Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla
El presente documento describe el desarrollo y diseño de una arquitectura basada en sistemas multi-agente, que permita el control del modo de operación de un sistema de micro-redes distribuidas en un entorno aislado, la arquitectura desarrollada permite el modo de operación de un conjunto de micro-r...
- Autores:
-
Sánchez Silvera, Alfredo
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/31525
- Acceso en línea:
- http://hdl.handle.net/11634/31525
- Palabra clave:
- Global warming
Renewable energy
Energy consumption
Energy management models
Calentamiento global
Energia renovable
Consumo energético
Modelos de gestión energética
Operación de micro-redes
Sistemas multi-agente
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SantoToma2_705c7fb75ac9574cde5df5faaf93c4ab |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/31525 |
network_acronym_str |
SantoToma2 |
network_name_str |
Universidad Santo Tomás |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla |
title |
Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla |
spellingShingle |
Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla Global warming Renewable energy Energy consumption Energy management models Calentamiento global Energia renovable Consumo energético Modelos de gestión energética Operación de micro-redes Sistemas multi-agente |
title_short |
Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla |
title_full |
Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla |
title_fullStr |
Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla |
title_full_unstemmed |
Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla |
title_sort |
Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla |
dc.creator.fl_str_mv |
Sánchez Silvera, Alfredo |
dc.contributor.advisor.spa.fl_str_mv |
Guarnizo Marín, José Guillermo Forero García, Edwin Francisco Montenegro Martínez, Davis |
dc.contributor.author.spa.fl_str_mv |
Sánchez Silvera, Alfredo |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0002-8401-4949 https://orcid.org/0000-0002-3818-7793 https://orcid.org/0000-0002-8336-7080 |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?user=3JSJ0C4AAAAJ&hl=es https://scholar.google.com/citations?user=pv86djIAAAAJ&hl=en |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000855847 http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000761834 https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001343788 |
dc.contributor.gruplac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000000825 |
dc.subject.keyword.spa.fl_str_mv |
Global warming Renewable energy Energy consumption Energy management models |
topic |
Global warming Renewable energy Energy consumption Energy management models Calentamiento global Energia renovable Consumo energético Modelos de gestión energética Operación de micro-redes Sistemas multi-agente |
dc.subject.lemb.spa.fl_str_mv |
Calentamiento global Energia renovable Consumo energético |
dc.subject.proposal.spa.fl_str_mv |
Modelos de gestión energética Operación de micro-redes Sistemas multi-agente |
description |
El presente documento describe el desarrollo y diseño de una arquitectura basada en sistemas multi-agente, que permita el control del modo de operación de un sistema de micro-redes distribuidas en un entorno aislado, la arquitectura desarrollada permite el modo de operación de un conjunto de micro-redes eléctricas interconectadas entre sí mediante un bus común, pero aisladas de la red eléctrica principal, esto con el fin de proteger la vida útil de las baterías. Este documento propone una la simulación de varias micro-redes y un sistema multi-agente utilizando OpenDSS-G y Python. Esta simulación demostró los beneficios de emplear un Sistema Multi-Agente (MAS por sus siglas en inglés), como una plataforma para estudiar las tecnologías de comunicación, monitorización y control de las micro-redes. |
publishDate |
2021 |
dc.date.accessioned.spa.fl_str_mv |
2021-01-22T07:36:55Z |
dc.date.available.spa.fl_str_mv |
2021-01-22T07:36:55Z |
dc.date.issued.spa.fl_str_mv |
2021-01-19 |
dc.type.local.spa.fl_str_mv |
Tesis de maestría |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
http://purl.org/coar/resource_type/c_bdcc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Sánchez Silvera, A. (2020). Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla [Tesis de Maestría en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucional |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/31525 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Sánchez Silvera, A. (2020). Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla [Tesis de Maestría en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucional reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/31525 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
J. Lagorse, M. G. Simoes, and A. Miraoui, “A Multiagent Fuzzy-Logic-Based Energy Management of Hybrid Systems,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2123– 2129, 2009. C.-H. Yoo, I.-Y. Chung, H.-J. Lee, and S.-S. Hong, “Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management,” Energies, vol. 6, no. 10, pp. 4956–4979, 2013 R. Morsali, S. Ghorbani, R. Kowalczyk, and R. Unland, “On Battery Management Strategies in Multi-agent Microgrid Management,” in Business Information Systems Workshops, 2017, pp. 191–202. T. Bogaraj and J. Kanakaraj, “Intelligent energy management control for independent microgrid,” Sādhanā, vol. 41, no. 7, pp. 755–769, Jul. 2016 M. Ding and K. Luo, “A Multi-Agent Energy Coordination Control Strategy in Microgrid Island Mode,” in Unifying Electrical Engineering and Electronics Engineering, 2014, pp. 529–536. N. L. Diaz, J. G. Guarnizo, M. Mellado, J. C. Vasquez, and J. M. Guerrero, “A RobotSoccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2728–2742, Apr. 2017. D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “A Control Architecture to Coordinate Renewable Energy Sources and Energy Storage Systems in Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1156– 1166, May 2015 J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining Control Strategies for MicroGrids Islanded Operation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916–924, May 2006 H. Mahmood, D. Michaelson, and Jin Jiang, “Strategies for Independent Deployment and Autonomous Control of PV and Battery Units in Islanded Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 3, pp. 742–755, Sep. 2015 T. L. Vandoorn, J. C. Vasquez, J. De Kooning, J. M. Guerrero, and L. Vandevelde, “Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies,” IEEE Ind. Electron. Mag., vol. 7, no. 4, pp. 42–55, Dec. 2013. J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of Power Converters in AC Microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov. 2012 D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 882– 892, Dec. 2014. A. H. Fathima and K. Palanisamy, “Optimization in microgrids with hybrid energy systems – A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 431–446, May 2015 IEEE Std 1561-2007 : IEEE Guide for Optimizing the Performance and Life of LeadAcid Batteries in Remote Hybrid Power Systems. IEEE, 2008. ] N. L. Diaz, D. Wu, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system,” in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 728–735. G. Zhabelova, V. Vyatkin, and V. N. Dubinin, “Toward Industrially Usable Agent Technology for Smart Grid Automation,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2629–2641, Apr. 2015. P. H. Nguyen, W. L. Kling, and P. F. Ribeiro, “A Game Theory Strategy to Integrate Distributed Agent-Based Functions in Smart Grids,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 568–576, Mar. 2013. L. Hernandez et al., “A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants,” IEEE Commun. Mag., vol. 51, no. 1, pp. 106–113, Jan. 2013 C. P. Nguyen and A. J. Flueck, “Agent Based Restoration With Distributed Energy Storage Support in Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 1029– 1038, Jun. 2012. B. Ramachandran, S. K. Srivastava, C. S. Edrington, and D. A. Cartes, “An Intelligent Auction Scheme for Smart Grid Market Using a Hybrid Immune Algorithm,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4603–4612, Oct. 2011. H. Dagdougui and R. Sacile, “Decentralized Control of the Power Flows in a Network of Smart Microgrids Modeled as a Team of Cooperative Agents,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 510–519, Mar. 2014. C. M. Colson and M. H. Nehrir, “Comprehensive Real-Time Microgrid Power Management and Control With Distributed Agents,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 617–627, Mar. 2013. O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014 ] W. Liu, W. Gu, W. Sheng, X. Meng, Z. Wu, and W. Chen, “Decentralized Multi-Agent System-Based Cooperative Frequency Control for Autonomous Microgrids With Communication Constraints,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 446– 456, Apr. 2014. Q. Li, F. Chen, M. Chen, J. M. Guerrero, and D. Abbott, “Agent-Based Decentralized Control Method for Islanded Microgrids,” IEEE Trans. Smart Grid, pp. 1–1, 2015. C.-X. Dou and B. Liu, “Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 771–778, Jun. 2013 J. G. GUARNIZO MARIN, “Arquitecturas Centralizadas de Coordinación. Extrapolación del Fútbol de Robots al Control de Modo de Operaciones de MicroRedes,” Universitat Politècnica de València, Valencia (Spain), 2016. A. Kantamneni, L. E. Brown, G. Parker, and W. W. Weaver, “Survey of multi-agent systems for microgrid control,” Eng. Appl. Artif. Intell., vol. 45, pp. 192–203, Oct. 2015. M. Baun, M. A. Awadallah, and B. Venkatesh, “Implementation of load-curve smoothing algorithm based on battery energy storage system,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2016, pp. 1–5 T. S. Mahmoud, D. Habibi, and O. Bass, “Fuzzy logic for smart utilisation of Storage Devices in a typical microgrid,” in 2012 International Conference on Renewable Energy Research and Applications (ICRERA), 2012, pp. 1–6. K. Alqunun and P. A. Crossley, “Rated energy impact of BESS on total operation cost in a microgrid,” in 2016 IEEE Smart Energy Grid Engineering (SEGE), 2016, pp. 292–300 C.-H. Yoo et al., “Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management,” Energies, vol. 6, no. 10, pp. 4956–4979, Sep. 2013. M. Batool, F. Shahnia, and S. M. Islam, “Multi-level supervisory emergency control for operation of remote area microgrid clusters,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1210–1228, 2019 F. Shahnia, S. Bourbour, and A. Ghosh, “Coupling Neighboring Microgrids for Overload Management Based on Dynamic Multicriteria Decision-Making,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 969–983, 2017. E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, “Microgrid clustering architectures,” Appl. Energy, vol. 212, pp. 340–361, Feb. 2018. M. J. Wooldridge and N. R. Jennings, “Intelligent Agents: Theory and Practice,” 1995. Gerhard Weiss, “Multiagent Systems, Second Edition | The MIT Press.” [Online]. Available: https://mitpress.mit.edu/books/multiagent-systems-second-edition. [Accessed: 14-Oct-2020]. M. Institution of Electrical Engineers. and British Computer Society., IEE proceedings. Software., vol. 144, no. 1. [Institution of Electrical Engineers], 1997 D. Montenegro Martinez, “Actor’s based diakoptics for the simulation, monitoring and control of smart grids,” Universidad de los Andes (Bogotá), Nov. 2015. R. D. Montenegro, D., “Program on Technology Innovation :,” Program on Technology Innovation: OpenDSS-G, vol. 3, no. 3. p. 117, 2020. EPRI, “OpenDSS PVSystem Element Model Version 1,” pp. 1–10, 2011. R. C. Dugan, J. A. Taylor, and D. Montenegro, “Energy storage modeling for distribution planning,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 954–962, Mar. 2017. P. Chirapongsananurak, S. Santoso, R. C. Dugan, and J. Smith, “Voltage regulation in distribution circuits with wind power,” in IEEE Power and Energy Society General Meeting, 2012, pp. 1–8 F. Shahnia and S. Bourbour, “A practical and intelligent technique for coupling multiple neighboring microgrids at the synchronization stage,” Sustain. Energy, Grids Networks, vol. 11, pp. 13–25, Sep. 2017 G. Tobón, J. Arturo, M. Marín, and M. Andres, “Curva de Cargabilidad,” pp. 1–5, 2013. F. Z. Harmouch, N. Krami, and N. Hmina, “A multiagent based decentralized energy management system for power exchange minimization in microgrid cluster,” Sustain. Cities Soc., vol. 40, no. April, pp. 416–427, 2018. “Atlas Interactivo - Radiación IDEAM.” [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion.html. [Accessed: 06-Nov-2020]. N. L. Diaz, J. G. Guarnizo, M. Mellado, J. C. Vasquez, and J. M. Guerrero, “A RobotSoccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2728–2742, Apr. 2017. C. Zambrano, C. Trujillo, D. Celeita, M. Hernandez, and G. Ramos, “GridTeractions: Simulation platform to interact with distribution systems,” in IEEE Power and Energy Society General Meeting, 2016, vol. 2016–Novem |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Maestría Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Electrónica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/31525/6/license_rdf https://repository.usta.edu.co/bitstream/11634/31525/7/license.txt https://repository.usta.edu.co/bitstream/11634/31525/1/2020alfredosanchezsilvera.pdf https://repository.usta.edu.co/bitstream/11634/31525/2/Carta%20Aprobacion%20Facultad.pdf https://repository.usta.edu.co/bitstream/11634/31525/3/Carta%20Derechos%20de%20Autor.pdf https://repository.usta.edu.co/bitstream/11634/31525/8/2020alfredosanchezsilvera.pdf.jpg https://repository.usta.edu.co/bitstream/11634/31525/9/Carta%20Aprobacion%20Facultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/31525/10/Carta%20Derechos%20de%20Autor.pdf.jpg |
bitstream.checksum.fl_str_mv |
217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 87a6a56da151d666e8f1d7809c75d34f 242502a6b77a70568f7d37fde35ac773 8e4d08301306a78c9f2d7ad1e369b4f1 4d0f0be0f4ff9b74191d0e509268185c 113331b34f9a1a80c9aab52f765927a9 045f164d6fc610c58427c7a9593abb39 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1800786392995856384 |
spelling |
Guarnizo Marín, José GuillermoForero García, Edwin FranciscoMontenegro Martínez, DavisSánchez Silvera, Alfredohttps://orcid.org/0000-0002-8401-4949https://orcid.org/0000-0002-3818-7793https://orcid.org/0000-0002-8336-7080https://scholar.google.com/citations?user=3JSJ0C4AAAAJ&hl=eshttps://scholar.google.com/citations?user=pv86djIAAAAJ&hl=enhttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000855847http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000761834https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001343788https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=000000000008252021-01-22T07:36:55Z2021-01-22T07:36:55Z2021-01-19Sánchez Silvera, A. (2020). Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo isla [Tesis de Maestría en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucionalhttp://hdl.handle.net/11634/31525reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl presente documento describe el desarrollo y diseño de una arquitectura basada en sistemas multi-agente, que permita el control del modo de operación de un sistema de micro-redes distribuidas en un entorno aislado, la arquitectura desarrollada permite el modo de operación de un conjunto de micro-redes eléctricas interconectadas entre sí mediante un bus común, pero aisladas de la red eléctrica principal, esto con el fin de proteger la vida útil de las baterías. Este documento propone una la simulación de varias micro-redes y un sistema multi-agente utilizando OpenDSS-G y Python. Esta simulación demostró los beneficios de emplear un Sistema Multi-Agente (MAS por sus siglas en inglés), como una plataforma para estudiar las tecnologías de comunicación, monitorización y control de las micro-redes.Magister en Ingeniería Electrónicahttp://unidadinvestigacion.usta.edu.coMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 ColombiaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gestión energética basada en sistemas Multi-Agente para Micro-Redes en modo islaGlobal warmingRenewable energyEnergy consumptionEnergy management modelsCalentamiento globalEnergia renovableConsumo energéticoModelos de gestión energéticaOperación de micro-redesSistemas multi-agenteTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BogotáJ. Lagorse, M. G. Simoes, and A. Miraoui, “A Multiagent Fuzzy-Logic-Based Energy Management of Hybrid Systems,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2123– 2129, 2009.C.-H. Yoo, I.-Y. Chung, H.-J. Lee, and S.-S. Hong, “Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management,” Energies, vol. 6, no. 10, pp. 4956–4979, 2013R. Morsali, S. Ghorbani, R. Kowalczyk, and R. Unland, “On Battery Management Strategies in Multi-agent Microgrid Management,” in Business Information Systems Workshops, 2017, pp. 191–202.T. Bogaraj and J. Kanakaraj, “Intelligent energy management control for independent microgrid,” Sādhanā, vol. 41, no. 7, pp. 755–769, Jul. 2016M. Ding and K. Luo, “A Multi-Agent Energy Coordination Control Strategy in Microgrid Island Mode,” in Unifying Electrical Engineering and Electronics Engineering, 2014, pp. 529–536.N. L. Diaz, J. G. Guarnizo, M. Mellado, J. C. Vasquez, and J. M. Guerrero, “A RobotSoccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2728–2742, Apr. 2017.D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “A Control Architecture to Coordinate Renewable Energy Sources and Energy Storage Systems in Islanded Microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1156– 1166, May 2015J. A. P. Lopes, C. L. Moreira, and A. G. Madureira, “Defining Control Strategies for MicroGrids Islanded Operation,” IEEE Trans. Power Syst., vol. 21, no. 2, pp. 916–924, May 2006H. Mahmood, D. Michaelson, and Jin Jiang, “Strategies for Independent Deployment and Autonomous Control of PV and Battery Units in Islanded Microgrids,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 3, pp. 742–755, Sep. 2015T. L. Vandoorn, J. C. Vasquez, J. De Kooning, J. M. Guerrero, and L. Vandevelde, “Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies,” IEEE Ind. Electron. Mag., vol. 7, no. 4, pp. 42–55, Dec. 2013.J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of Power Converters in AC Microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov. 2012D. Wu, F. Tang, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Autonomous Active Power Control for Islanded AC Microgrids With Photovoltaic Generation and Energy Storage System,” IEEE Trans. Energy Convers., vol. 29, no. 4, pp. 882– 892, Dec. 2014.A. H. Fathima and K. Palanisamy, “Optimization in microgrids with hybrid energy systems – A review,” Renew. Sustain. Energy Rev., vol. 45, pp. 431–446, May 2015IEEE Std 1561-2007 : IEEE Guide for Optimizing the Performance and Life of LeadAcid Batteries in Remote Hybrid Power Systems. IEEE, 2008.] N. L. Diaz, D. Wu, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Fuzzy droop control loops adjustment for stored energy balance in distributed energy storage system,” in 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), 2015, pp. 728–735.G. Zhabelova, V. Vyatkin, and V. N. Dubinin, “Toward Industrially Usable Agent Technology for Smart Grid Automation,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2629–2641, Apr. 2015.P. H. Nguyen, W. L. Kling, and P. F. Ribeiro, “A Game Theory Strategy to Integrate Distributed Agent-Based Functions in Smart Grids,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 568–576, Mar. 2013.L. Hernandez et al., “A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants,” IEEE Commun. Mag., vol. 51, no. 1, pp. 106–113, Jan. 2013C. P. Nguyen and A. J. Flueck, “Agent Based Restoration With Distributed Energy Storage Support in Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 1029– 1038, Jun. 2012.B. Ramachandran, S. K. Srivastava, C. S. Edrington, and D. A. Cartes, “An Intelligent Auction Scheme for Smart Grid Market Using a Hybrid Immune Algorithm,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4603–4612, Oct. 2011.H. Dagdougui and R. Sacile, “Decentralized Control of the Power Flows in a Network of Smart Microgrids Modeled as a Team of Cooperative Agents,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 510–519, Mar. 2014.C. M. Colson and M. H. Nehrir, “Comprehensive Real-Time Microgrid Power Management and Control With Distributed Agents,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 617–627, Mar. 2013.O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management—Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014] W. Liu, W. Gu, W. Sheng, X. Meng, Z. Wu, and W. Chen, “Decentralized Multi-Agent System-Based Cooperative Frequency Control for Autonomous Microgrids With Communication Constraints,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 446– 456, Apr. 2014.Q. Li, F. Chen, M. Chen, J. M. Guerrero, and D. Abbott, “Agent-Based Decentralized Control Method for Islanded Microgrids,” IEEE Trans. Smart Grid, pp. 1–1, 2015.C.-X. Dou and B. Liu, “Multi-Agent Based Hierarchical Hybrid Control for Smart Microgrid,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 771–778, Jun. 2013J. G. GUARNIZO MARIN, “Arquitecturas Centralizadas de Coordinación. Extrapolación del Fútbol de Robots al Control de Modo de Operaciones de MicroRedes,” Universitat Politècnica de València, Valencia (Spain), 2016.A. Kantamneni, L. E. Brown, G. Parker, and W. W. Weaver, “Survey of multi-agent systems for microgrid control,” Eng. Appl. Artif. Intell., vol. 45, pp. 192–203, Oct. 2015.M. Baun, M. A. Awadallah, and B. Venkatesh, “Implementation of load-curve smoothing algorithm based on battery energy storage system,” in 2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), 2016, pp. 1–5T. S. Mahmoud, D. Habibi, and O. Bass, “Fuzzy logic for smart utilisation of Storage Devices in a typical microgrid,” in 2012 International Conference on Renewable Energy Research and Applications (ICRERA), 2012, pp. 1–6.K. Alqunun and P. A. Crossley, “Rated energy impact of BESS on total operation cost in a microgrid,” in 2016 IEEE Smart Energy Grid Engineering (SEGE), 2016, pp. 292–300C.-H. Yoo et al., “Intelligent Control of Battery Energy Storage for Multi-Agent Based Microgrid Energy Management,” Energies, vol. 6, no. 10, pp. 4956–4979, Sep. 2013.M. Batool, F. Shahnia, and S. M. Islam, “Multi-level supervisory emergency control for operation of remote area microgrid clusters,” J. Mod. Power Syst. Clean Energy, vol. 7, no. 5, pp. 1210–1228, 2019F. Shahnia, S. Bourbour, and A. Ghosh, “Coupling Neighboring Microgrids for Overload Management Based on Dynamic Multicriteria Decision-Making,” IEEE Trans. Smart Grid, vol. 8, no. 2, pp. 969–983, 2017.E. Bullich-Massagué, F. Díaz-González, M. Aragüés-Peñalba, F. Girbau-Llistuella, P. Olivella-Rosell, and A. Sumper, “Microgrid clustering architectures,” Appl. Energy, vol. 212, pp. 340–361, Feb. 2018.M. J. Wooldridge and N. R. Jennings, “Intelligent Agents: Theory and Practice,” 1995.Gerhard Weiss, “Multiagent Systems, Second Edition | The MIT Press.” [Online]. Available: https://mitpress.mit.edu/books/multiagent-systems-second-edition. [Accessed: 14-Oct-2020].M. Institution of Electrical Engineers. and British Computer Society., IEE proceedings. Software., vol. 144, no. 1. [Institution of Electrical Engineers], 1997D. Montenegro Martinez, “Actor’s based diakoptics for the simulation, monitoring and control of smart grids,” Universidad de los Andes (Bogotá), Nov. 2015.R. D. Montenegro, D., “Program on Technology Innovation :,” Program on Technology Innovation: OpenDSS-G, vol. 3, no. 3. p. 117, 2020.EPRI, “OpenDSS PVSystem Element Model Version 1,” pp. 1–10, 2011.R. C. Dugan, J. A. Taylor, and D. Montenegro, “Energy storage modeling for distribution planning,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 954–962, Mar. 2017.P. Chirapongsananurak, S. Santoso, R. C. Dugan, and J. Smith, “Voltage regulation in distribution circuits with wind power,” in IEEE Power and Energy Society General Meeting, 2012, pp. 1–8F. Shahnia and S. Bourbour, “A practical and intelligent technique for coupling multiple neighboring microgrids at the synchronization stage,” Sustain. Energy, Grids Networks, vol. 11, pp. 13–25, Sep. 2017G. Tobón, J. Arturo, M. Marín, and M. Andres, “Curva de Cargabilidad,” pp. 1–5, 2013.F. Z. Harmouch, N. Krami, and N. Hmina, “A multiagent based decentralized energy management system for power exchange minimization in microgrid cluster,” Sustain. Cities Soc., vol. 40, no. April, pp. 416–427, 2018.“Atlas Interactivo - Radiación IDEAM.” [Online]. Available: http://atlas.ideam.gov.co/visorAtlasRadiacion.html. [Accessed: 06-Nov-2020].N. L. Diaz, J. G. Guarnizo, M. Mellado, J. C. Vasquez, and J. M. Guerrero, “A RobotSoccer-Coordination Inspired Control Architecture Applied to Islanded Microgrids,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2728–2742, Apr. 2017.C. Zambrano, C. Trujillo, D. Celeita, M. Hernandez, and G. Ramos, “GridTeractions: Simulation platform to interact with distribution systems,” in IEEE Power and Energy Society General Meeting, 2016, vol. 2016–NovemCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/31525/6/license_rdf217700a34da79ed616c2feb68d4c5e06MD56open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/31525/7/license.txtaedeaf396fcd827b537c73d23464fc27MD57open accessORIGINAL2020alfredosanchezsilvera.pdf2020alfredosanchezsilvera.pdfTrabajo de Gradoapplication/pdf2238936https://repository.usta.edu.co/bitstream/11634/31525/1/2020alfredosanchezsilvera.pdf87a6a56da151d666e8f1d7809c75d34fMD51open accessCarta Aprobacion Facultad.pdfCarta Aprobacion Facultad.pdfCarta Aprobación Facultadapplication/pdf132518https://repository.usta.edu.co/bitstream/11634/31525/2/Carta%20Aprobacion%20Facultad.pdf242502a6b77a70568f7d37fde35ac773MD52metadata only accessCarta Derechos de Autor.pdfCarta Derechos de Autor.pdfCarta Derechos de Autorapplication/pdf100743https://repository.usta.edu.co/bitstream/11634/31525/3/Carta%20Derechos%20de%20Autor.pdf8e4d08301306a78c9f2d7ad1e369b4f1MD53metadata only accessTHUMBNAIL2020alfredosanchezsilvera.pdf.jpg2020alfredosanchezsilvera.pdf.jpgIM Thumbnailimage/jpeg4462https://repository.usta.edu.co/bitstream/11634/31525/8/2020alfredosanchezsilvera.pdf.jpg4d0f0be0f4ff9b74191d0e509268185cMD58open accessCarta Aprobacion Facultad.pdf.jpgCarta Aprobacion Facultad.pdf.jpgIM Thumbnailimage/jpeg6730https://repository.usta.edu.co/bitstream/11634/31525/9/Carta%20Aprobacion%20Facultad.pdf.jpg113331b34f9a1a80c9aab52f765927a9MD59open accessCarta Derechos de Autor.pdf.jpgCarta Derechos de Autor.pdf.jpgIM Thumbnailimage/jpeg8440https://repository.usta.edu.co/bitstream/11634/31525/10/Carta%20Derechos%20de%20Autor.pdf.jpg045f164d6fc610c58427c7a9593abb39MD510open access11634/31525oai:repository.usta.edu.co:11634/315252022-11-19 03:14:33.991open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |