Minería de texto en el estudio de las microalgas para la producción de biocombustibles
Se realizó un estudio de minería de texto con el fin de determinar las principales tendencias en el uso de microalgas como materia prima en la producción de biocombustibles entre 2000 y 2016. Se utilizó la base de datos de Scopus. Se encontraron un total de 2831 artículos. El número de artículos pub...
- Autores:
-
Orduz Díaz, Yoleisy
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2017
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/34054
- Acceso en línea:
- http://hdl.handle.net/11634/34054
- Palabra clave:
- Scientometric analysis
Biofuels
Microalge
Text mining
Análisis de citas bibliográficas
Minería de datos
Microalgas
Energía biomásica
Análisis cienciométrico
Biocombustibles
Microalgas
Minería de texto
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SantoToma2_4ca9a178e1c2306430d030d7f6786396 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/34054 |
network_acronym_str |
SantoToma2 |
network_name_str |
Universidad Santo Tomás |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Minería de texto en el estudio de las microalgas para la producción de biocombustibles |
title |
Minería de texto en el estudio de las microalgas para la producción de biocombustibles |
spellingShingle |
Minería de texto en el estudio de las microalgas para la producción de biocombustibles Scientometric analysis Biofuels Microalge Text mining Análisis de citas bibliográficas Minería de datos Microalgas Energía biomásica Análisis cienciométrico Biocombustibles Microalgas Minería de texto |
title_short |
Minería de texto en el estudio de las microalgas para la producción de biocombustibles |
title_full |
Minería de texto en el estudio de las microalgas para la producción de biocombustibles |
title_fullStr |
Minería de texto en el estudio de las microalgas para la producción de biocombustibles |
title_full_unstemmed |
Minería de texto en el estudio de las microalgas para la producción de biocombustibles |
title_sort |
Minería de texto en el estudio de las microalgas para la producción de biocombustibles |
dc.creator.fl_str_mv |
Orduz Díaz, Yoleisy |
dc.contributor.advisor.none.fl_str_mv |
Pinzón Joya, Julio Roberto Cervantes Díaz, Martha |
dc.contributor.author.none.fl_str_mv |
Orduz Díaz, Yoleisy |
dc.subject.keyword.spa.fl_str_mv |
Scientometric analysis Biofuels Microalge Text mining |
topic |
Scientometric analysis Biofuels Microalge Text mining Análisis de citas bibliográficas Minería de datos Microalgas Energía biomásica Análisis cienciométrico Biocombustibles Microalgas Minería de texto |
dc.subject.lemb.spa.fl_str_mv |
Análisis de citas bibliográficas Minería de datos Microalgas Energía biomásica |
dc.subject.proposal.spa.fl_str_mv |
Análisis cienciométrico Biocombustibles Microalgas Minería de texto |
description |
Se realizó un estudio de minería de texto con el fin de determinar las principales tendencias en el uso de microalgas como materia prima en la producción de biocombustibles entre 2000 y 2016. Se utilizó la base de datos de Scopus. Se encontraron un total de 2831 artículos. El número de artículos publicados sobre el uso de microalgas como materia prima para la producción de biocombustibles ha aumentado a lo largo de los años, especialmente durante los últimos tantos seis años de periodo de estudio. La mayoría de publicaciones se encuentran en Estados Unidos (603), China (506), India (257), Corea del Sur (214). En cuanto a Latinoamérica, Brasil ocupa el primer lugar con 107 artículos, seguido de México con 39, Chile con 26 y Colombia con 23. Se estudiaron diferentes tipos de biocombustibles como bioetanol, biodiesel, biometano, biogás, biohidrógeno y biopetróleo, encontrándose que el más estudiado es el biodiesel. En cuanto a las diferentes especies de microalgas, se encontró que el género Chlorella con 376 artículos científicos, siendo la especie más estudiada Chlorella vulgaris con 331 artículos, seguida por Chlorella sorokiniana con 77, Chlorella protothecoide con 69 y Chlorella pyrenoidosa con 54. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2021-05-12T20:04:57Z |
dc.date.available.none.fl_str_mv |
2021-05-12T20:04:57Z |
dc.type.local.spa.fl_str_mv |
Tesis de maestría |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
http://purl.org/coar/resource_type/c_bdcc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Orduz Díaz, Y. (2017). Minería de texto en el estudio de las microalgas para la producción de biocombustibles [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombia |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/34054 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Orduz Díaz, Y. (2017). Minería de texto en el estudio de las microalgas para la producción de biocombustibles [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombia reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/34054 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahmad, a. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15, 584–593. Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109. Anderson, R. (2005). Algal Culturing Techniques. (Elsevier, Ed.). Arshadi, M., & Sellstedt, A. (2008). Production of Energy from Biomass. In J. Clark & F. Deswarte (Eds.), Introduction to Chemicals from Biomass (pp. 143–178). Babich, I. V., van der Hulst, M., Lefferts, L., Moulijn, J. a., O’Connor, P., & Seshan, K. (2011). Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35(7), 3199–3207. Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae : A review, 27, 128–148. Bajhaiya, A., Mandotra, S., Suseela, M., Toppo, K., & Ranade, S. (2010). Algal biodiesel: the next generation biofuel for India. Asian Journal of Experimental Biological Sciences, 1(4), 728–739. Bala Deshpande, V. K. (2015). Text Mining. In Predictive Analytics and Data Mining (pp. 275–303). http://doi.org/10.1016/B978-0-12-801460-8.00009-4 Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210. Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20(3), 264–271. Belotti, G., De Caprariis, B., De Filippis, P., Scarsella, M., & Verdone, N. (2014). Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass and Bioenergy, 61, 187–195. Bennion, E. P., Ginosar, D. M., Moses, J., Agblevor, F., & Quinn, J. C. (2015). Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways. Applied Energy, 154, 1062–1071. Bernard, O. (2011). Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. Journal of Process Control, 21(10), 1378–1389. Biofuels information. (2010). Retrieved from http://biofuel.org.uk/ Bisen, P. S., Sanodiya, B. S., Thakur, G. S., Baghel, R. K., & Prasad, G. B. K. S. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnology Letters, 32(8), 1019–1030. Borges, F. C., Xie, Q., Min, M., Muniz, L. A. R., Farenzena, M., Trierweiler, J. O., … Ruan, R. (2014). Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresource Technology, 166, 518–526. Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 108(4), 766–776. Bridgwater, T. (2007). Biomass Pyrolysis. Birmingham: IEA Bioenergy. Brown, D., Cabbage, M., & McCarthy, L. (2016). NASA, NOAA Analyses Reveal Record Shattering Global Warm Temperatures in 2015. Retrieved from www.nasa.gov. Cadoret, J. P., Garnier, M., & Saint-Jean, B. (2012). Microalgae, Functional Genomics and Biotechnology. In Advances in Botanical Research (Vol. 64, pp. 285–341). Elsevier. Campanella, A., & Harold, M. P. (2012). Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts. Biomass and Bioenergy, 46, 218–232. Campaña-Torres, A., Martínez-Córdova, L., Martínez-Porchas, M., López-Elías, J., & Porchas-Cornejo, M. (2012). Productive response of Nannochloropsis oculata , cultured in different media and their efficiency as food for the rotifer Brachionus rotundiformis Respuesta productiva de Nannochloropsis oculata , cultivada en diferentes medios y su eficiencia. International Journal of Experimental Botany, 9457(81), 45–50. Castells, X. (2005). Tratamiento y valorización energética de residuos. España: Ediciones Díaz de Santos. Chacón-Lee, T. L., & González-Mariño, G. E. (2010). Microalgae for “Healthy” Foods-Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655–675. Cheremisinoff, N., Rosenfeld, P., & Davletshin, A. (2008). The Food and Dairy Industry. In Responsible Care: A New Strategy for Pollution Prevention and Waste Reduction Through Environment Management (pp. 383–434). http://doi.org/10.1016/B978-1-933762-16-6.50010-4 Chisti, Y. (2007b). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. http://doi.org/10.1016/j.biotechadv.2007.02.001 Chong, M., Sabaratnam, V., Shirai, Y., & Ali, M. (2009). Biohydrogen production from biomass and industrial wastes by dark fermentation. International Journal of Hydrogen Energy, 34(8), 3277–3287. http://doi.org/10.1016/j.ijhydene.2009.02.010 Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. http://doi.org/10.1016/S0196-8904(00)00137-0 Demirbas, A. (2006). Oily products from mosses and algae via pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(October 2013), 933–940. http://doi.org/10.1080/15567030802464388 Demirbas, A. (2010). Algae Energy. Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738–2749. http://doi.org/10.1016/j.enconman.2010.06.010 Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable Resources. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. El Universal. (2011, October 26). FMI : La “primavera árabe” frenó la actividad económica en varios países, p. 1. Cartagena. Retrieved from http://www.eluniversal.com.co/cartagena/economica/fmi-la-primavera-arabe-freno-la-actividad-economica-en-varios-paises-50403 Farooq, W., Suh, W. I., Park, M. S., & Yang, J. (2014). Bioresource Technology Water use and its recycling in microalgae cultivation for biofuel application. BIORESOURCE TECHNOLOGY. http://doi.org/10.1016/j.biortech.2014.10.140 Georgogianni, K. G., Kontominas, M. G., Pomonis, P. J., Avlonitis, D., & Gergis, V. (2008). Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Processing Technology, 89(5), 503–509. http://doi.org/10.1016/j.fuproc.2007.10.004 Ghaly, a. E., Dave, D., Brooks, M. S., & Budge, S. (2010). Production of biodiesel by enzymatic transesterification: Review. American Journal of Biochemistry and Biotechnology, 6(2), 54–76. http://doi.org/10.3844/ajbbsp.2010.54.76 Ginkel, S. W. Van, Oh, S., & Logan, B. E. (2005). Biohydrogen gas production from food processing and domestic wastewaters, 30, 1535–1542. http://doi.org/10.1016/j.ijhydene.2004.09.017 Grierson, S., Strezov, V., Ellem, G., Mcgregor, R., & Herbertson, J. (2009). Thermal characterisation of microalgae under slow pyrolysis conditions. Journal of Analytical and Applied Pyrolysis, 85(1-2), 118–123. Grierson, S., Strezov, V., & Shah, P. (2011). Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresource Technology, 102(17), 8232–8240. Haas, M. J., & Wagner, K. (2011). Simplifying biodiesel production: The direct or in situ transesterification of algal biomass. European Journal of Lipid Science and Technology, 113(10), 1219–1229. http://doi.org/10.1002/ejlt.201100106 Harman-Ware, A. E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., … Debolt, S. (2013). Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmussp. Renewable Energy, 60, 625–632. Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de BiologíaMArina Y Oceanografía, 49, 157–173. http://doi.org/10.4067/S0718-19572014000200001 Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO 2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252. http://doi.org/10.1016/j.biortech.2011.11.133 Horsman, M., Wu, N., Lan, C. Q., & Dubois-calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, (1), 815–820. http://doi.org/10.1021/bp.070371k Hossain, M. N. Bin, Basu, J. K., & Mamun, M. (2015). The Production of Ethanol from Micro-Algae Spirulina. Procedia Engineering, 105, 733–738. http://doi.org/10.1016/j.proeng.2015.05.064 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal : For Cell and Molecular Biology, 54(4), 621–639. Hu, Z., Ma, X., & Chen, C. (2012). A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresource Technology, 107, 487–493. Huang, G., Chen, F., Wei, D., Zhang, X., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38–46. http://doi.org/10.1016/j.apenergy.2009.06.016 IEA. (2013). Resources to reserves 2013. París. IEA. (2016). World Energy Outlook 2016. París. IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Nueva York. Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221–6229. Khanal, S. K. (2008). Anaerobic Biotechnology for Bioenergy Production. Iowa: John Wiley & Sons. Kim, S. W., Koo, B. S., & Lee, D. H. (2014). A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresource Technology, 162, 96–102. http://doi.org/10.1016/j.biortech.2014.03.136 Kim, T.-H., Lee, Y., Han, S.-H., & Hwang, S.-J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75–80. Kongjan, P., O-thong, S., Kotay, M., Min, B., & Angelidaki, I. (2010). Biohydrogen Production From Wheat Straw Hydrolysate by Dark Fermentation Using Extreme Thermophilic Mixed Culture, 105(5), 899–908. http://doi.org/10.1002/bit.22616 Konur, O. (2011). The scientometric evaluation of the research on the algae and bio-energy. Applied Energy, 88(10), 3532–3540. http://doi.org/10.1016/j.apenergy.2010.12.059 Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690. Lam, M. K., & Lee, K. T. (2015). Bioethanol Production from Microalgae. Handbook of Marine Microalgae. Elsevier Inc. http://doi.org/10.1016/B978-0-12-800776-1.00012-1 Lewis, N. S., & Nocera, D. G. (2006). Powering the planet : Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729–15736. Liang, Y. (2013). Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860–868. Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645. http://doi.org/10.1007/s00253-012-4398-0 Mata, T. M., Martins, A. a., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. Michán, L., & Muñoz-velasco, I. (2013). Cienciometría para ciencias médicas : definiciones , aplicaciones y perspectivas. Investigación En Educación Médica, 2(6), 100–106. Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), 848–889. http://doi.org/10.1021/ef0502397 Nakano, S., Takekoshi, H., & Nakano, M. (2007). Immunoglobulin A Concentrations in Breast Milk. Journal of Medicinal Food, 10(1), 134–142. http://doi.org/10.1089/jmf.2006.023 Orduz Díaz, Y. (2015). Uso de la fluoresceína como pigmento fotosintético auxiliar en el cultivo de microalgas de la especie Chlorella vulgaris. Ota, S., Oshima, K., Yamazaki, T., Kim, S., Yu, Z., Yoshihara, M., … Hattori, M. (2016). Biotechnology for Biofuels Highly efficient lipid production in the green alga Parachlorella kessleri : draft genome and transcriptome endorsed by whole - cell 3D ultrastructure. Biotechnology for Biofuels, 9, 1–10. http://doi.org/10.1186/s13068-016-0424-2 Pan, C. M., & Fan, Y. T. (2008). Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp . Fanp2. Bioresource Technology, 99, 3146–3154. Pan, P., Hu, C., Yang, W., Li, Y., Dong, L., Zhu, L., … Fan, Y. (2010). The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101(12), 4593–4599. Paniagua-Michel, J. (2015). Bioremediation with Microalgae : Toward Sustainable Production of Biofuels. In Handbook of Marine Microalgae (pp. 471–481). Elsevier Inc. http://doi.org/10.1016/B978-0-12-800776-1.00031-5 Perez-garcia, O., Escalante, F. M. E., Luz, E., & Bashan, Y. (2010). Heterotrophic cultures of microalgae : Metabolism and potential products. Water Research, 45(1), 11–36. http://doi.org/10.1016/j.watres.2010.08.037 Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2012). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 1–24. Ribeiro, L. a., da Silva, P. P., Mata, T. M., & Martins, A. a. (2015). Prospects of using microalgae for biofuels production: Results of a Delphi study. Renewable Energy, 75, 799–804. http://doi.org/10.1016/j.renene.2014.10.065 Roy, S., Kumar, K., Ghosh, S., & Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166. http://doi.org/10.1016/j.biombioe.2013.12.006 Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278. http://doi.org/10.1016/j.rser.2014.04.007 Salema, A. A., & Ani, F. N. (2012). Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. Journal of Analytical and Applied Pyrolysis, 96, 162–172. http://doi.org/10.1016/j.jaap.2012.03.018 Sánchez, E. (2012). Desarrollo de un proceso para el aprovechamiento integral de microalgas para la obtención de biocombustibles. Universidad Industrial de Santander. Scaife, M. a., Merkx-Jacques, A., Woodhall, D. L., & Armenta, R. E. (2015). Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews, 44, 620–642. http://doi.org/10.1016/j.rser.2014.12.024 Silveira, M., Gonçalves, F., Andrade, R., & Souza, Z. De. (2014). The scientometric research on macroalgal biomass as a source of biofuel feedstock. ALGAL, 6, 132–138. http://doi.org/10.1016/j.algal.2014.11.001 Singh, S. K., Bansal, A., Jha, M. K., & Jain, R. (2013). Production of biodiesel from wastewater grown Chlorella minutissima. Indian Journal of Chemical Technology, 20, 341–345. Skonieczny, M. T., & Yargeau, V. (2009). Biohydrogen production from wastewater by Clostridium beijerinckii : Effect of pH and substrate concentration. International Journal of Hydrogen Energy, 34(8), 3288–3294. http://doi.org/10.1016/j.ijhydene.2009.01.044 Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96. Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. http://doi.org/10.1016/j.rser.2012.03.047 Suganya, T., Kasirajan, R., & Renganathan, S. (2014). Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production. Bioresource Technology, 156, 283–290. Surendhiran, D., & Vijay, M. (2012). Microalgal Biodiesel - A Comprehensive Review on the Potential and Alternative Biofuel. Journal of Chemical Sciences, 2(11), 71–82. Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892–5896. Tabatabaei, M., Sulaiman, A., Nikbakht, A., Yusof, N., & Najafpour, G. (2011). Influential Parameters on Biomethane Generation in Anaerobic Wastewater Treatment Plants. In M. ;anzanera (Ed.), Alternative Fuel (pp. 227–263). InTech. Tabernero, A., Martín del Valle, E. M., & Galán, M. a. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115. http://doi.org/10.1016/j.bej.2011.11.006 Tanaka, T., Muto, M., Liang, Y., Yoshino, T., & Matsunaga, T. (2015). Marine Microalgae. In S.-K. Kim (Ed.), Handbook of Marine Microalgae Biotechnology (pp. 51–63). Springer. http://doi.org/10.2115/fiber.46.7_P280 Tiempo, E. (2016, May 24). Reservas de crudo están en el nivel de hace 5 años, p. 1. Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028. http://doi.org/10.1016/j.biortech.2007.01.046 Valverde, F., Romero-Campero, F. J., León, R., Guerrero, M. G., & Serrano, A. (2016). New challenges in microalgae biotechnology. European Journal of Protistology. Vitova, M., Bisova, K., Kawano, S., & Zachleder, V. (2014). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 33(6), 1204–1218. http://doi.org/10.1016/j.biotechadv.2015.04.012 Wang, K., Brown, R. C., Homsy, S., Martinez, L., & Sidhu, S. S. (2013). Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresource Technology, 127, 494–499. Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295. Weiland, P. (2010). Biogas production : current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860. http://doi.org/10.1007/s00253-009-2246-7 Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36. http://doi.org/10.1007/s00253-007-1285-1 Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507. http://doi.org/10.1016/j.jbiotec.2006.05.002 Yoo, G., Park, M. S., & Yang, J. W. (2015). Chemical Pretreatment of Algal Biomass. In A. Pandey, S. Negi, P. Binod, & C. Larroche (Eds.), Pretreatment of Biomass: Processes and Technologies (pp. 227–258). Elsevier B.V. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bucaramanga |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Maestría Ciencias y Tecnologías Ambientales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Química Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/34054/1/2017OrduzYoleisy.pdf https://repository.usta.edu.co/bitstream/11634/34054/2/2017OrduzYoleisy1.xlsx https://repository.usta.edu.co/bitstream/11634/34054/3/license_rdf https://repository.usta.edu.co/bitstream/11634/34054/4/license.txt https://repository.usta.edu.co/bitstream/11634/34054/5/2017OrduzYoleisy.pdf.jpg |
bitstream.checksum.fl_str_mv |
b89667a3464a022b59db6c064cc721b9 9ef0590c5d0d5322f83c390d8741a287 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 64953ec8ee342cdd6935fa9d3872d1a2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1800786352118169600 |
spelling |
Pinzón Joya, Julio RobertoCervantes Díaz, MarthaOrduz Díaz, Yoleisy2021-05-12T20:04:57Z2021-05-12T20:04:57Z2017Orduz Díaz, Y. (2017). Minería de texto en el estudio de las microalgas para la producción de biocombustibles [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombiahttp://hdl.handle.net/11634/34054reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coSe realizó un estudio de minería de texto con el fin de determinar las principales tendencias en el uso de microalgas como materia prima en la producción de biocombustibles entre 2000 y 2016. Se utilizó la base de datos de Scopus. Se encontraron un total de 2831 artículos. El número de artículos publicados sobre el uso de microalgas como materia prima para la producción de biocombustibles ha aumentado a lo largo de los años, especialmente durante los últimos tantos seis años de periodo de estudio. La mayoría de publicaciones se encuentran en Estados Unidos (603), China (506), India (257), Corea del Sur (214). En cuanto a Latinoamérica, Brasil ocupa el primer lugar con 107 artículos, seguido de México con 39, Chile con 26 y Colombia con 23. Se estudiaron diferentes tipos de biocombustibles como bioetanol, biodiesel, biometano, biogás, biohidrógeno y biopetróleo, encontrándose que el más estudiado es el biodiesel. En cuanto a las diferentes especies de microalgas, se encontró que el género Chlorella con 376 artículos científicos, siendo la especie más estudiada Chlorella vulgaris con 331 artículos, seguida por Chlorella sorokiniana con 77, Chlorella protothecoide con 69 y Chlorella pyrenoidosa con 54.The present study known as text mining was conducted to determine the main trends in the use of microalgae as a raw material in the production of biofuels between 2000 and 2016. The Scopus database was used. A total of 2831 articles were found. The number of articles published on the use of microalgae as a raw material for the production of biofuels has increased over the years, especially during the last six years of study period. Most publications are in the United States (603), China (506), India (257), South Korea (214). In Latin America, Brazil ranks first with 107 articles, followed by Mexico with 39, Chile with 26 and Colombia with 23. Different types of biofuels were studied, such as bioethanol, biodiesel, biomethane, biogas, biohydrogen and bio-oil. The most studied is biodiesel. As for the different species of microalgae, the genus Chlorella was found with 376 scientific articles, being the most studied species Chlorella vulgaris with 331 articles, followed by Chlorella sorokiniana with 77, Chlorella protothecoide with 69 and Chlorella pyrenoidosa with 54.http://www.ustabuca.edu.co/ustabmanga/presentacionMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ciencias y Tecnologías AmbientalesFacultad de Química AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Minería de texto en el estudio de las microalgas para la producción de biocombustiblesScientometric analysisBiofuelsMicroalgeText miningAnálisis de citas bibliográficasMinería de datosMicroalgasEnergía biomásicaAnálisis cienciométricoBiocombustiblesMicroalgasMinería de textoTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BucaramangaAhmad, a. L., Yasin, N. H. M., Derek, C. J. C., & Lim, J. K. (2011). Microalgae as a sustainable energy source for biodiesel production: A review. Renewable and Sustainable Energy Reviews, 15, 584–593.Akhtar, J., & Saidina Amin, N. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renewable and Sustainable Energy Reviews, 16(7), 5101–5109.Anderson, R. (2005). Algal Culturing Techniques. (Elsevier, Ed.).Arshadi, M., & Sellstedt, A. (2008). Production of Energy from Biomass. In J. Clark & F. Deswarte (Eds.), Introduction to Chemicals from Biomass (pp. 143–178).Babich, I. V., van der Hulst, M., Lefferts, L., Moulijn, J. a., O’Connor, P., & Seshan, K. (2011). Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass and Bioenergy, 35(7), 3199–3207.Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae : A review, 27, 128–148.Bajhaiya, A., Mandotra, S., Suseela, M., Toppo, K., & Ranade, S. (2010). Algal biodiesel: the next generation biofuel for India. Asian Journal of Experimental Biological Sciences, 1(4), 728–739.Bala Deshpande, V. K. (2015). Text Mining. In Predictive Analytics and Data Mining (pp. 275–303). http://doi.org/10.1016/B978-0-12-801460-8.00009-4Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210.Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20(3), 264–271.Belotti, G., De Caprariis, B., De Filippis, P., Scarsella, M., & Verdone, N. (2014). Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass and Bioenergy, 61, 187–195.Bennion, E. P., Ginosar, D. M., Moses, J., Agblevor, F., & Quinn, J. C. (2015). Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways. Applied Energy, 154, 1062–1071.Bernard, O. (2011). Hurdles and challenges for modelling and control of microalgae for CO2 mitigation and biofuel production. Journal of Process Control, 21(10), 1378–1389.Biofuels information. (2010). Retrieved from http://biofuel.org.uk/Bisen, P. S., Sanodiya, B. S., Thakur, G. S., Baghel, R. K., & Prasad, G. B. K. S. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnology Letters, 32(8), 1019–1030.Borges, F. C., Xie, Q., Min, M., Muniz, L. A. R., Farenzena, M., Trierweiler, J. O., … Ruan, R. (2014). Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresource Technology, 166, 518–526.Brányiková, I., Maršálková, B., Doucha, J., Brányik, T., Bišová, K., Zachleder, V., & Vítová, M. (2011). Microalgae-novel highly efficient starch producers. Biotechnology and Bioengineering, 108(4), 766–776.Bridgwater, T. (2007). Biomass Pyrolysis. Birmingham: IEA Bioenergy.Brown, D., Cabbage, M., & McCarthy, L. (2016). NASA, NOAA Analyses Reveal Record Shattering Global Warm Temperatures in 2015. Retrieved from www.nasa.gov.Cadoret, J. P., Garnier, M., & Saint-Jean, B. (2012). Microalgae, Functional Genomics and Biotechnology. In Advances in Botanical Research (Vol. 64, pp. 285–341). Elsevier.Campanella, A., & Harold, M. P. (2012). Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts. Biomass and Bioenergy, 46, 218–232.Campaña-Torres, A., Martínez-Córdova, L., Martínez-Porchas, M., López-Elías, J., & Porchas-Cornejo, M. (2012). Productive response of Nannochloropsis oculata , cultured in different media and their efficiency as food for the rotifer Brachionus rotundiformis Respuesta productiva de Nannochloropsis oculata , cultivada en diferentes medios y su eficiencia. International Journal of Experimental Botany, 9457(81), 45–50.Castells, X. (2005). Tratamiento y valorización energética de residuos. España: Ediciones Díaz de Santos.Chacón-Lee, T. L., & González-Mariño, G. E. (2010). Microalgae for “Healthy” Foods-Possibilities and Challenges. Comprehensive Reviews in Food Science and Food Safety, 9(6), 655–675.Cheremisinoff, N., Rosenfeld, P., & Davletshin, A. (2008). The Food and Dairy Industry. In Responsible Care: A New Strategy for Pollution Prevention and Waste Reduction Through Environment Management (pp. 383–434). http://doi.org/10.1016/B978-1-933762-16-6.50010-4Chisti, Y. (2007b). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306. http://doi.org/10.1016/j.biotechadv.2007.02.001Chong, M., Sabaratnam, V., Shirai, Y., & Ali, M. (2009). Biohydrogen production from biomass and industrial wastes by dark fermentation. International Journal of Hydrogen Energy, 34(8), 3277–3287. http://doi.org/10.1016/j.ijhydene.2009.02.010Demirbas, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 42(11), 1357–1378. http://doi.org/10.1016/S0196-8904(00)00137-0Demirbas, A. (2006). Oily products from mosses and algae via pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 28(October 2013), 933–940. http://doi.org/10.1080/15567030802464388Demirbas, A. (2010). Algae Energy.Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738–2749. http://doi.org/10.1016/j.enconman.2010.06.010Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable Resources. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.El Universal. (2011, October 26). FMI : La “primavera árabe” frenó la actividad económica en varios países, p. 1. Cartagena. Retrieved from http://www.eluniversal.com.co/cartagena/economica/fmi-la-primavera-arabe-freno-la-actividad-economica-en-varios-paises-50403Farooq, W., Suh, W. I., Park, M. S., & Yang, J. (2014). Bioresource Technology Water use and its recycling in microalgae cultivation for biofuel application. BIORESOURCE TECHNOLOGY. http://doi.org/10.1016/j.biortech.2014.10.140Georgogianni, K. G., Kontominas, M. G., Pomonis, P. J., Avlonitis, D., & Gergis, V. (2008). Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Processing Technology, 89(5), 503–509. http://doi.org/10.1016/j.fuproc.2007.10.004Ghaly, a. E., Dave, D., Brooks, M. S., & Budge, S. (2010). Production of biodiesel by enzymatic transesterification: Review. American Journal of Biochemistry and Biotechnology, 6(2), 54–76. http://doi.org/10.3844/ajbbsp.2010.54.76Ginkel, S. W. Van, Oh, S., & Logan, B. E. (2005). Biohydrogen gas production from food processing and domestic wastewaters, 30, 1535–1542. http://doi.org/10.1016/j.ijhydene.2004.09.017Grierson, S., Strezov, V., Ellem, G., Mcgregor, R., & Herbertson, J. (2009). Thermal characterisation of microalgae under slow pyrolysis conditions. Journal of Analytical and Applied Pyrolysis, 85(1-2), 118–123.Grierson, S., Strezov, V., & Shah, P. (2011). Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresource Technology, 102(17), 8232–8240.Haas, M. J., & Wagner, K. (2011). Simplifying biodiesel production: The direct or in situ transesterification of algal biomass. European Journal of Lipid Science and Technology, 113(10), 1219–1229. http://doi.org/10.1002/ejlt.201100106Harman-Ware, A. E., Morgan, T., Wilson, M., Crocker, M., Zhang, J., Liu, K., … Debolt, S. (2013). Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmussp. Renewable Energy, 60, 625–632.Hernández-Pérez, A., & Labbé, J. I. (2014). Microalgas, cultivo y beneficios. Revista de BiologíaMArina Y Oceanografía, 49, 157–173. http://doi.org/10.4067/S0718-19572014000200001Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO 2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252. http://doi.org/10.1016/j.biortech.2011.11.133Horsman, M., Wu, N., Lan, C. Q., & Dubois-calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, (1), 815–820. http://doi.org/10.1021/bp.070371kHossain, M. N. Bin, Basu, J. K., & Mamun, M. (2015). The Production of Ethanol from Micro-Algae Spirulina. Procedia Engineering, 105, 733–738. http://doi.org/10.1016/j.proeng.2015.05.064Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal : For Cell and Molecular Biology, 54(4), 621–639.Hu, Z., Ma, X., & Chen, C. (2012). A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresource Technology, 107, 487–493.Huang, G., Chen, F., Wei, D., Zhang, X., & Chen, G. (2010). Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38–46. http://doi.org/10.1016/j.apenergy.2009.06.016IEA. (2013). Resources to reserves 2013. París.IEA. (2016). World Energy Outlook 2016. París.IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Nueva York.Jena, U., Das, K. C., & Kastner, J. R. (2011). Effect of operating conditions of thermochemical liquefaction on biocrude production from Spirulina platensis. Bioresource Technology, 102(10), 6221–6229.Khanal, S. K. (2008). Anaerobic Biotechnology for Bioenergy Production. Iowa: John Wiley & Sons.Kim, S. W., Koo, B. S., & Lee, D. H. (2014). A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresource Technology, 162, 96–102. http://doi.org/10.1016/j.biortech.2014.03.136Kim, T.-H., Lee, Y., Han, S.-H., & Hwang, S.-J. (2013). The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75–80.Kongjan, P., O-thong, S., Kotay, M., Min, B., & Angelidaki, I. (2010). Biohydrogen Production From Wheat Straw Hydrolysate by Dark Fermentation Using Extreme Thermophilic Mixed Culture, 105(5), 899–908. http://doi.org/10.1002/bit.22616Konur, O. (2011). The scientometric evaluation of the research on the algae and bio-energy. Applied Energy, 88(10), 3532–3540. http://doi.org/10.1016/j.apenergy.2010.12.059Lam, M. K., & Lee, K. T. (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673–690.Lam, M. K., & Lee, K. T. (2015). Bioethanol Production from Microalgae. Handbook of Marine Microalgae. Elsevier Inc. http://doi.org/10.1016/B978-0-12-800776-1.00012-1Lewis, N. S., & Nocera, D. G. (2006). Powering the planet : Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 103(43), 15729–15736.Liang, Y. (2013). Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860–868.Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645. http://doi.org/10.1007/s00253-012-4398-0Mata, T. M., Martins, A. a., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.Michán, L., & Muñoz-velasco, I. (2013). Cienciometría para ciencias médicas : definiciones , aplicaciones y perspectivas. Investigación En Educación Médica, 2(6), 100–106.Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, 20(3), 848–889. http://doi.org/10.1021/ef0502397Nakano, S., Takekoshi, H., & Nakano, M. (2007). Immunoglobulin A Concentrations in Breast Milk. Journal of Medicinal Food, 10(1), 134–142. http://doi.org/10.1089/jmf.2006.023Orduz Díaz, Y. (2015). Uso de la fluoresceína como pigmento fotosintético auxiliar en el cultivo de microalgas de la especie Chlorella vulgaris.Ota, S., Oshima, K., Yamazaki, T., Kim, S., Yu, Z., Yoshihara, M., … Hattori, M. (2016). Biotechnology for Biofuels Highly efficient lipid production in the green alga Parachlorella kessleri : draft genome and transcriptome endorsed by whole - cell 3D ultrastructure. Biotechnology for Biofuels, 9, 1–10. http://doi.org/10.1186/s13068-016-0424-2Pan, C. M., & Fan, Y. T. (2008). Statistical optimization of process parameters on biohydrogen production from glucose by Clostridium sp . Fanp2. Bioresource Technology, 99, 3146–3154.Pan, P., Hu, C., Yang, W., Li, Y., Dong, L., Zhu, L., … Fan, Y. (2010). The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresource Technology, 101(12), 4593–4599.Paniagua-Michel, J. (2015). Bioremediation with Microalgae : Toward Sustainable Production of Biofuels. In Handbook of Marine Microalgae (pp. 471–481). Elsevier Inc. http://doi.org/10.1016/B978-0-12-800776-1.00031-5Perez-garcia, O., Escalante, F. M. E., Luz, E., & Bashan, Y. (2010). Heterotrophic cultures of microalgae : Metabolism and potential products. Water Research, 45(1), 11–36. http://doi.org/10.1016/j.watres.2010.08.037Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2012). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103, 1–24.Ribeiro, L. a., da Silva, P. P., Mata, T. M., & Martins, A. a. (2015). Prospects of using microalgae for biofuels production: Results of a Delphi study. Renewable Energy, 75, 799–804. http://doi.org/10.1016/j.renene.2014.10.065Roy, S., Kumar, K., Ghosh, S., & Das, D. (2014). Thermophilic biohydrogen production using pre-treated algal biomass as substrate. Biomass and Bioenergy, 61, 157–166. http://doi.org/10.1016/j.biombioe.2013.12.006Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278. http://doi.org/10.1016/j.rser.2014.04.007Salema, A. A., & Ani, F. N. (2012). Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer. Journal of Analytical and Applied Pyrolysis, 96, 162–172. http://doi.org/10.1016/j.jaap.2012.03.018Sánchez, E. (2012). Desarrollo de un proceso para el aprovechamiento integral de microalgas para la obtención de biocombustibles. Universidad Industrial de Santander.Scaife, M. a., Merkx-Jacques, A., Woodhall, D. L., & Armenta, R. E. (2015). Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews, 44, 620–642. http://doi.org/10.1016/j.rser.2014.12.024Silveira, M., Gonçalves, F., Andrade, R., & Souza, Z. De. (2014). The scientometric research on macroalgal biomass as a source of biofuel feedstock. ALGAL, 6, 132–138. http://doi.org/10.1016/j.algal.2014.11.001Singh, S. K., Bansal, A., Jha, M. K., & Jain, R. (2013). Production of biodiesel from wastewater grown Chlorella minutissima. Indian Journal of Chemical Technology, 20, 341–345.Skonieczny, M. T., & Yargeau, V. (2009). Biohydrogen production from wastewater by Clostridium beijerinckii : Effect of pH and substrate concentration. International Journal of Hydrogen Energy, 34(8), 3288–3294. http://doi.org/10.1016/j.ijhydene.2009.01.044Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316–4342. http://doi.org/10.1016/j.rser.2012.03.047Suganya, T., Kasirajan, R., & Renganathan, S. (2014). Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production. Bioresource Technology, 156, 283–290.Surendhiran, D., & Vijay, M. (2012). Microalgal Biodiesel - A Comprehensive Review on the Potential and Alternative Biofuel. Journal of Chemical Sciences, 2(11), 71–82.Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892–5896.Tabatabaei, M., Sulaiman, A., Nikbakht, A., Yusof, N., & Najafpour, G. (2011). Influential Parameters on Biomethane Generation in Anaerobic Wastewater Treatment Plants. In M. ;anzanera (Ed.), Alternative Fuel (pp. 227–263). InTech.Tabernero, A., Martín del Valle, E. M., & Galán, M. a. (2012). Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics. Biochemical Engineering Journal, 63, 104–115. http://doi.org/10.1016/j.bej.2011.11.006Tanaka, T., Muto, M., Liang, Y., Yoshino, T., & Matsunaga, T. (2015). Marine Microalgae. In S.-K. Kim (Ed.), Handbook of Marine Microalgae Biotechnology (pp. 51–63). Springer. http://doi.org/10.2115/fiber.46.7_P280Tiempo, E. (2016, May 24). Reservas de crudo están en el nivel de hace 5 años, p. 1.Ugwu, C. U., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028. http://doi.org/10.1016/j.biortech.2007.01.046Valverde, F., Romero-Campero, F. J., León, R., Guerrero, M. G., & Serrano, A. (2016). New challenges in microalgae biotechnology. European Journal of Protistology.Vitova, M., Bisova, K., Kawano, S., & Zachleder, V. (2014). Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnology Advances, 33(6), 1204–1218. http://doi.org/10.1016/j.biotechadv.2015.04.012Wang, K., Brown, R. C., Homsy, S., Martinez, L., & Sidhu, S. S. (2013). Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production. Bioresource Technology, 127, 494–499.Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295.Weiland, P. (2010). Biogas production : current state and perspectives. Applied Microbiology and Biotechnology, 85, 849–860. http://doi.org/10.1007/s00253-009-2246-7Xiong, W., Li, X., Xiang, J., & Wu, Q. (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78, 29–36. http://doi.org/10.1007/s00253-007-1285-1Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126, 499–507. http://doi.org/10.1016/j.jbiotec.2006.05.002Yoo, G., Park, M. S., & Yang, J. W. (2015). Chemical Pretreatment of Algal Biomass. In A. Pandey, S. Negi, P. Binod, & C. Larroche (Eds.), Pretreatment of Biomass: Processes and Technologies (pp. 227–258). Elsevier B.V.ORIGINAL2017OrduzYoleisy.pdf2017OrduzYoleisy.pdfTrabajo de gradoapplication/pdf1906913https://repository.usta.edu.co/bitstream/11634/34054/1/2017OrduzYoleisy.pdfb89667a3464a022b59db6c064cc721b9MD51open access2017OrduzYoleisy1.xlsx2017OrduzYoleisy1.xlsxFormato de identificaciónapplication/vnd.openxmlformats-officedocument.spreadsheetml.sheet53840https://repository.usta.edu.co/bitstream/11634/34054/2/2017OrduzYoleisy1.xlsx9ef0590c5d0d5322f83c390d8741a287MD52metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/34054/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/34054/4/license.txtaedeaf396fcd827b537c73d23464fc27MD54open accessTHUMBNAIL2017OrduzYoleisy.pdf.jpg2017OrduzYoleisy.pdf.jpgIM Thumbnailimage/jpeg6242https://repository.usta.edu.co/bitstream/11634/34054/5/2017OrduzYoleisy.pdf.jpg64953ec8ee342cdd6935fa9d3872d1a2MD55open access11634/34054oai:repository.usta.edu.co:11634/340542022-10-10 14:57:39.517open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |