Clasificación de género basada en señales de voz mediante modelos difusos y algoritmos de optimización

This paper describes a gender classification scheme based on voice signals in which 16 different fuzzy models are proposed and optimized using four bio-inspired optimization algorithms and the quasi-Newton method. The classification scheme considers four data sets and five different voice features t...

Full description

Autores:
Cortés-Martinez, Luis Miguel
Espitia-Cuchango, Helbert Eduardo
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Santo Tomás
Repositorio:
Universidad Santo Tomás
Idioma:
eng
OAI Identifier:
oai:repository.usta.edu.co:11634/36209
Acceso en línea:
http://revistas.ustabuca.edu.co/index.php/ITECKNE/article/view/2356
http://hdl.handle.net/11634/36209
Palabra clave:
Rights
License
Copyright (c) 2019 ITECKNE
Description
Summary:This paper describes a gender classification scheme based on voice signals in which 16 different fuzzy models are proposed and optimized using four bio-inspired optimization algorithms and the quasi-Newton method. The classification scheme considers four data sets and five different voice features to define the input values of an algorithm in the optimization process. The inputs of each fuzzy model define the mean and variance of their Gaussian membership functions, and their fitness is evaluated by the input values of the algorithm and mean squared error as objective function to be minimized. A comparative analysis between models, algorithms and data sets is made to obtain conclusions according to the results of each optimized model.