Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas

Estimar la habilidad de los estudiantes en las pruebas PISA se realiza utilizando valores plausibles obtenidos por medio de un modelo logístico de tres parámetros, con esta metodología solo se tiene en cuenta la información capturada en las pruebas y solo se pueden realizar estimaciones en los paíse...

Full description

Autores:
Jiménez Coley, Cupertino
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2023
Institución:
Universidad Santo Tomás
Repositorio:
Universidad Santo Tomás
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/52093
Acceso en línea:
http://hdl.handle.net/11634/52093
Palabra clave:
ability
domains
three parameter logistic model
plausible data
small area estimation
spatial variability
Estadísticas Aplicadas
Estudiantes-Prueba Pisa
Metodología-Investigación
Educación
habilidad
dominios
modelo logístico de tres parámetros
datos plausibles
Estimación en áreas pequeñas
variabilidad espacial
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SantoToma2_5022763b40d3ce1c648bec398cb74a05
oai_identifier_str oai:repository.usta.edu.co:11634/52093
network_acronym_str SantoToma2
network_name_str Universidad Santo Tomás
repository_id_str
dc.title.spa.fl_str_mv Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas
title Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas
spellingShingle Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas
ability
domains
three parameter logistic model
plausible data
small area estimation
spatial variability
Estadísticas Aplicadas
Estudiantes-Prueba Pisa
Metodología-Investigación
Educación
habilidad
dominios
modelo logístico de tres parámetros
datos plausibles
Estimación en áreas pequeñas
variabilidad espacial
title_short Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas
title_full Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas
title_fullStr Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas
title_full_unstemmed Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas
title_sort Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas
dc.creator.fl_str_mv Jiménez Coley, Cupertino
dc.contributor.advisor.none.fl_str_mv Tellez Piñerez, Cristian Fernando
dc.contributor.author.none.fl_str_mv Jiménez Coley, Cupertino
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0003-3869-1831
https://orcid.org/0000-0002-0805-0817
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000016463
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv ability
domains
three parameter logistic model
plausible data
small area estimation
spatial variability
topic ability
domains
three parameter logistic model
plausible data
small area estimation
spatial variability
Estadísticas Aplicadas
Estudiantes-Prueba Pisa
Metodología-Investigación
Educación
habilidad
dominios
modelo logístico de tres parámetros
datos plausibles
Estimación en áreas pequeñas
variabilidad espacial
dc.subject.lemb.spa.fl_str_mv Estadísticas Aplicadas
Estudiantes-Prueba Pisa
Metodología-Investigación
Educación
dc.subject.proposal.spa.fl_str_mv habilidad
dominios
modelo logístico de tres parámetros
datos plausibles
Estimación en áreas pequeñas
variabilidad espacial
description Estimar la habilidad de los estudiantes en las pruebas PISA se realiza utilizando valores plausibles obtenidos por medio de un modelo logístico de tres parámetros, con esta metodología solo se tiene en cuenta la información capturada en las pruebas y solo se pueden realizar estimaciones en los países y economías perteneciente a la OCDE (dominios) que fueron muestreados. Para mejorar la precisión de las estimaciones y poder realizar estimaciones en dominios no muestreados que cuenten con información auxiliar disponible y confiable, Tellez (2020) propuso utilizar la metodología de estimación en áreas pequeñas mediante un modelo Fay-Herriot. Esta metodología incorpora información auxiliar externa a la captada en la prueba y permite hacer estimaciones más precisas. En esta investigación, se extiende la metodología propuesta por Tellez (2020) al incluir la variabilidad espacial en la técnica de estimación en áreas pequeñas. Esto se logra mediante el uso del modelo Fay-Herriot espacial, que tiene en cuenta la autocorrelación espacial entre los dominios. Este enfoque se aplica específicamente a las pruebas de lectura y matemáticas del PISA 2018. La información auxiliar utilizada en el modelo Fay-Herriot espacial incluye variables asociadas a la educación, ciencia, tecnología, características sociodemográficas, economía, infraestructura y desarrollo. Estas variables auxiliares proporcionan información adicional para mejorar la precisión de las estimaciones de habilidad de los estudiantes en los dominios.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-15T17:51:18Z
dc.date.available.none.fl_str_mv 2023-09-15T17:51:18Z
dc.date.issued.none.fl_str_mv 2023-09-15
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
format http://purl.org/coar/resource_type/c_bdcc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Jiménez Coley, C. (2023). Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas. [Trabajo de Maestría, Universidad Santo Tomás]. Repositorio Institucioal.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/52093
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Jiménez Coley, C. (2023). Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas. [Trabajo de Maestría, Universidad Santo Tomás]. Repositorio Institucioal.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/52093
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Attorresi, H. F., Lozzia, G. S., Abal, F. J. P., Galibert, M. S. y Aguerri, M. E. (2009), ‘TeorÍa de respuesta al Ítem. conceptos básicos y aplicaciones para la medición de constructos psicológicos’, Revista Argentina de Clínica Psicológica 18(2), 179–188
Birnbaum, A. (1958), ‘On the estimation of mental ability’, Series Rep 15, 7755–7723
Chandra, H. y Salvati, N. (2018), ‘Small area estimation of proportions under a spatial dependent aggregated level random effects model’, Communications in Statistics-Theory and Methods 47(5), 1234–1255
Dempster, A. P., Laird, N. M. y Rubin, D. B. (1977), ‘Maximum likelihood from incomplete data via the em algorithm’, Journal of the Royal Statistical Society: Series B (Methodological) 39(1), 1–22.
Deville, J.-C. y S ̈arndal, C.-E. (1992), ‘Calibration estimators in survey sampling’, Journal of the American statistical Association 87(418), 376–382.
Drew, D., Singh, M. y Choudhry, G. (1982), ‘Evaluation of small area estimation techniques for the canadian labour force survey’, Survey Methodology 8(1), 17–47.
Embretson, S. E. y Reise, S. P. (2013), Item response theory, Psychology Press.
Fay, R. y Herriot, R. (1979), ‘Estimates of income for small places: an application of james-stein procedures to census data’, Journal of the American Statistical Association 74(366a), 269–277.
Gutiérrez, H. A. (2009), Estrategias de muestreo diseño de encuestas y estimación de parámetros., Universidad Santo Tomas, Bogota (Colombia).
Gutiérrez, H. A. (2016), Estrategias de muestreo: diseño de encuestas y estimación de parámetros, Ediciones de la U.
Harville, D. A. y Jeske, D. R. (1992), ‘Mean squared error of estimation or prediction under a general linear model’, Journal of the American Statistical Association 87(419), 724–731.
Horvitz, D. G. y Thompson, D. J. (1952), ‘A generalization of sampling without replacement from a finite universe’, Journal of the American statistical Association 47(260), 663–685.
ICFES (2022), ‘Informe nacional de resultados saber 3°, 5°, 7° y 9°’.
Longford, N. T. (2005), ‘On selection and composition in small area and mapping problems’, Statistical methods in medical research 14(1), 3–16.
Martínez Arias, M. R. et al. (2006), ‘La metodología de los estudios pisa’, Revista de educación.
Martínez, C. (2012), Estadística y muestreo-13ra Edición, Ecoe ediciones.
Matas Terrón, A. et al. (2010), ‘Introducción al análisis de la teoría de respuesta al ́ıtem’.
Mislevy, R. J. (1991), ‘Randomization-based inference about latent variables from complex samples’, Psychometrika 56(2), 177–196.
Mislevy, R. J., Beaton, A. E., Kaplan, B. y Sheehan, K. M. (1992), ‘Estimating population characteristics from sparse matrix samples of item responses’, Journal of Educational Measurement 29(2), 133–161.
Molina, I. (2019), Desagregación de datos en encuestas de hogares: metodologías de estimación en áreas pequeñas, División de Estadísticas de la Comisión Económica para América Latina y el Caribe (CEPAL).
OECD (2016), ‘Pisa 2018. draft analytical frameworks, may 2016’.
Petrucci, A. y Salvati, N. (2006), ‘Small area estimation for spatial correlation in watershed erosion assessment’, Journal of agricultural, biological, and environmental statistics 11(2), 169.
Pfeffermann, D. (2002), ‘Small area estimation-new developments and directions’, International Statistical Review 70(1), 125–143.
Prasad, N. N. y Rao, J. N. (1990), ‘The estimation of the mean squared error of small-area estimators’, Journal of the American statistical association 85(409), 163–171.
Pratesi, M. y Salvati, N. (2005), Small area estimation: the EBLUP estimator with autore- gressive random area effects, Universit`a di Pisa, Dipartimento di statistica e matematica applicata all . . . .
Pratesi, M. y Salvati, N. (2008), ‘Small area estimation: the eblup estimator based on spatially correlated random area effects’, Statistical methods and applications 17(1), 113–141.
Rao, J. (2003), Small Area Estimation, Wiley, New York.
Rao, J. N. y Molina, I. (2015), Small area estimation, John Wiley & Sons.
Rubin, D. B. (1987), Multiple imputation for nonresponse in surveys, John Wiley & Sons.
Salvati, N. (2004a), La correlazione spaziale nella stima per piccole aree: metodi proposti e casi di studio, Universitá degli Studi di Firenze.
Salvati, N. (2004b), ‘Small area estimation by spatial models: the spatial empirical best linear unbiased prediction (spatial eblup)’, Working Paper 2004/03. Firenze: Universita degli Studi di Firenze pp. 59–50134.
Särndal, C.-E., Swensson, B. y Wretman, J. (2003), Model assisted survey sampling, Springer Science & Business Media.
Tellez, C. F. (2020), Estimación de áreas pequeñas utilizando imputación múltiple en modelos logísticos de tres parámetros, PhD thesis.
Tellez, C. F., Arias, I. R., Gómez, S. G. y Oyola, L. T. (2021), ‘Estimation of educational establishments performance in saber 5◦ tests in colombia. an approach from small area estimation’, Boletín de Estadística e Investigación Operativa BEIO p. 169.
Triviño, A. F. P., Piñerez, C. F. T. y Oyola, L. T. (2020), ‘Estimación de los resultados en matemáticas y ciencias de las pruebas timss 2015: un nuevo enfoque desde la metodología de áreas pequeñas’, Comunicaciones en Estadística 13(2), 62–77.
Von Davier, M., Gonzalez, E. y Mislevy, R. (2009), ‘What are plausible values and why are they useful’, IERI monograph series 2(1), 9–36.
Wackerly, D., Mendenhall, W. y Scheaffer, R. L. (2014), Mathematical statistics with applications, Cengage Learning.
Wawrowski, L. (2016), ‘The spatial fay-herriot model in poverty estimation’, Folia Oeconomica Stetinensia 16(2), 191–202.
Zimmerman, D. L. y Cressie, N. (1992), ‘Mean squared prediction error in the spatial linear model with estimated covariance parameters’, Annals of the institute of statistical mathematics 44(1), 27–43.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Estadística Aplicada
dc.publisher.faculty.spa.fl_str_mv Facultad de Estadística
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/52093/6/2023cupertinojimenez.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/52093/7/Carta%20de%20aprobacion%20de%20la%20facultad.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/52093/8/Carta%20de%20derechos%20de%20autor.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/52093/1/2023cupertinojimenez.pdf
https://repository.usta.edu.co/bitstream/11634/52093/2/Carta%20de%20aprobacion%20de%20la%20facultad.pdf
https://repository.usta.edu.co/bitstream/11634/52093/3/Carta%20de%20derechos%20de%20autor.pdf
https://repository.usta.edu.co/bitstream/11634/52093/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/52093/5/license.txt
bitstream.checksum.fl_str_mv 009e0fbb5a202e7bc33b1fdbf6d4720d
6a4256827849c058877e5a414e93896e
b2304a6e64f0c11ce79cbe67ef946cbf
0717dc0075c6da035040a23370fd6b4c
5ecce7181c8e460f236c629e1cff4890
b46660e5158e2c7241fe5452ceae1435
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv noreply@usta.edu.co
_version_ 1800786364944351232
spelling Tellez Piñerez, Cristian FernandoJiménez Coley, Cupertinohttps://orcid.org/0000-0003-3869-1831https://orcid.org/0000-0002-0805-0817https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000016463Universidad Santo Tomás2023-09-15T17:51:18Z2023-09-15T17:51:18Z2023-09-15Jiménez Coley, C. (2023). Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñas. [Trabajo de Maestría, Universidad Santo Tomás]. Repositorio Institucioal.http://hdl.handle.net/11634/52093reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEstimar la habilidad de los estudiantes en las pruebas PISA se realiza utilizando valores plausibles obtenidos por medio de un modelo logístico de tres parámetros, con esta metodología solo se tiene en cuenta la información capturada en las pruebas y solo se pueden realizar estimaciones en los países y economías perteneciente a la OCDE (dominios) que fueron muestreados. Para mejorar la precisión de las estimaciones y poder realizar estimaciones en dominios no muestreados que cuenten con información auxiliar disponible y confiable, Tellez (2020) propuso utilizar la metodología de estimación en áreas pequeñas mediante un modelo Fay-Herriot. Esta metodología incorpora información auxiliar externa a la captada en la prueba y permite hacer estimaciones más precisas. En esta investigación, se extiende la metodología propuesta por Tellez (2020) al incluir la variabilidad espacial en la técnica de estimación en áreas pequeñas. Esto se logra mediante el uso del modelo Fay-Herriot espacial, que tiene en cuenta la autocorrelación espacial entre los dominios. Este enfoque se aplica específicamente a las pruebas de lectura y matemáticas del PISA 2018. La información auxiliar utilizada en el modelo Fay-Herriot espacial incluye variables asociadas a la educación, ciencia, tecnología, características sociodemográficas, economía, infraestructura y desarrollo. Estas variables auxiliares proporcionan información adicional para mejorar la precisión de las estimaciones de habilidad de los estudiantes en los dominios.Estimating students' abilities in PISA tests is done using plausible values obtained through a three-parameter logistic model. With this methodology, only the information captured in the tests is taken into account, and estimates can only be made for countries and economies belonging to the OECD (domains) that were sampled. To improve the precision of the estimates and be able to make estimates in unsampled domains that have available and reliable auxiliary information, Tellez (2020) proposed using the small area estimation methodology through a Fay-Herriot model. This methodology incorporates external auxiliary information captured in addition to the test and allows for more precise estimates. In this research, the methodology proposed by Tellez (2020) is extended by including spatial variability in the small area estimation technique. This is achieved by using the spatial Fay-Herriot model, which takes into account the spatial autocorrelation among domains. This approach is specifically applied to the reading and mathematics tests of PISA 2018. The auxiliary information used in the spatial Fay-Herriot model includes variables associated with education, science, technology, sociodemographic characteristics, economy, infrastructure, and development. These auxiliary variables provide additional information to improve the precision of the estimates of students' abilities in the domains.Magister en Estadística AplicadaMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Estadística AplicadaFacultad de EstadísticaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Estimación del Rendimiento Medio en las Pruebas PISA 2018. Un Enfoque Espacial Desde la Estimación en Áreas Pequeñasabilitydomainsthree parameter logistic modelplausible datasmall area estimationspatial variabilityEstadísticas AplicadasEstudiantes-Prueba PisaMetodología-InvestigaciónEducaciónhabilidaddominiosmodelo logístico de tres parámetrosdatos plausiblesEstimación en áreas pequeñasvariabilidad espacialTesis de maestríainfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BogotáAttorresi, H. F., Lozzia, G. S., Abal, F. J. P., Galibert, M. S. y Aguerri, M. E. (2009), ‘TeorÍa de respuesta al Ítem. conceptos básicos y aplicaciones para la medición de constructos psicológicos’, Revista Argentina de Clínica Psicológica 18(2), 179–188Birnbaum, A. (1958), ‘On the estimation of mental ability’, Series Rep 15, 7755–7723Chandra, H. y Salvati, N. (2018), ‘Small area estimation of proportions under a spatial dependent aggregated level random effects model’, Communications in Statistics-Theory and Methods 47(5), 1234–1255Dempster, A. P., Laird, N. M. y Rubin, D. B. (1977), ‘Maximum likelihood from incomplete data via the em algorithm’, Journal of the Royal Statistical Society: Series B (Methodological) 39(1), 1–22.Deville, J.-C. y S ̈arndal, C.-E. (1992), ‘Calibration estimators in survey sampling’, Journal of the American statistical Association 87(418), 376–382.Drew, D., Singh, M. y Choudhry, G. (1982), ‘Evaluation of small area estimation techniques for the canadian labour force survey’, Survey Methodology 8(1), 17–47.Embretson, S. E. y Reise, S. P. (2013), Item response theory, Psychology Press.Fay, R. y Herriot, R. (1979), ‘Estimates of income for small places: an application of james-stein procedures to census data’, Journal of the American Statistical Association 74(366a), 269–277.Gutiérrez, H. A. (2009), Estrategias de muestreo diseño de encuestas y estimación de parámetros., Universidad Santo Tomas, Bogota (Colombia).Gutiérrez, H. A. (2016), Estrategias de muestreo: diseño de encuestas y estimación de parámetros, Ediciones de la U.Harville, D. A. y Jeske, D. R. (1992), ‘Mean squared error of estimation or prediction under a general linear model’, Journal of the American Statistical Association 87(419), 724–731.Horvitz, D. G. y Thompson, D. J. (1952), ‘A generalization of sampling without replacement from a finite universe’, Journal of the American statistical Association 47(260), 663–685.ICFES (2022), ‘Informe nacional de resultados saber 3°, 5°, 7° y 9°’.Longford, N. T. (2005), ‘On selection and composition in small area and mapping problems’, Statistical methods in medical research 14(1), 3–16.Martínez Arias, M. R. et al. (2006), ‘La metodología de los estudios pisa’, Revista de educación.Martínez, C. (2012), Estadística y muestreo-13ra Edición, Ecoe ediciones.Matas Terrón, A. et al. (2010), ‘Introducción al análisis de la teoría de respuesta al ́ıtem’.Mislevy, R. J. (1991), ‘Randomization-based inference about latent variables from complex samples’, Psychometrika 56(2), 177–196.Mislevy, R. J., Beaton, A. E., Kaplan, B. y Sheehan, K. M. (1992), ‘Estimating population characteristics from sparse matrix samples of item responses’, Journal of Educational Measurement 29(2), 133–161.Molina, I. (2019), Desagregación de datos en encuestas de hogares: metodologías de estimación en áreas pequeñas, División de Estadísticas de la Comisión Económica para América Latina y el Caribe (CEPAL).OECD (2016), ‘Pisa 2018. draft analytical frameworks, may 2016’.Petrucci, A. y Salvati, N. (2006), ‘Small area estimation for spatial correlation in watershed erosion assessment’, Journal of agricultural, biological, and environmental statistics 11(2), 169.Pfeffermann, D. (2002), ‘Small area estimation-new developments and directions’, International Statistical Review 70(1), 125–143.Prasad, N. N. y Rao, J. N. (1990), ‘The estimation of the mean squared error of small-area estimators’, Journal of the American statistical association 85(409), 163–171.Pratesi, M. y Salvati, N. (2005), Small area estimation: the EBLUP estimator with autore- gressive random area effects, Universit`a di Pisa, Dipartimento di statistica e matematica applicata all . . . .Pratesi, M. y Salvati, N. (2008), ‘Small area estimation: the eblup estimator based on spatially correlated random area effects’, Statistical methods and applications 17(1), 113–141.Rao, J. (2003), Small Area Estimation, Wiley, New York.Rao, J. N. y Molina, I. (2015), Small area estimation, John Wiley & Sons.Rubin, D. B. (1987), Multiple imputation for nonresponse in surveys, John Wiley & Sons.Salvati, N. (2004a), La correlazione spaziale nella stima per piccole aree: metodi proposti e casi di studio, Universitá degli Studi di Firenze.Salvati, N. (2004b), ‘Small area estimation by spatial models: the spatial empirical best linear unbiased prediction (spatial eblup)’, Working Paper 2004/03. Firenze: Universita degli Studi di Firenze pp. 59–50134.Särndal, C.-E., Swensson, B. y Wretman, J. (2003), Model assisted survey sampling, Springer Science & Business Media.Tellez, C. F. (2020), Estimación de áreas pequeñas utilizando imputación múltiple en modelos logísticos de tres parámetros, PhD thesis.Tellez, C. F., Arias, I. R., Gómez, S. G. y Oyola, L. T. (2021), ‘Estimation of educational establishments performance in saber 5◦ tests in colombia. an approach from small area estimation’, Boletín de Estadística e Investigación Operativa BEIO p. 169.Triviño, A. F. P., Piñerez, C. F. T. y Oyola, L. T. (2020), ‘Estimación de los resultados en matemáticas y ciencias de las pruebas timss 2015: un nuevo enfoque desde la metodología de áreas pequeñas’, Comunicaciones en Estadística 13(2), 62–77.Von Davier, M., Gonzalez, E. y Mislevy, R. (2009), ‘What are plausible values and why are they useful’, IERI monograph series 2(1), 9–36.Wackerly, D., Mendenhall, W. y Scheaffer, R. L. (2014), Mathematical statistics with applications, Cengage Learning.Wawrowski, L. (2016), ‘The spatial fay-herriot model in poverty estimation’, Folia Oeconomica Stetinensia 16(2), 191–202.Zimmerman, D. L. y Cressie, N. (1992), ‘Mean squared prediction error in the spatial linear model with estimated covariance parameters’, Annals of the institute of statistical mathematics 44(1), 27–43.THUMBNAIL2023cupertinojimenez.pdf.jpg2023cupertinojimenez.pdf.jpgIM Thumbnailimage/jpeg5731https://repository.usta.edu.co/bitstream/11634/52093/6/2023cupertinojimenez.pdf.jpg009e0fbb5a202e7bc33b1fdbf6d4720dMD56open accessCarta de aprobacion de la facultad.pdf.jpgCarta de aprobacion de la facultad.pdf.jpgIM Thumbnailimage/jpeg5985https://repository.usta.edu.co/bitstream/11634/52093/7/Carta%20de%20aprobacion%20de%20la%20facultad.pdf.jpg6a4256827849c058877e5a414e93896eMD57open accessCarta de derechos de autor.pdf.jpgCarta de derechos de autor.pdf.jpgIM Thumbnailimage/jpeg7919https://repository.usta.edu.co/bitstream/11634/52093/8/Carta%20de%20derechos%20de%20autor.pdf.jpgb2304a6e64f0c11ce79cbe67ef946cbfMD58open accessORIGINAL2023cupertinojimenez.pdf2023cupertinojimenez.pdfTrabajo de Gradoapplication/pdf426483https://repository.usta.edu.co/bitstream/11634/52093/1/2023cupertinojimenez.pdf0717dc0075c6da035040a23370fd6b4cMD51open accessCarta de aprobacion de la facultad.pdfCarta de aprobacion de la facultad.pdfCarta de aprobación de la facultadapplication/pdf16457https://repository.usta.edu.co/bitstream/11634/52093/2/Carta%20de%20aprobacion%20de%20la%20facultad.pdf5ecce7181c8e460f236c629e1cff4890MD52metadata only accessCarta de derechos de autor.pdfCarta de derechos de autor.pdfCarta de derechos de autorapplication/pdf284450https://repository.usta.edu.co/bitstream/11634/52093/3/Carta%20de%20derechos%20de%20autor.pdfb46660e5158e2c7241fe5452ceae1435MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/52093/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/52093/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open access11634/52093oai:repository.usta.edu.co:11634/520932023-09-16 03:04:08.652open accessRepositorio Universidad Santo Tomásnoreply@usta.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K