Análisis de distribuciones a priori de los parámetros de escala del modelo ZIP
En el presente artículo se plantea la evaluación de un conjunto de distribuciones a priori para los parámetros de escala del modelo de regresión Poisson inflado con ceros (conocido como modelo ZIP por sus siglas en inglés). Tradicionalmente se utiliza la distribución gamma-inversa como a priori para...
- Autores:
-
Molina Muñoz, Juan Daniel
Ramírez Guevara, Isabel Cristina
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Universidad Santo Tomás
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/6413
- Palabra clave:
- Inferencia bayesiana; modelo ZIP; parámetros de escala; distribución SBeta; distribución Half Cauchy; distribución Gamma inversa.
Bayesian inference; ZIP model; scales parameters; SBeta2 distribution; Half Cauchy distribution; Inverted-gamma distribution.
- Rights
- License
- Copyright (c) 2017 Comunicaciones en Estadística
Summary: | En el presente artículo se plantea la evaluación de un conjunto de distribuciones a priori para los parámetros de escala del modelo de regresión Poisson inflado con ceros (conocido como modelo ZIP por sus siglas en inglés). Tradicionalmente se utiliza la distribución gamma-inversa como a priori para los parámetros de escala. Algunos estudios han mostrado que cuando los valores de los hiperparámetros de esta distribución son muy pequeños, las inferencias a posteriori no son adecuadas. El interés se centra en evaluar tres distribuciones a priori para los parámetros de escala del modelo: la gamma-inversa; la Half Cauchy que se ha usado para la situación planteada y que ha demostrado funcionar adecuadamente; y la beta 2 escalada (SBeta2) la cual es una distribución de colas pesadas que tiene un mejor comportamiento en el origen y en la cola derecha.Se desarrolla un estudio de simulación, con el que se pretende analizar el efecto de la distribución a priori asignada a los parámetros de escala sobre el encogimiento de los parámetros a posteriori del modelo; además se evalúa ante la presencia de observaciones atípicas cómo es el ajuste que el modelo realiza de estas, con cada una de las distribuciones a priori candidatas para los parámetros de escala. El análisis se centra en estas dos características (encogimiento de los parámetros a posteriori y ajuste de observaciones atípicas) pues son estas las principales críticas que diferentes autores plantean al uso de la distribución gamma-inversa como a priori para los parámetros de escala. Finalmente se presenta una aplicación con datos reales. |
---|