Data science: an emerging discipline
The role of data scientist has been described as the “sexiest job of the 21st Century”. While possibly there is a degree of hype associated with such a claim, there are factors at play such as the unprecedented growth in the amount of data being generated. This paper characterises the already establ...
- Autores:
-
Galpin, Ixent
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- OAI Identifier:
- oai:repository.usta.edu.co:11634/11508
- Acceso en línea:
- http://hdl.handle.net/11634/11508
- Palabra clave:
- Data science
Data mining
Data engineering
Big Data
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
SantoToma2_8be8b49dd4a20408981c6a0fcb81748a |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/11508 |
network_acronym_str |
SantoToma2 |
network_name_str |
Universidad Santo Tomás |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Data science: an emerging discipline |
title |
Data science: an emerging discipline |
spellingShingle |
Data science: an emerging discipline Data science Data mining Data engineering Big Data |
title_short |
Data science: an emerging discipline |
title_full |
Data science: an emerging discipline |
title_fullStr |
Data science: an emerging discipline |
title_full_unstemmed |
Data science: an emerging discipline |
title_sort |
Data science: an emerging discipline |
dc.creator.fl_str_mv |
Galpin, Ixent |
dc.contributor.author.spa.fl_str_mv |
Galpin, Ixent |
dc.subject.keyword.spa.fl_str_mv |
Data science Data mining Data engineering Big Data |
topic |
Data science Data mining Data engineering Big Data |
description |
The role of data scientist has been described as the “sexiest job of the 21st Century”. While possibly there is a degree of hype associated with such a claim, there are factors at play such as the unprecedented growth in the amount of data being generated. This paper characterises the already established disciplines which underpin data science, viz., data engineering, statistics, and data mining. Following a characterisation of the previous fields, data science is found to be most closely related to data mining. However, in contrast to data mining, data science promises to operate over datasets that exhibit significant challenges in terms of the four Vs: Volume, Variety, Velocity and Veracity. This paper notes that the current emphasis, both in industry and academia, is on the first three Vs, which pose mainly scientific or technological challenges, rather than Veracity, which is a truly scientific (and arguably a more complex) challenge. Data Science can be seen to have a more ambitious objective than what traditionally data mining has: as a science, data science aims to lead to the creation of new theories and knowledge. This paper notes that, ironically, the veracity dimension, which is arguably the closest one relating to this objective, is being neglected. Despite the current media frenzy about data science, the paper concludes that more time is needed to see whether it will emerge as discipline in its own right. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016 |
dc.date.accessioned.spa.fl_str_mv |
2018-04-03T15:35:30Z |
dc.date.available.spa.fl_str_mv |
2018-04-03T15:35:30Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/11508 |
url |
http://hdl.handle.net/11634/11508 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Duad |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/11508/1/GalpinIxent2016.pdf https://repository.usta.edu.co/bitstream/11634/11508/2/license.txt https://repository.usta.edu.co/bitstream/11634/11508/3/GalpinIxent2016.pdf.jpg |
bitstream.checksum.fl_str_mv |
e053ed21f6e1ac6507e756ba9b9d9434 8a4605be74aa9ea9d79846c1fba20a33 47ebe823bbb6e1f9e22231b67d3896f3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
noreply@usta.edu.co |
_version_ |
1800786420131954688 |
spelling |
Galpin, Ixent2018-04-03T15:35:30Z2018-04-03T15:35:30Z2016http://hdl.handle.net/11634/11508The role of data scientist has been described as the “sexiest job of the 21st Century”. While possibly there is a degree of hype associated with such a claim, there are factors at play such as the unprecedented growth in the amount of data being generated. This paper characterises the already established disciplines which underpin data science, viz., data engineering, statistics, and data mining. Following a characterisation of the previous fields, data science is found to be most closely related to data mining. However, in contrast to data mining, data science promises to operate over datasets that exhibit significant challenges in terms of the four Vs: Volume, Variety, Velocity and Veracity. This paper notes that the current emphasis, both in industry and academia, is on the first three Vs, which pose mainly scientific or technological challenges, rather than Veracity, which is a truly scientific (and arguably a more complex) challenge. Data Science can be seen to have a more ambitious objective than what traditionally data mining has: as a science, data science aims to lead to the creation of new theories and knowledge. This paper notes that, ironically, the veracity dimension, which is arguably the closest one relating to this objective, is being neglected. Despite the current media frenzy about data science, the paper concludes that more time is needed to see whether it will emerge as discipline in its own right.application/pdfData science: an emerging disciplineData scienceData miningData engineeringBig Datainfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1CRAI-USTA Duadhttp://purl.org/coar/access_right/c_abf2ORIGINALGalpinIxent2016.pdfGalpinIxent2016.pdfapplication/pdf980747https://repository.usta.edu.co/bitstream/11634/11508/1/GalpinIxent2016.pdfe053ed21f6e1ac6507e756ba9b9d9434MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.usta.edu.co/bitstream/11634/11508/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAILGalpinIxent2016.pdf.jpgGalpinIxent2016.pdf.jpgIM Thumbnailimage/jpeg6907https://repository.usta.edu.co/bitstream/11634/11508/3/GalpinIxent2016.pdf.jpg47ebe823bbb6e1f9e22231b67d3896f3MD53open access11634/11508oai:repository.usta.edu.co:11634/115082023-07-14 16:37:51.788open accessRepositorio Universidad Santo Tomásnoreply@usta.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |