Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis.
El documento, describe y caracteriza los aliviaderos como parte de los sistemas de alcantarillado combinado. Se enfoca en caracterizar y definir sus objetivos en la operación del sistema, así como en establecer un protocolo que describirá las metodologías identificadas en una revisión bibliográfica...
- Autores:
-
Holguin Moreno, Claudia Marcela
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/42896
- Acceso en línea:
- http://hdl.handle.net/11634/42896
- Palabra clave:
- Urban drainage system
Sewer system combined
Combined Sewer Overflows
Sistemas de drenaje Urbano
Alcantarillado combinado
Aliviaderos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SantoToma2_2b6c51bd519ea6fdefe1e40d811087c1 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/42896 |
network_acronym_str |
SantoToma2 |
network_name_str |
Universidad Santo Tomás |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. |
title |
Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. |
spellingShingle |
Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. Urban drainage system Sewer system combined Combined Sewer Overflows Sistemas de drenaje Urbano Alcantarillado combinado Aliviaderos |
title_short |
Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. |
title_full |
Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. |
title_fullStr |
Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. |
title_full_unstemmed |
Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. |
title_sort |
Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. |
dc.creator.fl_str_mv |
Holguin Moreno, Claudia Marcela |
dc.contributor.advisor.none.fl_str_mv |
Cortez, Melquisedec |
dc.contributor.author.none.fl_str_mv |
Holguin Moreno, Claudia Marcela |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
Urban drainage system Sewer system combined Combined Sewer Overflows |
topic |
Urban drainage system Sewer system combined Combined Sewer Overflows Sistemas de drenaje Urbano Alcantarillado combinado Aliviaderos |
dc.subject.proposal.spa.fl_str_mv |
Sistemas de drenaje Urbano Alcantarillado combinado Aliviaderos |
description |
El documento, describe y caracteriza los aliviaderos como parte de los sistemas de alcantarillado combinado. Se enfoca en caracterizar y definir sus objetivos en la operación del sistema, así como en establecer un protocolo que describirá las metodologías identificadas en una revisión bibliográfica descriptiva, para la modelación dinámica computacional de las estructuras de control de caudal o aliviaderos |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-01T20:06:10Z |
dc.date.available.none.fl_str_mv |
2022-02-01T20:06:10Z |
dc.date.issued.none.fl_str_mv |
2022-01-23 |
dc.type.local.spa.fl_str_mv |
Tesis de maestría |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
http://purl.org/coar/resource_type/c_bdcc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Holguin, C. (2022). Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. Tesis de posgrado. Universidad Santo Tomás. Tunja. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/42896 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Holguin, C. (2022). Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. Tesis de posgrado. Universidad Santo Tomás. Tunja. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/42896 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Angerville, R., Perrodin, Y., Bazin, C. & Emmanuel, E. (2013). Evaluation of ecotoxicological risks related to the discharge of Combined Sewer Overflows (CSOs) in a periurban river. International Journal of Environmental Research and Public Health, 10(7), 2670–2687. https://doi.org/10.3390/ijerph10072670 ANSYS. (2013). ANSYS Fluent User’s Guide (15.0). ANSYS FLUENT Theory Guide (Versión 14.5). (2012). ANSY, Inc. http://www.ansys.com. Buyer, M., Vazquez, J. & Bremond, B. (2005). Numerical modelling of the hydraulic behaviour of lateral storm weirs in a transcritical regime | Modélisation du comportement hydraulique des déversoirs d’orage latéraux en régime transcritique. Revue Des Sciences de l’Eau, 18(1), 25–46. https://doi.org/10.7202/705548ar Cortés-Zambrano, M., Tequia, W. E. A. & Fernández, D. S. G. (2021). Implementation of the hydraulic modelling of urban drainage in the northeast sector, Tunja, Boyacá. Revista Facultad de Ingenieria, 101, 74–83. https://doi.org/10.17533/udea.redin.20200798 David Butler, Christoper James Digman, Christos Makropoulos & Jhon W. Davies. (n.d.). Urban Drainage Fourth Edition. Durango, N. (n.d.). Condiciones de frontera en el método de los elementos finitos. Egarr, D. A., Faram, M. G., O’Doherty, T., Phipps, D. A. & Syred, N. (2005). Computational fluid dynamic prediction of the residence time distribution of a prototype hydrodynamic vortex separator operating with a base flow component. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 219(1), 53–66. https://doi.org/10.1243/095440805X7017 el Samrani, A. G., Lartiges, B. S. & Villiéras, F. (2008). Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water Research, 42(4–5), 951–960. https://doi.org/10.1016/j.watres.2007.09.009 Elsevier. (2021). Why choose Scopus. https://www.elsevier.com/solutions/scopus/why-choose-scopus EPA. (1999). United States Environmental Protection Agency Combined Sewer Overflows Guidance For Monitoring And Modelling. EPA SWMM. (2015). Modelo de Gestión de Aguas Pluviales- Manual del Usuario. 257. ESSS. (2021). Blog ESSS. https://www.esss.co/es/blog/dinamica-de-fluidos-computacional-que-es/ F. Moukalled, L. Mangani & M. Darwish. (2019). The Finite Volume Method in Computational Fluid Dynamics (Springer, Ed.). Fernández Oro, J. M. (2012). Técnicas Numéricas en Ingeniería de Fluidos: Introducción a la Dinámica de Fluidos Computacional (CFD) por el Método de Volúmenes Finitos (Reverté, Ed.). Figueras, J., Cembrano, G., Puig, V., Quevedo, J., Salamero, M. & Marti, J. (2002). CORAL off-line: An object-oriented tool for optimal control of sewer networks. 2002 IEEE International Symposium on Computer Aided Control System Design, CACSD 2002 - Proceedings, 224–229. https://doi.org/10.1109/CACSD.2002.1036958 Flores-Rodriguez, J., Bussy, A.-L. & Thevenot, D. R. (1994). Toxic metals in urban runoff: Physico-chemical mobility assessment using speciation schemes. Water Science and Technology, 29(1–2), 83–93. https://doi.org/10.2166/wst.1994.0654 Flow Science, I. (2012a). FLOW 3D Documentation Release 10.1.0 (Chapter 5). Flow Science, I. (2012b). FLOW 3D Documentation Release 10.1.0 (Chapter 4; p. 149). Fong, T.-T., Phanikumar, M. S., Xagoraraki, I. & Rose, J. B. (2010). Quantitative detection of human adenoviruses in wastewater and combined sewer overflows influencing a Michigan river. Applied and Environmental Microbiology, 76(3), 715–723. https://doi.org/10.1128/AEM.01316-09 Fundación de Estudios Superiores. (n.d.). GUIA PARA LA ELABORACION DE ARTÍCULOS DE REVISION UNIDAD DE INVESTIGACIONES FUNDACIÓN DE ESTUDIOS SUPERIORES COMFANORTE FESC. Garzón Sánchez, S. H. (2014). Modelación en CFD de un tramo del río Arzobispo, Bogotá D.C. Pontificia Universidad Javeriana. Guitierrez, O., Poch, M., Corominas, Ll. & Montserrat, A. (2013). Field validation of a new low-cost method for determining occurrence and duration of combined sewer overflows. 463–464, 904–912. Gustavo, P. & Navarro, R. (n.d.). Modelos de turbulencia introductorio. Han, J. & He, S. (2021). Urban flooding events pose risks of virus spread during the novel coronavirus (COVID-19) pandemic. Science of the Total Environment, 755. https://doi.org/10.1016/j.scitotenv.2020.142491 Harwood, R. & Saul, A. J. (2001a). Modelling the performance of combined-sewer overflow chambers. Journal of the Chartered Institution of Water and Environmental Management, 15(4), 300–304. https://doi.org/10.1111/j.1747-6593.2001.tb00358.x Hassan, N. H., Zawawi, M. H., Zainol, M. R. R. M. A., Mazlan, A. Z. A., Abas, M. A. & Azman, M. A. (2020). Physical modelling analysis of Chenderoh spillway. AIP Conference Proceedings, 2291. https://doi.org/10.1063/5.0023921 He, C. & Marsalek, J. (2009). Hydraulic optimization of a combined sewer overflow (CSO) storage facility using numerical and physical modellingA paper submitted to the Journal of Environmental Engineering and Science. Canadian Journal of Civil Engineering, 36(2), 363–373. https://doi.org/10.1139/S08-050 HidrojING. (2010). HidrojING. Programa Hydra. http://www.hidrojing.com/recursos/aplicaciones-y-mas/ Hnaťuková, P. (2011). Geochemical distribution and mobility of heavy metals in sediments of urban streams affected by combined sewer overflows. Journal of Hydrology and Hydromechanics, 59(2), 85–94. https://doi.org/10.2478/v10098-011-0007-7 Hsu, M. H., Chen, S. H. & Chang, T. J. (2000). Inundation simulation for urban drainage basin with storm sewer system. Journal of Hydrology, 234(1–2), 21–37. https://doi.org/10.1016/S0022-1694(00)00237-7 Jeanbourquin, D., Sage, D., Nguyen, L., Schaeli, B., Kayal, S., Barry, D. A. & Rossi, L. (2011). Flow measurements in sewers based on image analysis: Automatic flow velocity algorithm. Water Science and Technology, 64(5), 1108–1114. https://doi.org/10.2166/wst.2011.176 Joshi, P., Leitão, J. P., Maurer, M. & Bach, P. M. (2021). Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Research, 191. https://doi.org/10.1016/j.watres.2020.116780 León, A. S., Liu, X., Ghidaoui, M. S., Schmidt, A. R. & García, M. H. (2010). Junction and drop-shaft boundary conditions for modelling free-surface, pressurized, and mixed free-surface pressurized transient flows. Journal of Hydraulic Engineering, 136(10), 705–715. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000240 Li, J., Dhanvantari, S., Averill, D. & Biswas, N. (2003). Windsor combined sewer overflow treatability study with chemical coagulation. Water Quality Research Journal of Canada, 38(2), 317–334. https://doi.org/10.2166/wqrj.2003.021 Lipeme Kouyi, G., Bret, P., Didier, J.-M., Chocat, B. & Billat, C. (2011). The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology, 64(2), 521–527. https://doi.org/10.2166/wst.2011.162 Martínez-Gomariz, E., Guerrero-Hidalga, M., Forero-Ortiz, E. & Gonzalez, S. (2021). Citizens’ Perception of Combined Sewer Overflow Spills into Bathing Coastal Areas. Water, Air, and Soil Pollution, 232(9). https://doi.org/10.1007/s11270-021-05305-x Maza Álvarez, J. A. & García Flores, M. (1984). HIDRODINÁMICA: Bases Para Hidráulica Fluvial (UNAM, Ed.; Capítulo 1). Monroy González, H. E. (2021). EVALUACIÓN DE EFICIENCIA HIDRÁULICA EN REJILLAS DE SUMIDEROS MEDIANTE INVESTIGACIÓN NUMÉRICA TRIDIMENSIONAL Y VERIFICACIÓN DE RESULTADOS DE EXPERIMENTACIÓN FÍSICA DE PROTOTIPOS. https://repository.usta.edu.co/handle/11634/33880 Mounce, S. R., Shepherd, W., Sailor, G., Shucksmith, J. & Saul, A. J. (2014). Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data. Water Science and Technology, 69(6), 1326–1333. https://doi.org/10.2166/wst.2014.024 Pérez Carmona, R. (2013). Diseño y construcción de alcantarillados sanitario, pluvial y drenaje en carreteras. https://books.google.com.co/books?id=Gtw3DgAAQBAJ&pg=PA9&dq=aliviaderos+en+Alcantarillados+combinados&hl=es&sa=X&ved=0ahUKEwihncrA9pflAhVNLK0KHbzxD84Q6AEILjAB#v=onepage&q=aliviaderos en Alcantarillados combinados&f=false Phillips, P. & Chalmers, A. (2009). Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain. Journal of the American Water Resources Association, 45(1), 45–57. https://doi.org/10.1111/j.1752-1688.2008.00288.x Piro, P., Carbone, M. & Garofalo, G. (2012). Innovative monitoring of combined sewer overflow (CSO) quality in the Liguori catchnment (Cosenza, Italy). Water Quality Research Journal of Canada, 47(2), 178–185. https://doi.org/10.2166/wqrjc.2012.035 Price, R. K. & Vojinović, Zoran. (2011). Urban hydroinformatics : data, models, and decision support for integrated urban water management. IWA Publishing. Ranald V. Giles. (1969). Mecanica de los Fluidos e Hidraulica (MacGRAW Hill, Ed.; 2da ed.). Regueiro Picallo, M., Suarez, J., Sañudo, E., Puertas, J. & Antas, J. (2020). New insights to study the accumulation and erosion processes of fi ne-grained organic sediments in combined sewer systems from a laboratory scale model. 716, 1–13. Riaño-Briceño, G., Barreiro-Gomez, J., Ramirez-Jaime, A., Quijano, N. & Ocampo-Martinez, C. (n.d.). MatSWMM-An Open-Source Toolbox for Designing Real-Time Control of Urban Drainage Systems. https://github.com/water-systems/MatSWMM Rocher, V., Azimi, S., Moilleron, R. & Chebbo, G. (2004). Hydrocarbons and heavy metals in the different sewer deposits in the “Le Marais” catchment (Paris, France): Stocks, distributions and origins. Science of the Total Environment, 323(1–3), 107–122. https://doi.org/10.1016/j.scitotenv.2003.10.010 Rosin, T. R., Romano, M., Keedwell, E. & Kapelan, Z. (2021). A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows. Water Resources Management, 35(4), 1273–1289. https://doi.org/10.1007/s11269-021-02780-z Salmasi, F., Sattari, M. T. & Nurcheshmeh, M. (2021). Genetic Programming Approach for Estimating Energy Dissipation of Flow over Cascade Spillways. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(1), 443–455. https://doi.org/10.1007/s40996-020-00541-3 Scopus® marca registrada de Elsevier BV. (2021, November 16). Analyze search results. ( TITLE-ABS-KEY ( of AND the AND Computational AND Fluid AND Dynamics ) ) AND ( Combined AND Sewer AND Overflows ) AND ( LIMIT-TO ( OA , “All” ) ). See, C. H., Horoshenkov, K. V., Tareq Bin Ali, M. & Tait, S. J. (2021a). An acoustic sensor for combined sewer overflow (CSO) screen condition monitoring in a drainage infrastructure. Sensors (Switzerland), 21(2), 1–15. https://doi.org/10.3390/s21020404 Thorndahl, S., Schaarup-Jensen, K. & Jensen, J. B. (2008). Probabilistic modelling of combined sewer overflow using the First Order Reliability Method. In Water Science and Technology (Vol. 57, Issue 9). https://doi.org/10.2166/wst.2008.301 USGS. (2021). Summary of DR3M. Water Resources Applications Software. https://water.usgs.gov/cgi-bin/man_wrdapp?dr3m(1) Vargas Valbuena, M. & Villegas Angarita, R. (2013). Aplicación Modelo Hidráulico de Alcantarillado mediante el Software EPA SWMM de la Urbanización Plaza Madrid. Vazquez, J., Kouyi, G. L. & Zug, M. (2006). Modelling and instrumentation of the storm overflows of the combined sewer system of Sélestat. Urban Water Journal, 3(2), 91–110. https://doi.org/10.1080/15730620600855936 Vazquez-Prokopec, G. M., vanden Eng, J. L., Kelly, R., Mead, D. G., Kolhe, P., Howgate, J., Kitron, U. & Burkot, T. R. (2010). The risk of west nile virus infection is associated with combined sewer overflow streams in urban Atlanta, Georgia, USA. Environmental Health Perspectives, 118(10), 1382–1388. https://doi.org/10.1289/ehp.1001939 Victor L. Streeter. (1972). Mecanica de los Fluidos (4ta ed.). WaPUG. (2006). Guide The Design of CSO Chambers to Incorporate Screens. https://www.ciwem.org/assets/pdf/Special%20Interest%20Groups/Urban%20Drainage%20Group/The-Design-of-CSO-Chambers-to-Incorporate-Screens.pdf Wei, Z., Shangguan, H., Zhan, J., Lin, R., Huang, X., Lu, L., Li, H., Du, B. & Fan, G. (2021). Water quality-based double-gates control strategy for combined sewer overflows pollution control. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040529 White F, M. (2011). Fluids Mechanics (McGraw Hill, Ed.; 7th Editio). Wilcox, D. C. (2006). Turbulence Modelling for CFD (D C W Industries, Ed.). Y. Niño. (2002). METODO DE LOS VOLUMENES FINITOS. Yang, Z., Yin, J., Lu, Y., Liu, Z., Yang, H. & Xu, G. (2021). Three-dimensional flow of a vortex drop shaft spillway with an elliptical tangential inlet. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040504 Zhou, Y., Chen, Y. & Shao, W. (2014). Field study of Dynamic Behaviour of Sediment in Combined Sewer Overflow Chambers. Proceedings of the Institution of Civil Engineers: Water Management, 167(9), 489–498. https://doi.org/10.1680/wama.13.00027 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Tunja |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Maestría Ingeniería Civil con Énfasis en Hidroambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Civil |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/42896/8/license_rdf https://repository.usta.edu.co/bitstream/11634/42896/9/license.txt https://repository.usta.edu.co/bitstream/11634/42896/5/2022ClaudiaHolguin.pdf https://repository.usta.edu.co/bitstream/11634/42896/7/Carta%20autorizaci%c3%b3n%20facultad.pdf https://repository.usta.edu.co/bitstream/11634/42896/10/Carta%20derechos%20de%20autor.pdf https://repository.usta.edu.co/bitstream/11634/42896/11/2022ClaudiaHolguin.pdf.jpg https://repository.usta.edu.co/bitstream/11634/42896/12/Carta%20autorizaci%c3%b3n%20facultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/42896/13/Carta%20derechos%20de%20autor.pdf.jpg |
bitstream.checksum.fl_str_mv |
217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 7420a5762c410395775407a3d02b0a43 67ae6ee07f4c3dfaafdd14626a53a90d f101dc4c3d4612ddcd55ecc2652b9a0a 99c605847ee83befe2d0c56e597df4ce 6e00067de17ef53d13b5e8e4bc3b7b30 8f7a0f695b5ddd7ae1912f61414f2b7e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1800786357671428096 |
spelling |
Cortez, MelquisedecHolguin Moreno, Claudia MarcelaUniversidad Santo Tomás2022-02-01T20:06:10Z2022-02-01T20:06:10Z2022-01-23Holguin, C. (2022). Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis. Tesis de posgrado. Universidad Santo Tomás. Tunja.http://hdl.handle.net/11634/42896reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl documento, describe y caracteriza los aliviaderos como parte de los sistemas de alcantarillado combinado. Se enfoca en caracterizar y definir sus objetivos en la operación del sistema, así como en establecer un protocolo que describirá las metodologías identificadas en una revisión bibliográfica descriptiva, para la modelación dinámica computacional de las estructuras de control de caudal o aliviaderosThis research paper describes and characterizes spillways as part of combined sewerage systems. It provides a characterization and definition of the objectives in the operation of the system. In addition, it establishes a protocol that describes the methodologies identified in a descriptive bibliographic review for the dynamic computational modelling of combined sewer overflows.Magíster en Ingeniería Civil con Énfasis en HidroambientalMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ingeniería Civil con Énfasis en HidroambientalFacultad de Ingeniería CivilAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Características hidráulicas de los aliviaderos (CSOs) en los alcantarillados combinados: enfoque teórico y protocolo de análisis.Urban drainage systemSewer system combinedCombined Sewer OverflowsSistemas de drenaje UrbanoAlcantarillado combinadoAliviaderosTesis de maestríainfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA TunjaAngerville, R., Perrodin, Y., Bazin, C. & Emmanuel, E. (2013). Evaluation of ecotoxicological risks related to the discharge of Combined Sewer Overflows (CSOs) in a periurban river. International Journal of Environmental Research and Public Health, 10(7), 2670–2687. https://doi.org/10.3390/ijerph10072670ANSYS. (2013). ANSYS Fluent User’s Guide (15.0).ANSYS FLUENT Theory Guide (Versión 14.5). (2012). ANSY, Inc. http://www.ansys.com.Buyer, M., Vazquez, J. & Bremond, B. (2005). Numerical modelling of the hydraulic behaviour of lateral storm weirs in a transcritical regime | Modélisation du comportement hydraulique des déversoirs d’orage latéraux en régime transcritique. Revue Des Sciences de l’Eau, 18(1), 25–46. https://doi.org/10.7202/705548arCortés-Zambrano, M., Tequia, W. E. A. & Fernández, D. S. G. (2021). Implementation of the hydraulic modelling of urban drainage in the northeast sector, Tunja, Boyacá. Revista Facultad de Ingenieria, 101, 74–83. https://doi.org/10.17533/udea.redin.20200798David Butler, Christoper James Digman, Christos Makropoulos & Jhon W. Davies. (n.d.). Urban Drainage Fourth Edition.Durango, N. (n.d.). Condiciones de frontera en el método de los elementos finitos.Egarr, D. A., Faram, M. G., O’Doherty, T., Phipps, D. A. & Syred, N. (2005). Computational fluid dynamic prediction of the residence time distribution of a prototype hydrodynamic vortex separator operating with a base flow component. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 219(1), 53–66. https://doi.org/10.1243/095440805X7017el Samrani, A. G., Lartiges, B. S. & Villiéras, F. (2008). Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water Research, 42(4–5), 951–960. https://doi.org/10.1016/j.watres.2007.09.009Elsevier. (2021). Why choose Scopus. https://www.elsevier.com/solutions/scopus/why-choose-scopusEPA. (1999). United States Environmental Protection Agency Combined Sewer Overflows Guidance For Monitoring And Modelling.EPA SWMM. (2015). Modelo de Gestión de Aguas Pluviales- Manual del Usuario. 257.ESSS. (2021). Blog ESSS. https://www.esss.co/es/blog/dinamica-de-fluidos-computacional-que-es/F. Moukalled, L. Mangani & M. Darwish. (2019). The Finite Volume Method in Computational Fluid Dynamics (Springer, Ed.).Fernández Oro, J. M. (2012). Técnicas Numéricas en Ingeniería de Fluidos: Introducción a la Dinámica de Fluidos Computacional (CFD) por el Método de Volúmenes Finitos (Reverté, Ed.).Figueras, J., Cembrano, G., Puig, V., Quevedo, J., Salamero, M. & Marti, J. (2002). CORAL off-line: An object-oriented tool for optimal control of sewer networks. 2002 IEEE International Symposium on Computer Aided Control System Design, CACSD 2002 - Proceedings, 224–229. https://doi.org/10.1109/CACSD.2002.1036958Flores-Rodriguez, J., Bussy, A.-L. & Thevenot, D. R. (1994). Toxic metals in urban runoff: Physico-chemical mobility assessment using speciation schemes. Water Science and Technology, 29(1–2), 83–93. https://doi.org/10.2166/wst.1994.0654Flow Science, I. (2012a). FLOW 3D Documentation Release 10.1.0 (Chapter 5).Flow Science, I. (2012b). FLOW 3D Documentation Release 10.1.0 (Chapter 4; p. 149).Fong, T.-T., Phanikumar, M. S., Xagoraraki, I. & Rose, J. B. (2010). Quantitative detection of human adenoviruses in wastewater and combined sewer overflows influencing a Michigan river. Applied and Environmental Microbiology, 76(3), 715–723. https://doi.org/10.1128/AEM.01316-09Fundación de Estudios Superiores. (n.d.). GUIA PARA LA ELABORACION DE ARTÍCULOS DE REVISION UNIDAD DE INVESTIGACIONES FUNDACIÓN DE ESTUDIOS SUPERIORES COMFANORTE FESC.Garzón Sánchez, S. H. (2014). Modelación en CFD de un tramo del río Arzobispo, Bogotá D.C. Pontificia Universidad Javeriana.Guitierrez, O., Poch, M., Corominas, Ll. & Montserrat, A. (2013). Field validation of a new low-cost method for determining occurrence and duration of combined sewer overflows. 463–464, 904–912.Gustavo, P. & Navarro, R. (n.d.). Modelos de turbulencia introductorio.Han, J. & He, S. (2021). Urban flooding events pose risks of virus spread during the novel coronavirus (COVID-19) pandemic. Science of the Total Environment, 755. https://doi.org/10.1016/j.scitotenv.2020.142491Harwood, R. & Saul, A. J. (2001a). Modelling the performance of combined-sewer overflow chambers. Journal of the Chartered Institution of Water and Environmental Management, 15(4), 300–304. https://doi.org/10.1111/j.1747-6593.2001.tb00358.xHassan, N. H., Zawawi, M. H., Zainol, M. R. R. M. A., Mazlan, A. Z. A., Abas, M. A. & Azman, M. A. (2020). Physical modelling analysis of Chenderoh spillway. AIP Conference Proceedings, 2291. https://doi.org/10.1063/5.0023921He, C. & Marsalek, J. (2009). Hydraulic optimization of a combined sewer overflow (CSO) storage facility using numerical and physical modellingA paper submitted to the Journal of Environmental Engineering and Science. Canadian Journal of Civil Engineering, 36(2), 363–373. https://doi.org/10.1139/S08-050HidrojING. (2010). HidrojING. Programa Hydra. http://www.hidrojing.com/recursos/aplicaciones-y-mas/Hnaťuková, P. (2011). Geochemical distribution and mobility of heavy metals in sediments of urban streams affected by combined sewer overflows. Journal of Hydrology and Hydromechanics, 59(2), 85–94. https://doi.org/10.2478/v10098-011-0007-7Hsu, M. H., Chen, S. H. & Chang, T. J. (2000). Inundation simulation for urban drainage basin with storm sewer system. Journal of Hydrology, 234(1–2), 21–37. https://doi.org/10.1016/S0022-1694(00)00237-7Jeanbourquin, D., Sage, D., Nguyen, L., Schaeli, B., Kayal, S., Barry, D. A. & Rossi, L. (2011). Flow measurements in sewers based on image analysis: Automatic flow velocity algorithm. Water Science and Technology, 64(5), 1108–1114. https://doi.org/10.2166/wst.2011.176Joshi, P., Leitão, J. P., Maurer, M. & Bach, P. M. (2021). Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Research, 191. https://doi.org/10.1016/j.watres.2020.116780León, A. S., Liu, X., Ghidaoui, M. S., Schmidt, A. R. & García, M. H. (2010). Junction and drop-shaft boundary conditions for modelling free-surface, pressurized, and mixed free-surface pressurized transient flows. Journal of Hydraulic Engineering, 136(10), 705–715. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000240Li, J., Dhanvantari, S., Averill, D. & Biswas, N. (2003). Windsor combined sewer overflow treatability study with chemical coagulation. Water Quality Research Journal of Canada, 38(2), 317–334. https://doi.org/10.2166/wqrj.2003.021Lipeme Kouyi, G., Bret, P., Didier, J.-M., Chocat, B. & Billat, C. (2011). The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology, 64(2), 521–527. https://doi.org/10.2166/wst.2011.162Martínez-Gomariz, E., Guerrero-Hidalga, M., Forero-Ortiz, E. & Gonzalez, S. (2021). Citizens’ Perception of Combined Sewer Overflow Spills into Bathing Coastal Areas. Water, Air, and Soil Pollution, 232(9). https://doi.org/10.1007/s11270-021-05305-xMaza Álvarez, J. A. & García Flores, M. (1984). HIDRODINÁMICA: Bases Para Hidráulica Fluvial (UNAM, Ed.; Capítulo 1).Monroy González, H. E. (2021). EVALUACIÓN DE EFICIENCIA HIDRÁULICA EN REJILLAS DE SUMIDEROS MEDIANTE INVESTIGACIÓN NUMÉRICA TRIDIMENSIONAL Y VERIFICACIÓN DE RESULTADOS DE EXPERIMENTACIÓN FÍSICA DE PROTOTIPOS. https://repository.usta.edu.co/handle/11634/33880Mounce, S. R., Shepherd, W., Sailor, G., Shucksmith, J. & Saul, A. J. (2014). Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data. Water Science and Technology, 69(6), 1326–1333. https://doi.org/10.2166/wst.2014.024Pérez Carmona, R. (2013). Diseño y construcción de alcantarillados sanitario, pluvial y drenaje en carreteras. https://books.google.com.co/books?id=Gtw3DgAAQBAJ&pg=PA9&dq=aliviaderos+en+Alcantarillados+combinados&hl=es&sa=X&ved=0ahUKEwihncrA9pflAhVNLK0KHbzxD84Q6AEILjAB#v=onepage&q=aliviaderos en Alcantarillados combinados&f=falsePhillips, P. & Chalmers, A. (2009). Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain. Journal of the American Water Resources Association, 45(1), 45–57. https://doi.org/10.1111/j.1752-1688.2008.00288.xPiro, P., Carbone, M. & Garofalo, G. (2012). Innovative monitoring of combined sewer overflow (CSO) quality in the Liguori catchnment (Cosenza, Italy). Water Quality Research Journal of Canada, 47(2), 178–185. https://doi.org/10.2166/wqrjc.2012.035Price, R. K. & Vojinović, Zoran. (2011). Urban hydroinformatics : data, models, and decision support for integrated urban water management. IWA Publishing.Ranald V. Giles. (1969). Mecanica de los Fluidos e Hidraulica (MacGRAW Hill, Ed.; 2da ed.).Regueiro Picallo, M., Suarez, J., Sañudo, E., Puertas, J. & Antas, J. (2020). New insights to study the accumulation and erosion processes of fi ne-grained organic sediments in combined sewer systems from a laboratory scale model. 716, 1–13.Riaño-Briceño, G., Barreiro-Gomez, J., Ramirez-Jaime, A., Quijano, N. & Ocampo-Martinez, C. (n.d.). MatSWMM-An Open-Source Toolbox for Designing Real-Time Control of Urban Drainage Systems. https://github.com/water-systems/MatSWMMRocher, V., Azimi, S., Moilleron, R. & Chebbo, G. (2004). Hydrocarbons and heavy metals in the different sewer deposits in the “Le Marais” catchment (Paris, France): Stocks, distributions and origins. Science of the Total Environment, 323(1–3), 107–122. https://doi.org/10.1016/j.scitotenv.2003.10.010Rosin, T. R., Romano, M., Keedwell, E. & Kapelan, Z. (2021). A Committee Evolutionary Neural Network for the Prediction of Combined Sewer Overflows. Water Resources Management, 35(4), 1273–1289. https://doi.org/10.1007/s11269-021-02780-zSalmasi, F., Sattari, M. T. & Nurcheshmeh, M. (2021). Genetic Programming Approach for Estimating Energy Dissipation of Flow over Cascade Spillways. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(1), 443–455. https://doi.org/10.1007/s40996-020-00541-3Scopus® marca registrada de Elsevier BV. (2021, November 16). Analyze search results. ( TITLE-ABS-KEY ( of AND the AND Computational AND Fluid AND Dynamics ) ) AND ( Combined AND Sewer AND Overflows ) AND ( LIMIT-TO ( OA , “All” ) ).See, C. H., Horoshenkov, K. V., Tareq Bin Ali, M. & Tait, S. J. (2021a). An acoustic sensor for combined sewer overflow (CSO) screen condition monitoring in a drainage infrastructure. Sensors (Switzerland), 21(2), 1–15. https://doi.org/10.3390/s21020404Thorndahl, S., Schaarup-Jensen, K. & Jensen, J. B. (2008). Probabilistic modelling of combined sewer overflow using the First Order Reliability Method. In Water Science and Technology (Vol. 57, Issue 9). https://doi.org/10.2166/wst.2008.301USGS. (2021). Summary of DR3M. Water Resources Applications Software. https://water.usgs.gov/cgi-bin/man_wrdapp?dr3m(1)Vargas Valbuena, M. & Villegas Angarita, R. (2013). Aplicación Modelo Hidráulico de Alcantarillado mediante el Software EPA SWMM de la Urbanización Plaza Madrid.Vazquez, J., Kouyi, G. L. & Zug, M. (2006). Modelling and instrumentation of the storm overflows of the combined sewer system of Sélestat. Urban Water Journal, 3(2), 91–110. https://doi.org/10.1080/15730620600855936Vazquez-Prokopec, G. M., vanden Eng, J. L., Kelly, R., Mead, D. G., Kolhe, P., Howgate, J., Kitron, U. & Burkot, T. R. (2010). The risk of west nile virus infection is associated with combined sewer overflow streams in urban Atlanta, Georgia, USA. Environmental Health Perspectives, 118(10), 1382–1388. https://doi.org/10.1289/ehp.1001939 Victor L. Streeter. (1972). Mecanica de los Fluidos (4ta ed.).WaPUG. (2006). Guide The Design of CSO Chambers to Incorporate Screens. https://www.ciwem.org/assets/pdf/Special%20Interest%20Groups/Urban%20Drainage%20Group/The-Design-of-CSO-Chambers-to-Incorporate-Screens.pdfWei, Z., Shangguan, H., Zhan, J., Lin, R., Huang, X., Lu, L., Li, H., Du, B. & Fan, G. (2021). Water quality-based double-gates control strategy for combined sewer overflows pollution control. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040529White F, M. (2011). Fluids Mechanics (McGraw Hill, Ed.; 7th Editio).Wilcox, D. C. (2006). Turbulence Modelling for CFD (D C W Industries, Ed.).Y. Niño. (2002). METODO DE LOS VOLUMENES FINITOS.Yang, Z., Yin, J., Lu, Y., Liu, Z., Yang, H. & Xu, G. (2021). Three-dimensional flow of a vortex drop shaft spillway with an elliptical tangential inlet. Water (Switzerland), 13(4). https://doi.org/10.3390/w13040504Zhou, Y., Chen, Y. & Shao, W. (2014). Field study of Dynamic Behaviour of Sediment in Combined Sewer Overflow Chambers. Proceedings of the Institution of Civil Engineers: Water Management, 167(9), 489–498. https://doi.org/10.1680/wama.13.00027CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/42896/8/license_rdf217700a34da79ed616c2feb68d4c5e06MD58open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/42896/9/license.txtaedeaf396fcd827b537c73d23464fc27MD59open accessORIGINAL2022ClaudiaHolguin.pdf2022ClaudiaHolguin.pdfDocumento Principalapplication/pdf630631https://repository.usta.edu.co/bitstream/11634/42896/5/2022ClaudiaHolguin.pdf7420a5762c410395775407a3d02b0a43MD55metadata only accessCarta autorización facultad.pdfCarta autorización facultad.pdfCarta autorización Facultadapplication/pdf171609https://repository.usta.edu.co/bitstream/11634/42896/7/Carta%20autorizaci%c3%b3n%20facultad.pdf67ae6ee07f4c3dfaafdd14626a53a90dMD57metadata only accessCarta derechos de autor.pdfCarta derechos de autor.pdfCarta derechos de autorapplication/pdf358153https://repository.usta.edu.co/bitstream/11634/42896/10/Carta%20derechos%20de%20autor.pdff101dc4c3d4612ddcd55ecc2652b9a0aMD510metadata only accessTHUMBNAIL2022ClaudiaHolguin.pdf.jpg2022ClaudiaHolguin.pdf.jpgIM Thumbnailimage/jpeg4237https://repository.usta.edu.co/bitstream/11634/42896/11/2022ClaudiaHolguin.pdf.jpg99c605847ee83befe2d0c56e597df4ceMD511open accessCarta autorización facultad.pdf.jpgCarta autorización facultad.pdf.jpgIM Thumbnailimage/jpeg8852https://repository.usta.edu.co/bitstream/11634/42896/12/Carta%20autorizaci%c3%b3n%20facultad.pdf.jpg6e00067de17ef53d13b5e8e4bc3b7b30MD512open accessCarta derechos de autor.pdf.jpgCarta derechos de autor.pdf.jpgIM Thumbnailimage/jpeg7116https://repository.usta.edu.co/bitstream/11634/42896/13/Carta%20derechos%20de%20autor.pdf.jpg8f7a0f695b5ddd7ae1912f61414f2b7eMD513open access11634/42896oai:repository.usta.edu.co:11634/428962022-10-12 03:03:23.156metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |