Estimación de parámetros en modelos de mezclas usando algoritmos evolutivos

The mixture models are widely used in cases when there are elements that come from different populations, mixed in a superpopulation. There are traditional methods for the estimation of the parameters in mixture models: the Bayesian Method and the Expectation-Maximization (EM) algorithm. For that re...

Full description

Autores:
Romero-Rios, Natalia
Correa, Juan Carlos
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Santo Tomás
Repositorio:
Universidad Santo Tomás
Idioma:
eng
OAI Identifier:
oai:repository.usta.edu.co:11634/6460
Acceso en línea:
https://revistas.usantotomas.edu.co/index.php/estadistica/article/view/2585
Palabra clave:
Mixture estimation; mixture distribution; evolutive algorithms; genetic algorithms.
Estimación de mezclas; algoritmos evolutivos; algoritmos genéticos.
Rights
License
Copyright (c) 2016 Comunicaciones en Estadística
Description
Summary:The mixture models are widely used in cases when there are elements that come from different populations, mixed in a superpopulation. There are traditional methods for the estimation of the parameters in mixture models: the Bayesian Method and the Expectation-Maximization (EM) algorithm. For that reason, in this work we propose the use of evolutive algorithms, such as genetic algorithms. We propose an algorithm for the comparison of evolutive and traditional methods, and we illustrate the use of this algorithm with a real application. We found that the evolutive algorithms are a competitive option to estimate the parameters in mixture models in the cases when the populations in the mixture follows a gamma distribution, the weights of the populations in the mixture are even and the sam- ple size is bigger than 100 items. For the mixture of normal distributions and the estimation of the number of populations in a mixture, the traditional method is a better option than the genetic algorithm.