake A., Galloway T. S., Lowe D. M. & Thompson R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel, Mytilus edulis (L.). Environ. Sci. Technol., 42(13), 5026–5031.Bruckner R. (2002). Advanced Organic Chemistry. Elsevier.Brunauer S., Deming L. S., Deming W. E. & Teller E. (1940). On a Theory of the van der Waals Adsorption of Gases. J. Am. Chem. Soc., 62(7), 1723–1732.Brundtland G. (1987). Report of the World Commision on Environement and Development: Our Common Future. Oxford paperbacks (New York).Cavenati S., Grande C. A. & Rodrigues A. E. (2004). Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. J. Chem. Eng. Data, 49, 1095–1101.Chee K. K. (1987). Novel approach to Mark-Houwink-Sakurada constants and related parameters of polystyrene solutions. Polymer, 28, 977–979.Chen C., Son W. J., You K. S., Ahn J. W. & Ahn W. S. (2010). Carbon dioxide capture using amine-impregnated HMS having textural mesoporosity. Chem. Eng. J., 161(1–2), 46–52.Choi N. W. & Ohama Y. (2004). Development and testing of polystyrene mortars using waste EPS solution-based binders. Constr. Build. Mater., 18(4), 235–241.Choi S., Drese J. H. & Jones C. W. (2009). Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem, 2(9), 796–854.Chowdhury S. I., Ali R. & Hasan T. (2015). Synthesis of Well-Defined Vinyl End-Functional Polystyrene Using Multifunctional Initiator by Atom Transfer Radical Polymerization. Am. J. Appl. Sci., 12(8), 581–587.Clayden J., Greeves N. & Warren S. (2012). Organic Chemistry (2nd ed.). New York: Oxford.Creamer A. E., Gao B. & Wang S. (2016). Carbon dioxide capture using various metal oxyhydroxide-biochar composites. Chem. Eng. J., 283, 826–832.Creamer A. E., Gao B. & Zhang M. (2014). Carbon dioxide capture using biochar produced from sugarcane bagasse and hickory wood. Chem. Eng. J., 249, 174–179.da Costa Ores J., Sala L., Cerveira G. P. & Kalil S. J. (2012). Purification of carbonic anhydrase from bovine erythrocytes and its application in the enzymic capture of carbon dioxide. Chemosphere, 88(2), 255–259.Da̧browski A. (2001). Adsorption - From theory to practice. Adv. Colloid Interface Sci., 93(1–3), 135–224.Dardouri M., Ammari F., Amor A. B. & Meganem F. (2018). Adsorption of cadmium (II), zinc (II) and iron (III) from water by new cross- linked reusable polystyrene adsorbents. Mater. Chem. Phys., 216(May), 435–445.Davis F. J., Hosier I. L., Vaughan A. S., Mitchell G. R. & Sisipitayananon J. (2004). Polymer characterization. In Polymer Chemistry (pp. 1–33).Deane P. (1979). The first industrial revolution. Cambridge: Press Syndicate of the University of Cambridge.Derraik J. G. B. (2002). The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull., 44(9), 842–852.Descamps C., Bouallou C. & Kanniche M. (2008). Efficiency of an Integrated Gasification Combined Cycle (IGCC) power plant including CO2 removal. Energy, 33(6), 874–881.Do D. D. (1998). Adsorption Analysis: Equilibria and Kinetics. (R. Yang, Ed.) (Vol. 2). Queensland.Dutcher B., Fan M. & Russell A. G. (2015). Amine-based CO2 capture technology development from the beginning of 2013-A review. ACS Appl. Mater. Interfaces, 7(4), 2137–2148.Ebewele R. O. (2000). Chapter One: Introduction. In Polym. Sci. Technol. (pp. 14–37). Benin.EPA. (2017). Greenhouse Gas Emissions. Retrieved from https://www.epa.gov/ghgemissions/overview-greenhouse-gasesEriksson C. & Burton H. (2003). Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. Ambio, 32(6), 380–384.Eskander S. B. & Tawfik M. E. (2011). Polymer-Cement Composite Based on Recycled Expanded Polystyrene Foam Waste. Polym. Compos., 1430–1438.Fernandez de la Ossa M. A., Torre M. & García-Ruiz C. (2012). Nitrocellulose in propellants: Characteristics and thermal properties. Adv. Mater. Sci. Res., 7, 201–220.Franchi R. S., Harlick P. J. E. & Sayari A. (2005). Applications of pore-expanded mesoporous silica. 2. Development of a high-capacity, water-tolerant adsorbent for CO2. Ind. Eng. Chem. Res., 44(21), 8007–8013.Fu Z., Jia J., Li J. & Liu C. (2017). Transforming waste expanded polystyrene foam into hyper-crosslinked polymers for carbon dioxide capture and separation. Chem. Eng. J., 323, 557–564.Fu Z., Mohamed I. M. A., Li J. & Liu C. (2019). Novel adsorbents derived from recycled waste polystyrene via cross-linking reaction for enhanced adsorption capacity and separation selectivity of CO2. J. Taiwan Inst. Chem. Eng., 1–8.Goeppert A., Czaun M., May R. B., Prakash G. K. S., Olah G. A. & Narayanan S. R. (2011). Carbon Dioxide Capture from the Air Using a Polyamine Based. J. Am. Chem. Soc., 133, 20164–20167.Gómez-Coma L., Garea A. & Irabien Á. (2017). Hybrid Solvent ([emim][Ac]+water) to Improve the CO2 Capture Efficiency in a PVDF Hollow Fiber Contactor. ACS Sustain. Chem. Eng., 5(1), 734–743.Gregg S. J. & Sing K. S. W. (1982). Adsorption, Surface Area and Porosity. New York, Academic Press. Academy Press.Gregory M. R. (1977). Plastic pellets on New Zealand beaches. Mar. Pollut. Bull., 8(4), 82–84.Gregory M. R. (1983). Accumulation and distribution of virgin plastic granules on New Zealand beaches. Mar. Environ. Res., 10(2), 73–92.Gregory M. R. (1991). The hazards of persistent marine pollution: drift plastics and conservation islands. J. R. Soc. New Zeal., 21(2), 83–100.Gross R. A. & Kalra B. (2002). Biodegradable Polymers for the Enviroment. Science, 297, 803–807.Guo F., Ji M., Zhang P. & Guo Z. (2017). Facile nitration of aromatic compounds using Bi(NO3)3*5H2O/MgSO4 under mechanochemical conditions. Green Process Synth, 1–8.Hasib-ur-Rahman M., Siaj M. & Larachi F. (2010). Ionic liquids for CO2 capture-Development and progress. Chem. Eng. Process. Process Intensif., 49(4), 313–322.Herrera-Sandoval G. M., Baez-Angarita D. B., Correa-Torres S. N., Primera-Pedrozo O. M. & Hernández-Rivera S. P. (2013). Novel EPS/TiO2 Nanocomposite Prepared from Recycled Polystyrene. Mater. Sci. Appl., 04(03), 179–185.Hoggett V. J. G., Moodie R. B., Penton J. R. & Schofield K. (1971). Nitration and aromatic reactivity. Great Britain: Cambridge.Hornberger L., Hight T. & Walawalker A. (1996). Recycled EPS foam processing. Polym. Recycl., 2(3), 151–157.Igwe J. C. & Abia A. (2007). Adsorption kinetics and intraparticulate diffusivities for bioremediation of Co (II), Fe (II) and Cu (II) ions from waste water using modified and unmodified maize cob. Int. J. Phys. Sci., 2(5), 119–127.Imtiaz-Ul-Islam M., Hong L. & Langrish T. (2011). CO2 capture using whey protein isolate. Chem. Eng. J., 171(3), 1069–1081.International Energy Agency. (2018). CO2 Emissions from Fuel Combustion 2018 Highlights. Int. energy agency (Vol. 1).International Energy Authority. (2004). Coal Market Outlook. In World Energy Outlook 2004 (Vol. 23, p. 577).Jessop P. G. (2015). Switchable Solvents as Media for Synthesis and Separations. Aldrichimica Acta, 48(1), 18–21.Jessop P. G., Kozycz L., Rahami Z. G., Schoenmakers D., Boyd A. R., Wechsler D. & Holland A. M. (2011). Tertiary amine solvents having switchable hydrophilicity. Green Chem., 13(3), 619–623.Jin Y., Uhlik F., Roovers J., Chang T. & Jeong Y. (2017). Intrinsic Viscosity of Cyclic Polystyrene. Macromolecules, 50(19), 7770–7776.Jo D. H., Lee C. H., Jung H., Jeon S. & Hyun S. (2015). Effect of Amine Surface Density on CO2 Adsorption Behaviors of Amine-Functionalized Polystyrene. Bull. Chem. Soc. Jpn., 88, 1317–1322.Kan A. & Demirboǧa R. (2009). A new technique of processing for waste-expanded polystyrene foams as aggregates. J. Mater. Process. Technol., 209(6), 2994–3000.Kannan P., Biernacki J. J. & Visco D. P. (2007). A review of physical and kinetic models of thermal degradation of expanded polystyrene foam and their application to the lost foam casting process. J. Anal. Appl. Pyrolysis., 78(1), 162–171.Keller J. U. & Staudt R. (2005). Gas adsorption equilibria: Experimental methods and adsorptive isotherms. Springer.Khot K. M., Heer P. K. K. S., Biniwale R. B. & Gaikar V. G. (2014). Equilibrium Adsorption Studies of CO2 , CH4 , and N2 on Amine Functionalized Polystyrene. Sep. Sci. Technol., 49, 2376_2388.Kim S., Shi H. & Lee J. Y. (2016). CO2 absorption mechanism in amine solvents and enhancement of CO2 capture capability in blended amine solvent. Int. J. Greenh. Gas Control, 45, 181–188.Kučera F. & Jancář J. (1996). Preliminary Study of Sulfonation of Polystyrene by Homogeneous and Heterogeneous Reaction. Chem. Pap., 50(4), 224–227.Lagoviyer O. S., Krishtopa L., Schoenitz M., Trivedi N. J. & Dreizin E. L. (2017). Mechanochemical Nitration of Aromatic Compounds. J. Energ. Mater., 1–11.Lan G., Zhang X., Zhang X., Li M., Li Y. & Yang Q. (2015). Yolk-shell nanospheres with soluble amino-polystyrene as a reservoir for Pd NPs. RSC Adv., 5, 35730–35736.Latifa M., Pestov A. V, Mekhaev A. V, Marchuk A. A., Bosenko S. N., Petrova Y. S. & Neudachina L. K. (2019). Sulfoethylated polyaminostyrene – polymer ligand with high selective interaction with silver ions in multicomponent solutions. J. Environ. Chem. Eng., 7(1), 1–9.Lepaumier H., Picq D. & Carrette P.-L. (2009). New Amines for CO2 Capture. I. Mechanisms of Amine Degradation in the Presence of CO2. Ind. Eng. Chem. Res., 48(20), 9061–9067.Li H., Li Q., Hao J., Xu Z. & Sun D. (2016). Preparation of CO2-responsive emulsions with switchable hydrophobic tertiary amine. Colloids Surfaces A Physicochem. Eng. Asp., 502, 107–113.Li X., Wang X., Ye G., Xia W. & Wang X. (2010). Polystyrene-based diazonium salt as adhesive: A new approach for enzyme immobilization on polymeric supports. Polymer, 51(4), 860–867.Lin K. Y. A. & Park A. H. A. (2011). Effects of Bonding Types and Functional Groups on CO2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials. Environ. Sci. Technol., 45(15), 6633–6639.Liu Y., Ye Q., Shen M., Shi J., Chen J., Pan H. & Shi Y. (2011). Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Carbon Dioxide Capture by Functionalized Solid Amine Sorbents with Simulated Flue Gas Conditions. Environ. Sci. Technol., 45, 5710–5716.Liu Z., Du Z., Zou W., Li H., Mi J. & Zhang C. (2013). Easily collected nano-absorbents for carbon dioxide capture. Chem. Eng. J., 223, 915–920.Mangalara S. C. H. & Varughese S. (2016). Green recycling approach to obtain nano and microparticles from expanded polystyrene waste. ACS Sustain. Chem. Eng., 4(11), 1–31.Maroto-Valer M. (2010). Developments and Innovation in Carbon Dioxide Capture and Storage Technology. Cambridge: Woodhead Publishing Limited.Maroto-valer M. M., Lu Z., Zhang Y. & Tang Z. (2008). Sorbents for CO2 capture from high carbon fly ashes. Waste Manag., 28, 2320–2328.Mckay G. & Poots V. J. P. (1980). Kinetics and Diffusion Processes in Colour Removal from Effluent Using Wood as an Adsorbent. J. Chem. Tech. Biotechnol., 30, 279–292.McMurry J. (2000a). Amines. In Organic Chemistry (5th ed., pp. 976–1014). California: Brooks/Cole.McMurry J. (2000b). Organic Chemistry (5th ed.). Brooks/Cole.Merchan-Arenas D. R., Murcia-Patiño A. F., Cortés-Castillo L. E. & Kouznetsov V. V. (2017). Sulfonation of Expanded Polystyrene Post Consumption, Structural Analysis and Its Application in Chemical Enhanced Oil Recovery. Chem. Eng. Trans., 57, 631–636.Meth S., Goeppert A., Prakash G. K. S. & Olah G. A. (2012). Silica Nanoparticles as Supports for Regenerable CO2 Sorbents. Energy Fuels, 26, 3082–3090.Midgley T. J., Henne A. L. & Leicester H. M. (1961). Natural and Synthetic Rubber. XVI. The Structure of Polystyrene. J. Am. Chem. Soc., 2757(3), 1935–1937.Mikulčić H., Klemeš J. J., Vujanović M., Urbaniec K. & Duić N. (2016). Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process. J. Clean. Prod., 136, 119–132.Munusamy K., Sethia G., Patil D. V., Somayajulu Rallapalli P. B., Somani R. S. & Bajaj H. C. (2012). Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): Volumetric measurements and dynamic adsorption studies. Chem. Eng. J., 195–196, 359–368.Nasri N. S., Hamza U. D., Ismail S. N., Ahmed M. M. & Mohsin R. (2014). Assessment of porous carbons derived from sustainable palm solid waste for carbon dioxide capture. J. Clean. Prod., 71, 148–157.Noguchi T., Miyashita M., Lnagaki Y. & Watanabe H. (1998). A New Recycling System for Expanded Polystyrene using a Natural Solvent. Part 1. A New Recycling Technique. Packag. Technol. Sci., 11(1), 19–27.Novidesa P. (2016). Msds Expandable Polystyrene (Eps). Ciudad de México.Olah G. A. (1971). Mechanism of electrophilic aromatic substitutions. Acc. Chem. Res., 4(7), 240–248.Olah G. A., Malhortra R. & Narang S. C. (1989). Nitration, Methods and Mechanisms: Oganic Nitro Chemistry Series. Weinheim: WILEY-VCH.Park S., Min J., Lee M. G., Jo H. & Park J. (2013). Characteristics of CO2 fixation by chemical conversion to carbonate salts. Chem. Eng. J., 231, 287–293.Philippides A., Budd P. M., Price C. & Cuncliffe A. V. (1993). The nitration of polystyrene. Polymer, 34(16), 3509–3513.Pinheiro H. M., Touraud E. & Thomas O. (2004). Aromatic amines from azo dye reduction: Status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dye. Pigment., 61(2), 121–139.Privalova E. I., Karjalainen E., Nurmi M., Mäki-arvela P. & Eränen K. (2013). Imidazolium-Based Poly (ionic liquid)s as New Alternatives for CO2 Capture. ChemSusChem, 1–11.Qiu H., Lv L., Pan B., Zhang Q., Zhang W. & Zhang Q. (2009). Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A, 10(5), 716–724.Rajeev A., Erapalapati V., Madhavan N. & Basavaraj M. G. (2016). Conversion of expanded polystyrene waste to nanoparticles via nanoprecipitation. J. Appl. Polym. Sci, 133(4), 1–5.Rashidi N. A., Yusup S. & Hameed B. H. (2013). Kinetic studies on carbon dioxide capture using lignocellulosic based activated carbon. Energy, 61, 440–446.Rice S. A. (2003). Health Effects of Acute and Prolonged CO2 Exposure in Normal and Sensitive Populations. In Second Annual Conference on Carbon Sequestration (pp. 1–10).Ridd H. (1971). Mechanism of Aromatic Nitration. Acc. Chem. Res., 4(7), 248–253.Rochelle G. T. (2009). Amine Scrubbing for CO2 Capture. Science, 325, 1652–1654.Rouquerol F., Rouquerol J. & Sing K. (1999). Adsorption by Powders & Porous Solids.Ruebner A., Statton G. L. & Consaga J. P. (2003). Polymeric Cyclodextrin Nitrate Esters. Estados Unidos.Sacristán J., Reinecke H., Mijangos C., Spells S. & Yarwood J. (2002). Surface modification of polystyrene films. Depth profiling and mapping by raman microscopy. Macromol. Chem. Phys., 203(4), 678–685.Samanta A., Zhao A., Shimizu G. K. H., Sarkar P. & Gupta R. (2012). Post-Combustion CO2 Capture Using Solid Sorbents: A Review. Ind. Eng. Chem. Res., 51(4), 1438–1463.Sandru M., Kim T. J. & Hägg M. B. (2009). High molecular fixed-site-carrier PVAm membrane for CO2 capture. Desalination, 240(1–3), 298–300.Sarbu A., Dima S. O., Dobre T., Udrea I., Bradu C., Avramescu S., Mihalache N., Radu A. L., Nicolescu T. V., Lungu A. & Melinte S. (2009). Polystyrene wastes recycling by lightweight concrete production. Revista de Chimie, 60(12), 1350–1356.Saunders C. W. & Taylor L. T. (2005). Determination of the Degree of Nitration of Cellulose Nitrates via GPC/FT-IR Using an On-Line Flow Cell. Appl. Spectrosc., 45(5), 900–905.Schneider S. H. (1989). Greenhouse Effect : Science and Policy. Science, 243, 771–781.Serna-Guerrero R. & Sayari A. (2010). Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: Kinetics and breakthrough curves. Chem. Eng. J., 161(1–2), 182–190.Shakerian F., Kim K. H., Szulejko J. E. & Park J. W. (2015). A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture. Appl. Energy, 148, 10–22.Shin C. (2005). A new recycling method for expanded polystyrene. Packag. Technol. Sci., 18(6), 331–335.Shin C. (2006). Filtration application from recycled expanded polystyrene. J. Colloid Interface Sci., 302(1), 267–271.Shin C. & Chase G. G. (2005). Nanofibers from recycle waste expanded polystyrene using natural solvent. Polym. Bull., 55(3), 209–215.Shyaa A. A. (2012). Synthesis, Characterization and Thermal Study of Polyimides Derived from Polystyrene. J. Univ. Anbar for Pure Science, 6(1), 1–8.Siavashi K. (2011). The Effect of Casting Parameters on the Fluidity and Porosity of Aluminium Alloys in the Lost Foam Casting Process.Silverstein R. M., Webster F. X. & Kiemle D. J. (2005). Spectrometric Identification of Organic Compunds (7th ed.). John Wiley & Sons, INC.Singh H., Gupta P., Soni A., Joshi R., Yadav R. J. & Singh A. (2018). Capturing carbon dioxide from air by using Sodium hydroxide. IRJET, 5(4), 870–876.Siriwardane R. V, Shen M. & Fisher E. P. (2003). Adsorption of CO2, N2, and O2 on Natural Zeolites. Energy & Fuels, 17(5), 571–576.Speight J. G. (2006). History and Terminology. In The chemistry and technology of petroleum (Fourth edi, pp. 325–326). Taylor & Francis.Srisang W., Osei P. A., Decardi-Nelson B., Tontiwachwuthikul A. A. P. & Idem R. (2017). Effect of Acid Catalysts on CO2 Absorption Process by Mixed Amines. Energy Procedia, 114(November 2016), 1514–1522.Stanger R., Wall T., Spörl R., Paneru M., Grathwohl S., Weidmann M., Scheffknecht G., McDonald D., Myöhänen K., Ritvanen J., Rahiala S., Hyppänen T., Mletzko J., Kather A. & Santos S. (2015). Oxyfuel combustion for CO2 capture in power plants. Int. J. Greenh. Gas Control, 40, 55–125.Stolaroff J. K., Keith D. W. & Lowry G. V. (2008). Carbon Dioxide Capture from Atmospheric Air Using Sodium Hydroxide Spray. Environ. Sci. Technol., 42(8), 2728–2735.Stone M. L., Rae C., Stewart F. F. & Wilson A. D. (2013). Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 312, 124–129.Styring P., Quadrelli E. A. & Armstrong K. (2014). What is CO2? Thermodynamics, Basic Reactions and Physical Chemistry. In Carbon Dioxide Utilisation: Closing the Carbon Cycle (1st ed., pp. 3–15). Amsterdam: Elsevier B.V.Sułkowski W. W., Nowak K., Sułkowska A., Wolińska A., Bajdur W. M., Pentak D. & Mikuła B. (2009). Study of the sulfonation of expanded polystyrene waste and of properties of the products obtained. Pure Appl. Chem., 81(12), 2417–2424.Sumida K., Rogow D. L., Mason J. A., McDonald T. M., Bloch E. D., Herm Z. R., Bae T. H. & Long J. R. (2012). Carbon dioxide capture in metal-organic frameworks. Chem. Rev., 112(2), 724–781.Sze L. L., Pandey S., Ravula S., Pandey S., Zhao H., Baker G. A. & Baker S. N. (2014). Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture. ACS Sustain. Chem. Eng., 2(9), 2117–2123.Taguchi Y. & Tanaka M. (2001). Preparation of microcapsules composed of waste-expanded polystyrene and paper fiber by semichemical recycle. J. Appl. Polym. Sci., 80(14), 2662–2669.Tan I. A., Ahmad A. & Hameed B. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies. J. Hazard. Mater., 154, 337–346.Ünveren E. E., Monkul B. Ö., Sarıoğlan Ş., Karademir N. & Alper E. (2017). Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum, 3(1), 37–50.Vodicka P., Koskinen M., Naccarati A., Oesch-Bartlomowicz B., Vodickova L., Hemminki K. & Oesch F. (2006). Styrene metabolism, genotoxicity, and potential carcinogenicity. Drug Metab. Rev., 38(4), 805–853.Wagner H. L. (1985). The Mark–Houwink–Sakurada Equation for the Viscosity of Atactic Polystyrene. J. Phys. Chem. Ref. Data, 14(4), 1101–1106.Wang H. B., Jessop P. G. & Liu G. (2012). Support-free porous polyamine particles for CO2 capture. ACS Macro Lett., 1(8), 944–948.Wang J., Wang M., Zhao B., Qiao W., Long D. & Ling L. (2013). Mesoporous Carbon-Supported Solid Amine Sorbents for Low-Temperature Carbon Dioxide Capture. Ind. Eng. Chem. Res., 52, 5437–5444.Wang L., Liu Z., Li P., Yu J. & Rodrigues A. E. (2012). Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem. Eng. J., 197, 151–161.Wang Y., Zhao L., Otto A., Robinius M. & Stolten D. (2017). A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants. Energy Procedia, 114, 650–665.Wilson A. D. & Stewart F. F. (2014). Structure-function study of tertiary amines as switchable polarity solvents. RSC Adv., 4(22), 11039–11049.Xiong Z., Gu T. & Wang X. (2014). Self-assembled multilayer films of sulfonated graphene and polystyrene-based diazonium salt as photo-cross-linkable supercapacitor electrodes. Langmuir, 30(2), 522–532.Yadav G. & Sen R. (2017). Microalgal green refinery concept for biosequestration of carbon-dioxide vis-à-vis wastewater remediation and bioenergy production : Recent technological advances in climate research. J. CO2 Util., 17, 188–206.Yahia M. Ben, Torkia Y. Ben, Knani S., Hachicha M. A., Khalfaoui M. & Lamine A. Ben. (2013). Models for Type VI Adsorption Isotherms from a Statistical Mechanical Formulation. Adsorpt. Sci. Technol., 31(4), 341–357.Yi Q., Lu B., Feng J., Wu Y. & Li W. (2012). Evaluation of Newly Designed Polygeneration System with CO2 Recycle. Energy & Fuels, 26, 1459–1469.Yu C.-H., Huang C.-H. & Tan C.-S. (2012). A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res., 12, 745–769.Yukie Y., Yuki I., Osamu Y., Shu-Yun Z., Watanabe G., Taya K., Mei Li C., Inotsume Y., Kamijima M., Gonzalez F. J. & Nakajima T. (2008). Styrene Trimer May Increase Thyroid Hormone Levels via Down-Regulation of the Aryl Hydrocarbon Receptor (AhR) Target Gene UDP-Glucuronosyltranferase. Environ. Health Perspect., 116(6), 740–745.Zenftman H. & McLean A. (1951). Production of Nitropolystyrene. Great Britain.LICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/16630/8/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD58open accessORIGINAL2019MurciaAndrés.pdf2019MurciaAndrés.pdfTrabajo de gradoapplication/pdf1714165https://repository.usta.edu.co/bitstream/11634/16630/5/2019MurciaAndr%c3%a9s.pdf5e4e56229e1269da60b1d5773dd704e5MD55metadata only access2019MurciaAndrés1.pdf2019MurciaAndrés1.pdfAprobación Facultadapplication/pdf118150https://repository.usta.edu.co/bitstream/11634/16630/6/2019MurciaAndr%c3%a9s1.pdfb0e14acc4d4a7263f9804dee25662d3cMD56metadata only access2019MurciaAndrés2.pdf2019MurciaAndrés2.pdfAcuerdo de Confidencialidadapplication/pdf750871https://repository.usta.edu.co/bitstream/11634/16630/7/2019MurciaAndr%c3%a9s2.pdffd87f78c98dd669a66fc45f077295f28MD57metadata only accessTHUMBNAIL2019MurciaAndrés.pdf.jpg2019MurciaAndrés.pdf.jpgIM Thumbnailimage/jpeg5194https://repository.usta.edu.co/bitstream/11634/16630/9/2019MurciaAndr%c3%a9s.pdf.jpg5e8bb28d7c2a479b2ba284b52c8dc3c2MD59open access2019MurciaAndrés1.pdf.jpg2019MurciaAndrés1.pdf.jpgIM Thumbnailimage/jpeg8115https://repository.usta.edu.co/bitstream/11634/16630/10/2019MurciaAndr%c3%a9s1.pdf.jpg68cc9f260a4fe6e5931cce48c7d91746MD510open access2019MurciaAndrés2.pdf.jpg2019MurciaAndrés2.pdf.jpgIM Thumbnailimage/jpeg9230https://repository.usta.edu.co/bitstream/11634/16630/11/2019MurciaAndr%c3%a9s2.pdf.jpg1113560f590581f9102a82a7501eb4bbMD511open access11634/16630oai:repository.usta.edu.co:11634/166302022-10-10 14:39:08.792metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |