Modelamiento de redes sociales múltiples
En este trabajo se propone un modelo estadístico para caracterizar simultáneamente dos o más redes sociales, donde interactúan el mismo conjunto de actores. Además de investigar las relaciones dentro de las redes, el modelo propuesto permite extrapolar la información entre redes, con el fin de obten...
- Autores:
-
Álvarez Monroy, Victor Nicolás
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/31872
- Acceso en línea:
- http://hdl.handle.net/11634/31872
- Palabra clave:
- Markov Chain Monte Carlo
Networks
Bayesian statistics
Latent space model
Online social networks -- Users -- Statistics
Latent variables
Statistical models
Redes sociales en línea
Variables latentes
Modelos estadísticos
Cadena de Markov de Monte Carlo
Estadística bayesiana
Redes sociales
Modelo de espacio latente
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SantoToma2_8755e171a11a4a7f9f15b287cc26fbc6 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/31872 |
network_acronym_str |
SantoToma2 |
network_name_str |
Universidad Santo Tomás |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Modelamiento de redes sociales múltiples |
title |
Modelamiento de redes sociales múltiples |
spellingShingle |
Modelamiento de redes sociales múltiples Markov Chain Monte Carlo Networks Bayesian statistics Latent space model Online social networks -- Users -- Statistics Latent variables Statistical models Redes sociales en línea Variables latentes Modelos estadísticos Cadena de Markov de Monte Carlo Estadística bayesiana Redes sociales Modelo de espacio latente |
title_short |
Modelamiento de redes sociales múltiples |
title_full |
Modelamiento de redes sociales múltiples |
title_fullStr |
Modelamiento de redes sociales múltiples |
title_full_unstemmed |
Modelamiento de redes sociales múltiples |
title_sort |
Modelamiento de redes sociales múltiples |
dc.creator.fl_str_mv |
Álvarez Monroy, Victor Nicolás |
dc.contributor.advisor.spa.fl_str_mv |
Sosa Martínez, Juan Camilo |
dc.contributor.author.spa.fl_str_mv |
Álvarez Monroy, Victor Nicolás |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0001-7432-4014 |
dc.contributor.cvlac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000019698 |
dc.contributor.corporatename.none.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
Markov Chain Monte Carlo Networks Bayesian statistics Latent space model Online social networks -- Users -- Statistics Latent variables Statistical models |
topic |
Markov Chain Monte Carlo Networks Bayesian statistics Latent space model Online social networks -- Users -- Statistics Latent variables Statistical models Redes sociales en línea Variables latentes Modelos estadísticos Cadena de Markov de Monte Carlo Estadística bayesiana Redes sociales Modelo de espacio latente |
dc.subject.lemb.spa.fl_str_mv |
Redes sociales en línea Variables latentes Modelos estadísticos |
dc.subject.proposal.spa.fl_str_mv |
Cadena de Markov de Monte Carlo Estadística bayesiana Redes sociales Modelo de espacio latente |
description |
En este trabajo se propone un modelo estadístico para caracterizar simultáneamente dos o más redes sociales, donde interactúan el mismo conjunto de actores. Además de investigar las relaciones dentro de las redes, el modelo propuesto permite extrapolar la información entre redes, con el fin de obtener mejores resultados en términos de bondad de ajuste y predicción. Esta propuesta se basa en una extensión jerárquica del modelo de espacio latente de distancias, que asume una posición social "global'' para cada actor, lo que permite estudiar de forma parsimoniosa los roles sociales desde varios puntos de vista. Las capacidades del modelo se ilustran utilizando varios conjuntos de datos reales, teniendo en cuenta diferentes tipos de relaciones. |
publishDate |
2021 |
dc.date.accessioned.spa.fl_str_mv |
2021-02-03T16:36:26Z |
dc.date.available.spa.fl_str_mv |
2021-02-03T16:36:26Z |
dc.date.issued.spa.fl_str_mv |
2021-01-20 |
dc.type.local.spa.fl_str_mv |
Tesis de maestría |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
http://purl.org/coar/resource_type/c_bdcc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Alvarez Monroy, V.N. (2021). Modelamiento de redes sociales múltiples. [Tesis de maestría, Universidad Santo Tomás Colombia]. Repositorio Institucional |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/31872 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Alvarez Monroy, V.N. (2021). Modelamiento de redes sociales múltiples. [Tesis de maestría, Universidad Santo Tomás Colombia]. Repositorio Institucional reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/31872 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Albert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association, 88(422), 669-679. Aldous, D. J. (1985). Exchangeability and related topics. In École d'Été de Probabilités de Saint-Flour XIII—1983 (pp. 1-198). Springer, Berlin, Heidelberg. Aliverti, E., & Russo, M. (2020). Stratified stochastic variational inference for high-dimensional network factor model. arXiv preprint arXiv:2006.14217. Banerjee, A., Chandrasekhar, A. G., Duflo, E., & Jackson, M. O. (2013). The diffusion of microfinance. Science, 341(6144). Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. Springer Science & Business Media. D'Angelo, S., Alfò, M., & Fop, M. (2020). Model-based Clustering for Multivariate Networks. arXiv preprint arXiv:2001.05260. D'Angelo, S., Alfò, M., & Murphy, T. B. (2018, May). Node-specific effects in latent space modelling of multidimensional networks. In 49th Scientific meeting of the Italian Statistical Society. Durante, D., & Dunson, D. B. (2014). Nonparametric Bayes dynamic modelling of relational data. Biometrika, 101(4), 883-898. Durante, D., & Dunson, D. B. (2018). Bayesian inference and testing of group differences in brain networks. Bayesian Analysis, 13(1), 29-58. D’Angelo, S., Murphy, T. B., & Alfò, M. (2019). Latent space modelling of multidimensional networks with application to the exchange of votes in eurovision song contest. Annals of Applied Statistics, 13(2), 900-930. Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC Press. Gao, L. L., Witten, D., & Bien, J. (2019). Testing for Association in Multi-View Network Data. arXiv preprint arXiv:1909.11640. Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press. Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Statistics and computing, 24(6), 997-1016. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457-472. Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25(1), 246-265. Green, P. J., & Hastie, D. I. (2009). Reversible jump MCMC. Genetics, 155(3), 1391-1403. Gupta, S., Sharma, G., & Dukkipati, A. (2018). Evolving Latent Space Model for Dynamic Networks. arXiv preprint arXiv:1802.03725. Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 7(2), 223-242. Han, Q., Xu, K., & Airoldi, E. (2015, June). Consistent estimation of dynamic and multi-layer block models. In International Conference on Machine Learning (pp. 1511-1520). Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model‐based clustering for social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(2), 301-354. Hoff, P. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in neural information processing systems (pp. 657-664). Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the american Statistical association, 100(469), 286-295. Hoff, P. D. (2009). A first course in Bayesian statistical methods (Vol. 580). New York: Springer. Hoff, P. D. (2015). Multilinear tensor regression for longitudinal relational data. The annals of applied statistics, 9(3), 1169. Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the american Statistical association, 97(460), 1090-1098. Hoover, D. N. (1982). Row-column exchangeability and a generalized model for probability. Exchangeability in probability and statistics (Rome, 1981), 281-291. Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with latent variables. Statistics surveys, 12, 105. Kolaczyk, E. D., & Csárdi, G. (2014). Statistical analysis of network data with R (Vol. 65). New York, NY: Springer. Krackhardt, D. (1987). Cognitive social structures. Social networks, 9(2), 109-134. Handcock, M. S., & Krivitsky, P. N. (2008). Fitting Latent Cluster Models for Networks with latentnet. Journal of Statistical Software, 24(05). Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social networks, 31(3), 204-213. Li, W. J., Yeung, D. Y., & Zhang, Z. (2011). Generalized latent factor models for social network analysis. In Proceedings of the 22nd international joint conference on artificial intelligence (ijcai), barcelona, spain (p. 1705). Linkletter, C. D. (2007). Spatial process models for social network analysis (Doctoral dissertation, Simon Fraser University). Ma, Z., & Ma, Z. (2017). Exploration of large networks with covariates via fast and universal latent space model fitting. arXiv preprint arXiv:1705.02372. Minhas, S., Hoff, P. D., & Ward, M. D. (2019). Inferential approaches for network analysis: AMEN for latent factor models. Political Analysis, 27(2), 208-222. Nowicki, K., & Snijders, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American statistical association, 96(455), 1077-1087. Paez, M. S., Amini, A. A., & Lin, L. (2019). Hierarchical stochastic block model for community detection in multiplex networks. arXiv preprint arXiv:1904.05330. Paul, S., & Chen, Y. (2016). Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. Electronic Journal of Statistics, 10(2), 3807-3870. Paul, S., & Chen, Y. (2020). Spectral and matrix factorization methods for consistent community detection in multi-layer networks. The Annals of Statistics, 48(1), 230-250. Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. Journal of the American statistical Association, 108(504), 1339-1349. Raftery, A. E., Niu, X., Hoff, P. D., & Yeung, K. Y. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21(4), 901-919. Reyes, P., & Rodriguez, A. (2016). Stochastic blockmodels for exchangeable collections of networks. arXiv preprint arXiv:1606.05277. Roethlisberger, F. J., & Dickson, W. J. (2003). Management and the Worker (Vol. 5). Psychology press. Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The annals of applied statistics, 11(3), 1217. Schweinberger, M., & Snijders, T. A. (2003). Settings in social networks: A measurement model. Sociological Methodology, 33(1), 307-341. Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 1646-1657. Sewell, D. K., & Chen, Y. (2016). Latent space models for dynamic networks with weighted edges. Social Networks, 44, 105-116. Sewell, D. K., & Chen, Y. (2017). Latent space approaches to community detection in dynamic networks. Bayesian Analysis, 12(2), 351-377. Sewell, D. K. (2019). Latent space models for network perception data. Netw. Sci., 7(2), 160-179. Sosa, J. (2017). A Latent Space Approach for Cognitive Social Structures Modeling and Graphical Record Linkage (Doctoral dissertation, UC Santa Cruz). Spencer, N. A., Junker, B., & Sweet, T. M. (2020). Faster MCMC for Gaussian Latent Position Network Models. arXiv preprint arXiv:2006.07687. Swartz, T. B., Gill, P. S., & Muthukumarana, S. (2015). A Bayesian approach for the analysis of triadic data in cognitive social structures. Journal of the Royal Statistical Society: Series C: Applied Statistics, 593-610. Turnbull, K. (2020). Advancements in latent space network modelling (Doctoral dissertation, Lancaster University). Wang, L., Zhang, Z., & Dunson, D. (2019). Common and individual structure of brain networks. The Annals of Applied Statistics, 13(1), 85-112. Watanabe, S., & Opper, M. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of machine learning research, 11(12). Zhang, X. (2020). Statistical Analysis for Network Data using Matrix Variate Models and Latent Space Models (Doctoral dissertation). |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Maestría Estadística Aplicada |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Estadística |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/31872/1/2021victoralvarez.pdf https://repository.usta.edu.co/bitstream/11634/31872/2/cartaaprobaci%c3%b3nfacultad.pdf https://repository.usta.edu.co/bitstream/11634/31872/3/cartaderechosdeautor.pdf https://repository.usta.edu.co/bitstream/11634/31872/4/license_rdf https://repository.usta.edu.co/bitstream/11634/31872/5/license.txt https://repository.usta.edu.co/bitstream/11634/31872/6/2021victoralvarez.pdf.jpg https://repository.usta.edu.co/bitstream/11634/31872/7/cartaaprobaci%c3%b3nfacultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/31872/8/cartaderechosdeautor.pdf.jpg |
bitstream.checksum.fl_str_mv |
c1b2cbbedf2f2b00afd17613e855f32b e004d7090c7d17e0e3ee0c3ed8cabee5 e185bc637812e8c11c3fa88eb604b003 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 bd99311d997d6ca8d6f020f5d7cf76b8 e085796a0113fefa6b7a51dc41a61b62 45785b4ca5d91e1fe419da4a915eb071 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1800786379076009984 |
spelling |
Sosa Martínez, Juan CamiloÁlvarez Monroy, Victor Nicoláshttps://orcid.org/0000-0001-7432-4014https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000019698Universidad Santo Tomás2021-02-03T16:36:26Z2021-02-03T16:36:26Z2021-01-20Alvarez Monroy, V.N. (2021). Modelamiento de redes sociales múltiples. [Tesis de maestría, Universidad Santo Tomás Colombia]. Repositorio Institucionalhttp://hdl.handle.net/11634/31872reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn este trabajo se propone un modelo estadístico para caracterizar simultáneamente dos o más redes sociales, donde interactúan el mismo conjunto de actores. Además de investigar las relaciones dentro de las redes, el modelo propuesto permite extrapolar la información entre redes, con el fin de obtener mejores resultados en términos de bondad de ajuste y predicción. Esta propuesta se basa en una extensión jerárquica del modelo de espacio latente de distancias, que asume una posición social "global'' para cada actor, lo que permite estudiar de forma parsimoniosa los roles sociales desde varios puntos de vista. Las capacidades del modelo se ilustran utilizando varios conjuntos de datos reales, teniendo en cuenta diferentes tipos de relaciones.In this work, we propose a statistical model to simultaneously characterize two or more social networks, where the same set of actors interact with each other. In addition to investigate ties within networks, the proposed model shares information among networks in order to obtain better results in terms of both goodness-of-fit and prediction. Our proposal is based on a hierarchical extension of the latent space distance model, by assuming a ``global'' social position for every actor, which allows us to study parsimoniously social roles from several perspectives. The capabilities of the model are illustrated using several real datasets, taking into account different types of relationships.Magister en Estadística Aplicadahttp://unidadinvestigacion.usta.edu.coMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Estadística AplicadaFacultad de EstadísticaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Modelamiento de redes sociales múltiplesMarkov Chain Monte CarloNetworksBayesian statisticsLatent space modelOnline social networks -- Users -- StatisticsLatent variablesStatistical modelsRedes sociales en líneaVariables latentesModelos estadísticosCadena de Markov de Monte CarloEstadística bayesianaRedes socialesModelo de espacio latenteTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BogotáAlbert, J. H., & Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American statistical Association, 88(422), 669-679.Aldous, D. J. (1985). Exchangeability and related topics. In École d'Été de Probabilités de Saint-Flour XIII—1983 (pp. 1-198). Springer, Berlin, Heidelberg.Aliverti, E., & Russo, M. (2020). Stratified stochastic variational inference for high-dimensional network factor model. arXiv preprint arXiv:2006.14217.Banerjee, A., Chandrasekhar, A. G., Duflo, E., & Jackson, M. O. (2013). The diffusion of microfinance. Science, 341(6144).Borg, I., & Groenen, P. J. (2005). Modern multidimensional scaling: Theory and applications. Springer Science & Business Media.D'Angelo, S., Alfò, M., & Fop, M. (2020). Model-based Clustering for Multivariate Networks. arXiv preprint arXiv:2001.05260.D'Angelo, S., Alfò, M., & Murphy, T. B. (2018, May). Node-specific effects in latent space modelling of multidimensional networks. In 49th Scientific meeting of the Italian Statistical Society.Durante, D., & Dunson, D. B. (2014). Nonparametric Bayes dynamic modelling of relational data. Biometrika, 101(4), 883-898.Durante, D., & Dunson, D. B. (2018). Bayesian inference and testing of group differences in brain networks. Bayesian Analysis, 13(1), 29-58.D’Angelo, S., Murphy, T. B., & Alfò, M. (2019). Latent space modelling of multidimensional networks with application to the exchange of votes in eurovision song contest. Annals of Applied Statistics, 13(2), 900-930.Gamerman, D., & Lopes, H. F. (2006). Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC Press.Gao, L. L., Witten, D., & Bien, J. (2019). Testing for Association in Multi-View Network Data. arXiv preprint arXiv:1909.11640.Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis. CRC press.Gelman, A., Hwang, J., & Vehtari, A. (2014). Understanding predictive information criteria for Bayesian models. Statistics and computing, 24(6), 997-1016.Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457-472.Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25(1), 246-265.Green, P. J., & Hastie, D. I. (2009). Reversible jump MCMC. Genetics, 155(3), 1391-1403.Gupta, S., Sharma, G., & Dukkipati, A. (2018). Evolving Latent Space Model for Dynamic Networks. arXiv preprint arXiv:1802.03725.Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli, 7(2), 223-242.Han, Q., Xu, K., & Airoldi, E. (2015, June). Consistent estimation of dynamic and multi-layer block models. In International Conference on Machine Learning (pp. 1511-1520).Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model‐based clustering for social networks. Journal of the Royal Statistical Society: Series A (Statistics in Society), 170(2), 301-354.Hoff, P. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in neural information processing systems (pp. 657-664).Hoff, P. D. (2005). Bilinear mixed-effects models for dyadic data. Journal of the american Statistical association, 100(469), 286-295.Hoff, P. D. (2009). A first course in Bayesian statistical methods (Vol. 580). New York: Springer.Hoff, P. D. (2015). Multilinear tensor regression for longitudinal relational data. The annals of applied statistics, 9(3), 1169.Hoff, P. D., Raftery, A. E., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the american Statistical association, 97(460), 1090-1098.Hoover, D. N. (1982). Row-column exchangeability and a generalized model for probability. Exchangeability in probability and statistics (Rome, 1981), 281-291.Kim, B., Lee, K. H., Xue, L., & Niu, X. (2018). A review of dynamic network models with latent variables. Statistics surveys, 12, 105.Kolaczyk, E. D., & Csárdi, G. (2014). Statistical analysis of network data with R (Vol. 65). New York, NY: Springer.Krackhardt, D. (1987). Cognitive social structures. Social networks, 9(2), 109-134.Handcock, M. S., & Krivitsky, P. N. (2008). Fitting Latent Cluster Models for Networks with latentnet. Journal of Statistical Software, 24(05).Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models. Social networks, 31(3), 204-213.Li, W. J., Yeung, D. Y., & Zhang, Z. (2011). Generalized latent factor models for social network analysis. In Proceedings of the 22nd international joint conference on artificial intelligence (ijcai), barcelona, spain (p. 1705).Linkletter, C. D. (2007). Spatial process models for social network analysis (Doctoral dissertation, Simon Fraser University).Ma, Z., & Ma, Z. (2017). Exploration of large networks with covariates via fast and universal latent space model fitting. arXiv preprint arXiv:1705.02372.Minhas, S., Hoff, P. D., & Ward, M. D. (2019). Inferential approaches for network analysis: AMEN for latent factor models. Political Analysis, 27(2), 208-222.Nowicki, K., & Snijders, T. A. B. (2001). Estimation and prediction for stochastic blockstructures. Journal of the American statistical association, 96(455), 1077-1087.Paez, M. S., Amini, A. A., & Lin, L. (2019). Hierarchical stochastic block model for community detection in multiplex networks. arXiv preprint arXiv:1904.05330.Paul, S., & Chen, Y. (2016). Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel. Electronic Journal of Statistics, 10(2), 3807-3870.Paul, S., & Chen, Y. (2020). Spectral and matrix factorization methods for consistent community detection in multi-layer networks. The Annals of Statistics, 48(1), 230-250.Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. Journal of the American statistical Association, 108(504), 1339-1349.Raftery, A. E., Niu, X., Hoff, P. D., & Yeung, K. Y. (2012). Fast inference for the latent space network model using a case-control approximate likelihood. Journal of Computational and Graphical Statistics, 21(4), 901-919.Reyes, P., & Rodriguez, A. (2016). Stochastic blockmodels for exchangeable collections of networks. arXiv preprint arXiv:1606.05277.Roethlisberger, F. J., & Dickson, W. J. (2003). Management and the Worker (Vol. 5). Psychology press.Salter-Townshend, M., & McCormick, T. H. (2017). Latent space models for multiview network data. The annals of applied statistics, 11(3), 1217.Schweinberger, M., & Snijders, T. A. (2003). Settings in social networks: A measurement model. Sociological Methodology, 33(1), 307-341.Sewell, D. K., & Chen, Y. (2015). Latent space models for dynamic networks. Journal of the American Statistical Association, 110(512), 1646-1657.Sewell, D. K., & Chen, Y. (2016). Latent space models for dynamic networks with weighted edges. Social Networks, 44, 105-116.Sewell, D. K., & Chen, Y. (2017). Latent space approaches to community detection in dynamic networks. Bayesian Analysis, 12(2), 351-377.Sewell, D. K. (2019). Latent space models for network perception data. Netw. Sci., 7(2), 160-179.Sosa, J. (2017). A Latent Space Approach for Cognitive Social Structures Modeling and Graphical Record Linkage (Doctoral dissertation, UC Santa Cruz).Spencer, N. A., Junker, B., & Sweet, T. M. (2020). Faster MCMC for Gaussian Latent Position Network Models. arXiv preprint arXiv:2006.07687.Swartz, T. B., Gill, P. S., & Muthukumarana, S. (2015). A Bayesian approach for the analysis of triadic data in cognitive social structures. Journal of the Royal Statistical Society: Series C: Applied Statistics, 593-610.Turnbull, K. (2020). Advancements in latent space network modelling (Doctoral dissertation, Lancaster University).Wang, L., Zhang, Z., & Dunson, D. (2019). Common and individual structure of brain networks. The Annals of Applied Statistics, 13(1), 85-112.Watanabe, S., & Opper, M. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. Journal of machine learning research, 11(12).Zhang, X. (2020). Statistical Analysis for Network Data using Matrix Variate Models and Latent Space Models (Doctoral dissertation).ORIGINAL2021victoralvarez.pdf2021victoralvarez.pdfapplication/pdf906918https://repository.usta.edu.co/bitstream/11634/31872/1/2021victoralvarez.pdfc1b2cbbedf2f2b00afd17613e855f32bMD51open accesscartaaprobaciónfacultad.pdfcartaaprobaciónfacultad.pdfapplication/pdf305247https://repository.usta.edu.co/bitstream/11634/31872/2/cartaaprobaci%c3%b3nfacultad.pdfe004d7090c7d17e0e3ee0c3ed8cabee5MD52metadata only accesscartaderechosdeautor.pdfcartaderechosdeautor.pdfapplication/pdf158154https://repository.usta.edu.co/bitstream/11634/31872/3/cartaderechosdeautor.pdfe185bc637812e8c11c3fa88eb604b003MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/31872/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/31872/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2021victoralvarez.pdf.jpg2021victoralvarez.pdf.jpgIM Thumbnailimage/jpeg7424https://repository.usta.edu.co/bitstream/11634/31872/6/2021victoralvarez.pdf.jpgbd99311d997d6ca8d6f020f5d7cf76b8MD56open accesscartaaprobaciónfacultad.pdf.jpgcartaaprobaciónfacultad.pdf.jpgIM Thumbnailimage/jpeg7207https://repository.usta.edu.co/bitstream/11634/31872/7/cartaaprobaci%c3%b3nfacultad.pdf.jpge085796a0113fefa6b7a51dc41a61b62MD57open accesscartaderechosdeautor.pdf.jpgcartaderechosdeautor.pdf.jpgIM Thumbnailimage/jpeg7210https://repository.usta.edu.co/bitstream/11634/31872/8/cartaderechosdeautor.pdf.jpg45785b4ca5d91e1fe419da4a915eb071MD58open access11634/31872oai:repository.usta.edu.co:11634/318722022-11-03 03:03:38.655open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |