Minería de texto en el estudio de las microalgas para la producción de biocombustibles

Se realizó un estudio de minería de texto con el fin de determinar las principales tendencias en el uso de microalgas como materia prima en la producción de biocombustibles entre 2000 y 2016. Se utilizó la base de datos de Scopus. Se encontraron un total de 2831 artículos. El número de artículos pub...

Full description

Autores:
Orduz Díaz, Yoleisy
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2017
Institución:
Universidad Santo Tomás
Repositorio:
Universidad Santo Tomás
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/34054
Acceso en línea:
http://hdl.handle.net/11634/34054
Palabra clave:
Scientometric analysis
Biofuels
Microalge
Text mining
Análisis de citas bibliográficas
Minería de datos
Microalgas
Energía biomásica
Análisis cienciométrico
Biocombustibles
Microalgas
Minería de texto
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SantoToma2_4ca9a178e1c2306430d030d7f6786396
oai_identifier_str oai:repository.usta.edu.co:11634/34054
network_acronym_str SantoToma2
network_name_str Universidad Santo Tomás
repository_id_str
dc.title.spa.fl_str_mv Minería de texto en el estudio de las microalgas para la producción de biocombustibles
title Minería de texto en el estudio de las microalgas para la producción de biocombustibles
spellingShingle Minería de texto en el estudio de las microalgas para la producción de biocombustibles
Scientometric analysis
Biofuels
Microalge
Text mining
Análisis de citas bibliográficas
Minería de datos
Microalgas
Energía biomásica
Análisis cienciométrico
Biocombustibles
Microalgas
Minería de texto
title_short Minería de texto en el estudio de las microalgas para la producción de biocombustibles
title_full Minería de texto en el estudio de las microalgas para la producción de biocombustibles
title_fullStr Minería de texto en el estudio de las microalgas para la producción de biocombustibles
title_full_unstemmed Minería de texto en el estudio de las microalgas para la producción de biocombustibles
title_sort Minería de texto en el estudio de las microalgas para la producción de biocombustibles
dc.creator.fl_str_mv Orduz Díaz, Yoleisy
dc.contributor.advisor.none.fl_str_mv Pinzón Joya, Julio Roberto
Cervantes Díaz, Martha
dc.contributor.author.none.fl_str_mv Orduz Díaz, Yoleisy
dc.subject.keyword.spa.fl_str_mv Scientometric analysis
Biofuels
Microalge
Text mining
topic Scientometric analysis
Biofuels
Microalge
Text mining
Análisis de citas bibliográficas
Minería de datos
Microalgas
Energía biomásica
Análisis cienciométrico
Biocombustibles
Microalgas
Minería de texto
dc.subject.lemb.spa.fl_str_mv Análisis de citas bibliográficas
Minería de datos
Microalgas
Energía biomásica
dc.subject.proposal.spa.fl_str_mv Análisis cienciométrico
Biocombustibles
Microalgas
Minería de texto
description Se realizó un estudio de minería de texto con el fin de determinar las principales tendencias en el uso de microalgas como materia prima en la producción de biocombustibles entre 2000 y 2016. Se utilizó la base de datos de Scopus. Se encontraron un total de 2831 artículos. El número de artículos publicados sobre el uso de microalgas como materia prima para la producción de biocombustibles ha aumentado a lo largo de los años, especialmente durante los últimos tantos seis años de periodo de estudio. La mayoría de publicaciones se encuentran en Estados Unidos (603), China (506), India (257), Corea del Sur (214). En cuanto a Latinoamérica, Brasil ocupa el primer lugar con 107 artículos, seguido de México con 39, Chile con 26 y Colombia con 23. Se estudiaron diferentes tipos de biocombustibles como bioetanol, biodiesel, biometano, biogás, biohidrógeno y biopetróleo, encontrándose que el más estudiado es el biodiesel. En cuanto a las diferentes especies de microalgas, se encontró que el género Chlorella con 376 artículos científicos, siendo la especie más estudiada Chlorella vulgaris con 331 artículos, seguida por Chlorella sorokiniana con 77, Chlorella protothecoide con 69 y Chlorella pyrenoidosa con 54.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2021-05-12T20:04:57Z
dc.date.available.none.fl_str_mv 2021-05-12T20:04:57Z
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
format http://purl.org/coar/resource_type/c_bdcc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Orduz Díaz, Y. (2017). Minería de texto en el estudio de las microalgas para la producción de biocombustibles [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombia
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/34054
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Orduz Díaz, Y. (2017). Minería de texto en el estudio de las microalgas para la producción de biocombustibles [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombia
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/34054
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahmad, a. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15, 584–593.
Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109.
Anderson, R. (2005). Algal Culturing Techniques. (Elsevier, Ed.).
Arshadi, M., & Sellstedt, A. (2008). Production of Energy from Biomass. In J. Clark & F. Deswarte (Eds.), Introduction to Chemicals from Biomass (pp. 143–178).
Babich, I. V., van der Hulst, M., Lefferts, L., Moulijn, J. a., O’Connor, P., & Seshan, K. (2011). Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35(7), 3199–3207.
Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae : A review, 27, 128–148.
Bajhaiya, A., Mandotra, S., Suseela, M., Toppo, K., & Ranade, S. (2010). Algal biodiesel: the next generation biofuel for India. Asian Journal of Experimental Biological Sciences, 1(4), 728–739.
Bala Deshpande, V. K. (2015). Text Mining. In Predictive Analytics and Data Mining (pp. 275–303). http://doi.org/10.1016/B978-0-12-801460-8.00009-4
Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210.
Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20(3), 264–271.
Belotti, G., De Caprariis, B., De Filippis, P., Scarsella, M., & Verdone, N. (2014). Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass and Bioenergy, 61, 187–195.
Bennion, E. P., Ginosar, D. M., Moses, J., Agblevor, F., & Quinn, J. C. (2015). Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways. Applied Energy, 154, 1062–1071.
Bernard, O. (2011). Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. Journal of Process Control, 21(10), 1378–1389.
Biofuels information. (2010). Retrieved from http://biofuel.org.uk/
Bisen, P. S., Sanodiya, B. S., Thakur, G. S., Baghel, R. K., & Prasad, G. B. K. S. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnology Letters, 32(8), 1019–1030.
Borges, F. C., Xie, Q., Min, M., Muniz, L. A. R., Farenzena, M., Trierweiler, J. O., … Ruan, R. (2014). Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresource Technology, 166, 518–526.
Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 108(4), 766–776.
Bridgwater, T. (2007). Biomass Pyrolysis. Birmingham: IEA Bioenergy.
Brown, D., Cabbage, M., & McCarthy, L. (2016). NASA, NOAA Analyses Reveal Record Shattering Global Warm Temperatures in 2015. Retrieved from www.nasa.gov.
Cadoret, J. P., Garnier, M., & Saint-Jean, B. (2012). Microalgae, Functional Genomics and Biotechnology. In Advances in Botanical Research (Vol. 64, pp. 285–341). Elsevier.
Campanella, A., & Harold, M. P. (2012). Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts. Biomass and Bioenergy, 46, 218–232.
Campaña-Torres, A., Martínez-Córdova, L., Martínez-Porchas, M., López-Elías, J., & Porchas-Cornejo, M. (2012). Productive response of Nannochloropsis oculata , cultured in different media and their efficiency as food for the rotifer Brachionus rotundiformis Respuesta productiva de Nannochloropsis oculata , cultivada en diferentes medios y su eficiencia. International Journal of Experimental Botany, 9457(81), 45–50.
Castells, X. (2005). Tratamiento y valorización energética de residuos. España: Ediciones Díaz de Santos.
Chacón-Lee, T. L., & González-Mariño, G. E. (2010). Microalgae for “Healthy” Foods-Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655–675.
Cheremisinoff, N., Rosenfeld, P., & Davletshin, A. (2008). The Food and Dairy Industry. In Responsible Care: A New Strategy for Pollution Prevention and Waste Reduction Through Environment Management (pp. 383–434). http://doi.org/10.1016/B978-1-933762-16-6.50010-4
Chisti, Y. (2007b). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. http://doi.org/10.1016/j.biotechadv.2007.02.001
Chong, M., Sabaratnam, V., Shirai, Y., & Ali, M. (2009). Biohydrogen production from biomass and industrial wastes by dark fermentation. International Journal of Hydrogen Energy, 34(8), 3277–3287. http://doi.org/10.1016/j.ijhydene.2009.02.010
Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. http://doi.org/10.1016/S0196-8904(00)00137-0
Demirbas, A. (2006). Oily products from mosses and algae via pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(October 2013), 933–940. http://doi.org/10.1080/15567030802464388
Demirbas, A. (2010). Algae Energy.
Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738–2749. http://doi.org/10.1016/j.enconman.2010.06.010
Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable Resources. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
El Universal. (2011, October 26). FMI : La “primavera árabe” frenó la actividad económica en varios países, p. 1. Cartagena. Retrieved from http://www.eluniversal.com.co/cartagena/economica/fmi-la-primavera-arabe-freno-la-actividad-economica-en-varios-paises-50403
Farooq, W., Suh, W. I., Park, M. S., & Yang, J. (2014). Bioresource Technology Water use and its recycling in microalgae cultivation for biofuel application. BIORESOURCE TECHNOLOGY. http://doi.org/10.1016/j.biortech.2014.10.140
Georgogianni, K. G., Kontominas, M. G., Pomonis, P. J., Avlonitis, D., & Gergis, V. (2008). Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Processing Technology, 89(5), 503–509. http://doi.org/10.1016/j.fuproc.2007.10.004
Ghaly, a. E., Dave, D., Brooks, M. S., & Budge, S. (2010). Production of biodiesel by enzymatic transesterification: Review. American Journal of Biochemistry and Biotechnology, 6(2), 54–76. http://doi.org/10.3844/ajbbsp.2010.54.76
Ginkel, S. W. Van, Oh, S., & Logan, B. E. (2005). Biohydrogen gas production from food processing and domestic wastewaters, 30, 1535–1542. http://doi.org/10.1016/j.ijhydene.2004.09.017
Grierson, S., Strezov, V., Ellem, G., Mcgregor, R., & Herbertson, J. (2009). Thermal characterisation of microalgae under slow pyrolysis conditions. Journal of Analytical and Applied Pyrolysis, 85(1-2), 118–123.
Grierson, S., Strezov, V., & Shah, P. (2011). Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresource Technology, 102(17), 8232–8240.
Haas, M. J., & Wagner, K. (2011). Simplifying biodiesel production: The direct or in situ transesterification of algal biomass. European Journal of Lipid Science and Technology, 113(10), 1219–1229. http://doi.org/10.1002/ejlt.201100106
Harman-Ware, A. E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., … Debolt, S. (2013). Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmussp. Renewable Energy, 60, 625–632.
Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de BiologíaMArina Y Oceanografía, 49, 157–173. http://doi.org/10.4067/S0718-19572014000200001
Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO 2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252. http://doi.org/10.1016/j.biortech.2011.11.133
Horsman, M., Wu, N., Lan, C. Q., & Dubois-calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, (1), 815–820. http://doi.org/10.1021/bp.070371k
Hossain, M. N. Bin, Basu, J. K., & Mamun, M. (2015). The Production of Ethanol from Micro-Algae Spirulina. Procedia Engineering, 105, 733–738. http://doi.org/10.1016/j.proeng.2015.05.064
Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal : For Cell and Molecular Biology, 54(4), 621–639.
Hu, Z., Ma, X., & Chen, C. (2012). A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresource Technology, 107, 487–493.
Huang, G., Chen, F., Wei, D., Zhang, X., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38–46. http://doi.org/10.1016/j.apenergy.2009.06.016
IEA. (2013). Resources to reserves 2013. París.
IEA. (2016). World Energy Outlook 2016. París.
IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Nueva York.
Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221–6229.
Khanal, S. K. (2008). Anaerobic Biotechnology for Bioenergy Production. Iowa: John Wiley & Sons.
Kim, S. W., Koo, B. S., & Lee, D. H. (2014). A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresource Technology, 162, 96–102. http://doi.org/10.1016/j.biortech.2014.03.136
Kim, T.-H., Lee, Y., Han, S.-H., & Hwang, S.-J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75–80.
Kongjan, P., O-thong, S., Kotay, M., Min, B., & Angelidaki, I. (2010). Biohydrogen Production From Wheat Straw Hydrolysate by Dark Fermentation Using Extreme Thermophilic Mixed Culture, 105(5), 899–908. http://doi.org/10.1002/bit.22616
Konur, O. (2011). The scientometric evaluation of the research on the algae and bio-energy. Applied Energy, 88(10), 3532–3540. http://doi.org/10.1016/j.apenergy.2010.12.059
Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.
Lam, M. K., & Lee, K. T. (2015). Bioethanol Production from Microalgae. Handbook of Marine Microalgae. Elsevier Inc. http://doi.org/10.1016/B978-0-12-800776-1.00012-1
Lewis, N. S., & Nocera, D. G. (2006). Powering the planet : Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729–15736.
Liang, Y. (2013). Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860–868.
Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645. http://doi.org/10.1007/s00253-012-4398-0
Mata, T. M., Martins, A. a., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.
Michán, L., & Muñoz-velasco, I. (2013). Cienciometría para ciencias médicas : definiciones , aplicaciones y perspectivas. Investigación En Educación Médica, 2(6), 100–106.
Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), 848–889. http://doi.org/10.1021/ef0502397
Nakano, S., Takekoshi, H., & Nakano, M. (2007). Immunoglobulin A Concentrations in Breast Milk. Journal of Medicinal Food, 10(1), 134–142. http://doi.org/10.1089/jmf.2006.023
Orduz Díaz, Y. (2015). Uso de la fluoresceína como pigmento fotosintético auxiliar en el cultivo de microalgas de la especie Chlorella vulgaris.
Ota, S., Oshima, K., Yamazaki, T., Kim, S., Yu, Z., Yoshihara, M., … Hattori, M. (2016). Biotechnology for Biofuels Highly efficient lipid production in the green alga Parachlorella kessleri : draft genome and transcriptome endorsed by whole - cell 3D ultrastructure. Biotechnology for Biofuels, 9, 1–10. http://doi.org/10.1186/s13068-016-0424-2
Pan, C. M., & Fan, Y. T. (2008). Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp . Fanp2. Bioresource Technology, 99, 3146–3154.
Pan, P., Hu, C., Yang, W., Li, Y., Dong, L., Zhu, L., … Fan, Y. (2010). The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101(12), 4593–4599.
Paniagua-Michel, J. (2015). Bioremediation with Microalgae : Toward Sustainable Production of Biofuels. In Handbook of Marine Microalgae (pp. 471–481). Elsevier Inc. http://doi.org/10.1016/B978-0-12-800776-1.00031-5
Perez-garcia, O., Escalante, F. M. E., Luz, E., & Bashan, Y. (2010). Heterotrophic cultures of microalgae : Metabolism and potential products. Water Research, 45(1), 11–36. http://doi.org/10.1016/j.watres.2010.08.037
Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2012). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 1–24.
Ribeiro, L. a., da Silva, P. P., Mata, T. M., & Martins, A. a. (2015). Prospects of using microalgae for biofuels production: Results of a Delphi study. Renewable Energy, 75, 799–804. http://doi.org/10.1016/j.renene.2014.10.065
Roy, S., Kumar, K., Ghosh, S., & Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166. http://doi.org/10.1016/j.biombioe.2013.12.006
Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278. http://doi.org/10.1016/j.rser.2014.04.007
Salema, A. A., & Ani, F. N. (2012). Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. Journal of Analytical and Applied Pyrolysis, 96, 162–172. http://doi.org/10.1016/j.jaap.2012.03.018
Sánchez, E. (2012). Desarrollo de un proceso para el aprovechamiento integral de microalgas para la obtención de biocombustibles. Universidad Industrial de Santander.
Scaife, M. a., Merkx-Jacques, A., Woodhall, D. L., & Armenta, R. E. (2015). Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews, 44, 620–642. http://doi.org/10.1016/j.rser.2014.12.024
Silveira, M., Gonçalves, F., Andrade, R., & Souza, Z. De. (2014). The scientometric research on macroalgal biomass as a source of biofuel feedstock. ALGAL, 6, 132–138. http://doi.org/10.1016/j.algal.2014.11.001
Singh, S. K., Bansal, A., Jha, M. K., & Jain, R. (2013). Production of biodiesel from wastewater grown Chlorella minutissima. Indian Journal of Chemical Technology, 20, 341–345.
Skonieczny, M. T., & Yargeau, V. (2009). Biohydrogen production from wastewater by Clostridium beijerinckii : Effect of pH and substrate concentration. International Journal of Hydrogen Energy, 34(8), 3288–3294. http://doi.org/10.1016/j.ijhydene.2009.01.044
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.
Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. http://doi.org/10.1016/j.rser.2012.03.047
Suganya, T., Kasirajan, R., & Renganathan, S. (2014). Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production. Bioresource Technology, 156, 283–290.
Surendhiran, D., & Vijay, M. (2012). Microalgal Biodiesel - A Comprehensive Review on the Potential and Alternative Biofuel. Journal of Chemical Sciences, 2(11), 71–82.
Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892–5896.
Tabatabaei, M., Sulaiman, A., Nikbakht, A., Yusof, N., & Najafpour, G. (2011). Influential Parameters on Biomethane Generation in Anaerobic Wastewater Treatment Plants. In M. ;anzanera (Ed.), Alternative Fuel (pp. 227–263). InTech.
Tabernero, A., Martín del Valle, E. M., & Galán, M. a. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115. http://doi.org/10.1016/j.bej.2011.11.006
Tanaka, T., Muto, M., Liang, Y., Yoshino, T., & Matsunaga, T. (2015). Marine Microalgae. In S.-K. Kim (Ed.), Handbook of Marine Microalgae Biotechnology (pp. 51–63). Springer. http://doi.org/10.2115/fiber.46.7_P280
Tiempo, E. (2016, May 24). Reservas de crudo están en el nivel de hace 5 años, p. 1.
Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028. http://doi.org/10.1016/j.biortech.2007.01.046
Valverde, F., Romero-Campero, F. J., León, R., Guerrero, M. G., & Serrano, A. (2016). New challenges in microalgae biotechnology. European Journal of Protistology.
Vitova, M., Bisova, K., Kawano, S., & Zachleder, V. (2014). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 33(6), 1204–1218. http://doi.org/10.1016/j.biotechadv.2015.04.012
Wang, K., Brown, R. C., Homsy, S., Martinez, L., & Sidhu, S. S. (2013). Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresource Technology, 127, 494–499.
Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295.
Weiland, P. (2010). Biogas production : current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860. http://doi.org/10.1007/s00253-009-2246-7
Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36. http://doi.org/10.1007/s00253-007-1285-1
Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507. http://doi.org/10.1016/j.jbiotec.2006.05.002
Yoo, G., Park, M. S., & Yang, J. W. (2015). Chemical Pretreatment of Algal Biomass. In A. Pandey, S. Negi, P. Binod, & C. Larroche (Eds.), Pretreatment of Biomass: Processes and Technologies (pp. 227–258). Elsevier B.V.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Ciencias y Tecnologías Ambientales
dc.publisher.faculty.spa.fl_str_mv Facultad de Química Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/34054/1/2017OrduzYoleisy.pdf
https://repository.usta.edu.co/bitstream/11634/34054/2/2017OrduzYoleisy1.xlsx
https://repository.usta.edu.co/bitstream/11634/34054/3/license_rdf
https://repository.usta.edu.co/bitstream/11634/34054/4/license.txt
https://repository.usta.edu.co/bitstream/11634/34054/5/2017OrduzYoleisy.pdf.jpg
bitstream.checksum.fl_str_mv b89667a3464a022b59db6c064cc721b9
9ef0590c5d0d5322f83c390d8741a287
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
64953ec8ee342cdd6935fa9d3872d1a2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1800786352118169600
spelling Pinzón Joya, Julio RobertoCervantes Díaz, MarthaOrduz Díaz, Yoleisy2021-05-12T20:04:57Z2021-05-12T20:04:57Z2017Orduz Díaz, Y. (2017). Minería de texto en el estudio de las microalgas para la producción de biocombustibles [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombiahttp://hdl.handle.net/11634/34054reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coSe realizó un estudio de minería de texto con el fin de determinar las principales tendencias en el uso de microalgas como materia prima en la producción de biocombustibles entre 2000 y 2016. Se utilizó la base de datos de Scopus. Se encontraron un total de 2831 artículos. El número de artículos publicados sobre el uso de microalgas como materia prima para la producción de biocombustibles ha aumentado a lo largo de los años, especialmente durante los últimos tantos seis años de periodo de estudio. La mayoría de publicaciones se encuentran en Estados Unidos (603), China (506), India (257), Corea del Sur (214). En cuanto a Latinoamérica, Brasil ocupa el primer lugar con 107 artículos, seguido de México con 39, Chile con 26 y Colombia con 23. Se estudiaron diferentes tipos de biocombustibles como bioetanol, biodiesel, biometano, biogás, biohidrógeno y biopetróleo, encontrándose que el más estudiado es el biodiesel. En cuanto a las diferentes especies de microalgas, se encontró que el género Chlorella con 376 artículos científicos, siendo la especie más estudiada Chlorella vulgaris con 331 artículos, seguida por Chlorella sorokiniana con 77, Chlorella protothecoide con 69 y Chlorella pyrenoidosa con 54.The present study known as text mining was conducted to determine the main trends in the use of microalgae as a raw material in the production of biofuels between 2000 and 2016. The Scopus database was used. A total of 2831 articles were found. The number of articles published on the use of microalgae as a raw material for the production of biofuels has increased over the years, especially during the last six years of study period. Most publications are in the United States (603), China (506), India (257), South Korea (214). In Latin America, Brazil ranks first with 107 articles, followed by Mexico with 39, Chile with 26 and Colombia with 23. Different types of biofuels were studied, such as bioethanol, biodiesel, biomethane, biogas, biohydrogen and bio-oil. The most studied is biodiesel. As for the different species of microalgae, the genus Chlorella was found with 376 scientific articles, being the most studied species Chlorella vulgaris with 331 articles, followed by Chlorella sorokiniana with 77, Chlorella protothecoide with 69 and Chlorella pyrenoidosa with 54.http://www.ustabuca.edu.co/ustabmanga/presentacionMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ciencias y Tecnologías AmbientalesFacultad de Química AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Minería de texto en el estudio de las microalgas para la producción de biocombustiblesScientometric analysisBiofuelsMicroalgeText miningAnálisis de citas bibliográficasMinería de datosMicroalgasEnergía biomásicaAnálisis cienciométricoBiocombustiblesMicroalgasMinería de textoTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BucaramangaAhmad, a. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15, 584–593.Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109.Anderson, R. (2005). Algal Culturing Techniques. (Elsevier, Ed.).Arshadi, M., & Sellstedt, A. (2008). Production of Energy from Biomass. In J. Clark & F. Deswarte (Eds.), Introduction to Chemicals from Biomass (pp. 143–178).Babich, I. V., van der Hulst, M., Lefferts, L., Moulijn, J. a., O’Connor, P., & Seshan, K. (2011). Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35(7), 3199–3207.Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae : A review, 27, 128–148.Bajhaiya, A., Mandotra, S., Suseela, M., Toppo, K., & Ranade, S. (2010). Algal biodiesel: the next generation biofuel for India. Asian Journal of Experimental Biological Sciences, 1(4), 728–739.Bala Deshpande, V. K. (2015). Text Mining. In Predictive Analytics and Data Mining (pp. 275–303). http://doi.org/10.1016/B978-0-12-801460-8.00009-4Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210.Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20(3), 264–271.Belotti, G., De Caprariis, B., De Filippis, P., Scarsella, M., & Verdone, N. (2014). Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass and Bioenergy, 61, 187–195.Bennion, E. P., Ginosar, D. M., Moses, J., Agblevor, F., & Quinn, J. C. (2015). Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways. Applied Energy, 154, 1062–1071.Bernard, O. (2011). Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. Journal of Process Control, 21(10), 1378–1389.Biofuels information. (2010). Retrieved from http://biofuel.org.uk/Bisen, P. S., Sanodiya, B. S., Thakur, G. S., Baghel, R. K., & Prasad, G. B. K. S. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnology Letters, 32(8), 1019–1030.Borges, F. C., Xie, Q., Min, M., Muniz, L. A. R., Farenzena, M., Trierweiler, J. O., … Ruan, R. (2014). Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresource Technology, 166, 518–526.Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 108(4), 766–776.Bridgwater, T. (2007). Biomass Pyrolysis. Birmingham: IEA Bioenergy.Brown, D., Cabbage, M., & McCarthy, L. (2016). NASA, NOAA Analyses Reveal Record Shattering Global Warm Temperatures in 2015. Retrieved from www.nasa.gov.Cadoret, J. P., Garnier, M., & Saint-Jean, B. (2012). Microalgae, Functional Genomics and Biotechnology. In Advances in Botanical Research (Vol. 64, pp. 285–341). Elsevier.Campanella, A., & Harold, M. P. (2012). Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts. Biomass and Bioenergy, 46, 218–232.Campaña-Torres, A., Martínez-Córdova, L., Martínez-Porchas, M., López-Elías, J., & Porchas-Cornejo, M. (2012). Productive response of Nannochloropsis oculata , cultured in different media and their efficiency as food for the rotifer Brachionus rotundiformis Respuesta productiva de Nannochloropsis oculata , cultivada en diferentes medios y su eficiencia. International Journal of Experimental Botany, 9457(81), 45–50.Castells, X. (2005). Tratamiento y valorización energética de residuos. España: Ediciones Díaz de Santos.Chacón-Lee, T. L., & González-Mariño, G. E. (2010). Microalgae for “Healthy” Foods-Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655–675.Cheremisinoff, N., Rosenfeld, P., & Davletshin, A. (2008). The Food and Dairy Industry. In Responsible Care: A New Strategy for Pollution Prevention and Waste Reduction Through Environment Management (pp. 383–434). http://doi.org/10.1016/B978-1-933762-16-6.50010-4Chisti, Y. (2007b). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. http://doi.org/10.1016/j.biotechadv.2007.02.001Chong, M., Sabaratnam, V., Shirai, Y., & Ali, M. (2009). Biohydrogen production from biomass and industrial wastes by dark fermentation. International Journal of Hydrogen Energy, 34(8), 3277–3287. http://doi.org/10.1016/j.ijhydene.2009.02.010Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. http://doi.org/10.1016/S0196-8904(00)00137-0Demirbas, A. (2006). Oily products from mosses and algae via pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(October 2013), 933–940. http://doi.org/10.1080/15567030802464388Demirbas, A. (2010). Algae Energy.Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738–2749. http://doi.org/10.1016/j.enconman.2010.06.010Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable Resources. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.El Universal. (2011, October 26). FMI : La “primavera árabe” frenó la actividad económica en varios países, p. 1. Cartagena. Retrieved from http://www.eluniversal.com.co/cartagena/economica/fmi-la-primavera-arabe-freno-la-actividad-economica-en-varios-paises-50403Farooq, W., Suh, W. I., Park, M. S., & Yang, J. (2014). Bioresource Technology Water use and its recycling in microalgae cultivation for biofuel application. BIORESOURCE TECHNOLOGY. http://doi.org/10.1016/j.biortech.2014.10.140Georgogianni, K. G., Kontominas, M. G., Pomonis, P. J., Avlonitis, D., & Gergis, V. (2008). Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Processing Technology, 89(5), 503–509. http://doi.org/10.1016/j.fuproc.2007.10.004Ghaly, a. E., Dave, D., Brooks, M. S., & Budge, S. (2010). Production of biodiesel by enzymatic transesterification: Review. American Journal of Biochemistry and Biotechnology, 6(2), 54–76. http://doi.org/10.3844/ajbbsp.2010.54.76Ginkel, S. W. Van, Oh, S., & Logan, B. E. (2005). Biohydrogen gas production from food processing and domestic wastewaters, 30, 1535–1542. http://doi.org/10.1016/j.ijhydene.2004.09.017Grierson, S., Strezov, V., Ellem, G., Mcgregor, R., & Herbertson, J. (2009). Thermal characterisation of microalgae under slow pyrolysis conditions. Journal of Analytical and Applied Pyrolysis, 85(1-2), 118–123.Grierson, S., Strezov, V., & Shah, P. (2011). Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresource Technology, 102(17), 8232–8240.Haas, M. J., & Wagner, K. (2011). Simplifying biodiesel production: The direct or in situ transesterification of algal biomass. European Journal of Lipid Science and Technology, 113(10), 1219–1229. http://doi.org/10.1002/ejlt.201100106Harman-Ware, A. E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., … Debolt, S. (2013). Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmussp. Renewable Energy, 60, 625–632.Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de BiologíaMArina Y Oceanografía, 49, 157–173. http://doi.org/10.4067/S0718-19572014000200001Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO 2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252. http://doi.org/10.1016/j.biortech.2011.11.133Horsman, M., Wu, N., Lan, C. Q., & Dubois-calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, (1), 815–820. http://doi.org/10.1021/bp.070371kHossain, M. N. Bin, Basu, J. K., & Mamun, M. (2015). The Production of Ethanol from Micro-Algae Spirulina. Procedia Engineering, 105, 733–738. http://doi.org/10.1016/j.proeng.2015.05.064Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal : For Cell and Molecular Biology, 54(4), 621–639.Hu, Z., Ma, X., & Chen, C. (2012). A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresource Technology, 107, 487–493.Huang, G., Chen, F., Wei, D., Zhang, X., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38–46. http://doi.org/10.1016/j.apenergy.2009.06.016IEA. (2013). Resources to reserves 2013. París.IEA. (2016). World Energy Outlook 2016. París.IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Nueva York.Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221–6229.Khanal, S. K. (2008). Anaerobic Biotechnology for Bioenergy Production. Iowa: John Wiley & Sons.Kim, S. W., Koo, B. S., & Lee, D. H. (2014). A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresource Technology, 162, 96–102. http://doi.org/10.1016/j.biortech.2014.03.136Kim, T.-H., Lee, Y., Han, S.-H., & Hwang, S.-J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75–80.Kongjan, P., O-thong, S., Kotay, M., Min, B., & Angelidaki, I. (2010). Biohydrogen Production From Wheat Straw Hydrolysate by Dark Fermentation Using Extreme Thermophilic Mixed Culture, 105(5), 899–908. http://doi.org/10.1002/bit.22616Konur, O. (2011). The scientometric evaluation of the research on the algae and bio-energy. Applied Energy, 88(10), 3532–3540. http://doi.org/10.1016/j.apenergy.2010.12.059Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.Lam, M. K., & Lee, K. T. (2015). Bioethanol Production from Microalgae. Handbook of Marine Microalgae. Elsevier Inc. http://doi.org/10.1016/B978-0-12-800776-1.00012-1Lewis, N. S., & Nocera, D. G. (2006). Powering the planet : Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729–15736.Liang, Y. (2013). Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860–868.Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645. http://doi.org/10.1007/s00253-012-4398-0Mata, T. M., Martins, A. a., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.Michán, L., & Muñoz-velasco, I. (2013). Cienciometría para ciencias médicas : definiciones , aplicaciones y perspectivas. Investigación En Educación Médica, 2(6), 100–106.Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), 848–889. http://doi.org/10.1021/ef0502397Nakano, S., Takekoshi, H., & Nakano, M. (2007). Immunoglobulin A Concentrations in Breast Milk. Journal of Medicinal Food, 10(1), 134–142. http://doi.org/10.1089/jmf.2006.023Orduz Díaz, Y. (2015). Uso de la fluoresceína como pigmento fotosintético auxiliar en el cultivo de microalgas de la especie Chlorella vulgaris.Ota, S., Oshima, K., Yamazaki, T., Kim, S., Yu, Z., Yoshihara, M., … Hattori, M. (2016). Biotechnology for Biofuels Highly efficient lipid production in the green alga Parachlorella kessleri : draft genome and transcriptome endorsed by whole - cell 3D ultrastructure. Biotechnology for Biofuels, 9, 1–10. http://doi.org/10.1186/s13068-016-0424-2Pan, C. M., & Fan, Y. T. (2008). Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp . Fanp2. Bioresource Technology, 99, 3146–3154.Pan, P., Hu, C., Yang, W., Li, Y., Dong, L., Zhu, L., … Fan, Y. (2010). The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101(12), 4593–4599.Paniagua-Michel, J. (2015). Bioremediation with Microalgae : Toward Sustainable Production of Biofuels. In Handbook of Marine Microalgae (pp. 471–481). Elsevier Inc. http://doi.org/10.1016/B978-0-12-800776-1.00031-5Perez-garcia, O., Escalante, F. M. E., Luz, E., & Bashan, Y. (2010). Heterotrophic cultures of microalgae : Metabolism and potential products. Water Research, 45(1), 11–36. http://doi.org/10.1016/j.watres.2010.08.037Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2012). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 1–24.Ribeiro, L. a., da Silva, P. P., Mata, T. M., & Martins, A. a. (2015). Prospects of using microalgae for biofuels production: Results of a Delphi study. Renewable Energy, 75, 799–804. http://doi.org/10.1016/j.renene.2014.10.065Roy, S., Kumar, K., Ghosh, S., & Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166. http://doi.org/10.1016/j.biombioe.2013.12.006Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278. http://doi.org/10.1016/j.rser.2014.04.007Salema, A. A., & Ani, F. N. (2012). Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. Journal of Analytical and Applied Pyrolysis, 96, 162–172. http://doi.org/10.1016/j.jaap.2012.03.018Sánchez, E. (2012). Desarrollo de un proceso para el aprovechamiento integral de microalgas para la obtención de biocombustibles. Universidad Industrial de Santander.Scaife, M. a., Merkx-Jacques, A., Woodhall, D. L., & Armenta, R. E. (2015). Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews, 44, 620–642. http://doi.org/10.1016/j.rser.2014.12.024Silveira, M., Gonçalves, F., Andrade, R., & Souza, Z. De. (2014). The scientometric research on macroalgal biomass as a source of biofuel feedstock. ALGAL, 6, 132–138. http://doi.org/10.1016/j.algal.2014.11.001Singh, S. K., Bansal, A., Jha, M. K., & Jain, R. (2013). Production of biodiesel from wastewater grown Chlorella minutissima. Indian Journal of Chemical Technology, 20, 341–345.Skonieczny, M. T., & Yargeau, V. (2009). Biohydrogen production from wastewater by Clostridium beijerinckii : Effect of pH and substrate concentration. International Journal of Hydrogen Energy, 34(8), 3288–3294. http://doi.org/10.1016/j.ijhydene.2009.01.044Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. http://doi.org/10.1016/j.rser.2012.03.047Suganya, T., Kasirajan, R., & Renganathan, S. (2014). Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production. Bioresource Technology, 156, 283–290.Surendhiran, D., & Vijay, M. (2012). Microalgal Biodiesel - A Comprehensive Review on the Potential and Alternative Biofuel. Journal of Chemical Sciences, 2(11), 71–82.Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892–5896.Tabatabaei, M., Sulaiman, A., Nikbakht, A., Yusof, N., & Najafpour, G. (2011). Influential Parameters on Biomethane Generation in Anaerobic Wastewater Treatment Plants. In M. ;anzanera (Ed.), Alternative Fuel (pp. 227–263). InTech.Tabernero, A., Martín del Valle, E. M., & Galán, M. a. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115. http://doi.org/10.1016/j.bej.2011.11.006Tanaka, T., Muto, M., Liang, Y., Yoshino, T., & Matsunaga, T. (2015). Marine Microalgae. In S.-K. Kim (Ed.), Handbook of Marine Microalgae Biotechnology (pp. 51–63). Springer. http://doi.org/10.2115/fiber.46.7_P280Tiempo, E. (2016, May 24). Reservas de crudo están en el nivel de hace 5 años, p. 1.Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028. http://doi.org/10.1016/j.biortech.2007.01.046Valverde, F., Romero-Campero, F. J., León, R., Guerrero, M. G., & Serrano, A. (2016). New challenges in microalgae biotechnology. European Journal of Protistology.Vitova, M., Bisova, K., Kawano, S., & Zachleder, V. (2014). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 33(6), 1204–1218. http://doi.org/10.1016/j.biotechadv.2015.04.012Wang, K., Brown, R. C., Homsy, S., Martinez, L., & Sidhu, S. S. (2013). Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresource Technology, 127, 494–499.Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295.Weiland, P. (2010). Biogas production : current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860. http://doi.org/10.1007/s00253-009-2246-7Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36. http://doi.org/10.1007/s00253-007-1285-1Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507. http://doi.org/10.1016/j.jbiotec.2006.05.002Yoo, G., Park, M. S., & Yang, J. W. (2015). Chemical Pretreatment of Algal Biomass. In A. Pandey, S. Negi, P. Binod, & C. Larroche (Eds.), Pretreatment of Biomass: Processes and Technologies (pp. 227–258). Elsevier B.V.ORIGINAL2017OrduzYoleisy.pdf2017OrduzYoleisy.pdfTrabajo de gradoapplication/pdf1906913https://repository.usta.edu.co/bitstream/11634/34054/1/2017OrduzYoleisy.pdfb89667a3464a022b59db6c064cc721b9MD51open access2017OrduzYoleisy1.xlsx2017OrduzYoleisy1.xlsxFormato de identificaciónapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet53840https://repository.usta.edu.co/bitstream/11634/34054/2/2017OrduzYoleisy1.xlsx9ef0590c5d0d5322f83c390d8741a287MD52metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/34054/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/34054/4/license.txtaedeaf396fcd827b537c73d23464fc27MD54open accessTHUMBNAIL2017OrduzYoleisy.pdf.jpg2017OrduzYoleisy.pdf.jpgIM Thumbnailimage/jpeg6242https://repository.usta.edu.co/bitstream/11634/34054/5/2017OrduzYoleisy.pdf.jpg64953ec8ee342cdd6935fa9d3872d1a2MD55open access11634/34054oai:repository.usta.edu.co:11634/340542022-10-10 14:57:39.517open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K