Clasificación de género basada en señales de voz mediante modelos difusos y algoritmos de optimización
This paper describes a gender classification scheme based on voice signals in which 16 different fuzzy models are proposed and optimized using four bio-inspired optimization algorithms and the quasi-Newton method. The classification scheme considers four data sets and five different voice features t...
- Autores:
-
Cortés-Martinez, Luis Miguel
Espitia-Cuchango, Helbert Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- eng
- OAI Identifier:
- oai:repository.usta.edu.co:11634/36209
- Acceso en línea:
- http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2356
http://hdl.handle.net/11634/36209
- Palabra clave:
- Rights
- License
- Copyright (c) 2019 ITECKNE
Summary: | This paper describes a gender classification scheme based on voice signals in which 16 different fuzzy models are proposed and optimized using four bio-inspired optimization algorithms and the quasi-Newton method. The classification scheme considers four data sets and five different voice features to define the input values of an algorithm in the optimization process. The inputs of each fuzzy model define the mean and variance of their Gaussian membership functions, and their fitness is evaluated by the input values of the algorithm and mean squared error as objective function to be minimized. A comparative analysis between models, algorithms and data sets is made to obtain conclusions according to the results of each optimized model. |
---|