Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala
La producción de biohidrógeno a partir de biomasa residual ha sido tema de interés en los últimos años, debido a la necesidad de fomentar la investigación y desarrollo de las energías renovables. Por tal razón, el presente estudio se centra en evaluar el efecto de dos temperaturas bajo las cuales se...
- Autores:
-
Romero Mora, Miguel Angel
Rodríguez Reyes, Valentina
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/33993
- Acceso en línea:
- http://hdl.handle.net/11634/33993
- Palabra clave:
- Environmental impact
ISO 14040: 2006 standard
Energy production
Residual biomass
Environmental care
Biomass
Biohydrogen
Temperature
Biomasa residual
Producción energética
Norma ISO 14040:2006
Impacto ambiental
Temperatura
Biohidrógeno
Biomasa
Cuidado del medio ambiente
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_fc700841121292d4284ae1c8f748c4d3 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/33993 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala |
title |
Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala |
spellingShingle |
Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala Environmental impact ISO 14040: 2006 standard Energy production Residual biomass Environmental care Biomass Biohydrogen Temperature Biomasa residual Producción energética Norma ISO 14040:2006 Impacto ambiental Temperatura Biohidrógeno Biomasa Cuidado del medio ambiente |
title_short |
Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala |
title_full |
Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala |
title_fullStr |
Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala |
title_full_unstemmed |
Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala |
title_sort |
Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala |
dc.creator.fl_str_mv |
Romero Mora, Miguel Angel Rodríguez Reyes, Valentina |
dc.contributor.advisor.none.fl_str_mv |
Acevedo Pabón, Paola Andrea Rangel Villegas, Carol Jhulieth |
dc.contributor.author.none.fl_str_mv |
Romero Mora, Miguel Angel Rodríguez Reyes, Valentina |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0002-1549-3819 https://orcid.org/0000-0002-4764-9793 |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?user=uBreqmgAAAAJ&hl=es |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001028111 |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
Environmental impact ISO 14040: 2006 standard Energy production Residual biomass Environmental care Biomass Biohydrogen Temperature |
topic |
Environmental impact ISO 14040: 2006 standard Energy production Residual biomass Environmental care Biomass Biohydrogen Temperature Biomasa residual Producción energética Norma ISO 14040:2006 Impacto ambiental Temperatura Biohidrógeno Biomasa Cuidado del medio ambiente |
dc.subject.lemb.spa.fl_str_mv |
Biomasa residual Producción energética Norma ISO 14040:2006 Impacto ambiental |
dc.subject.proposal.spa.fl_str_mv |
Temperatura Biohidrógeno Biomasa Cuidado del medio ambiente |
description |
La producción de biohidrógeno a partir de biomasa residual ha sido tema de interés en los últimos años, debido a la necesidad de fomentar la investigación y desarrollo de las energías renovables. Por tal razón, el presente estudio se centra en evaluar el efecto de dos temperaturas bajo las cuales se desarrolló la fermentación oscura, que es la ruta más efectiva para la degradación de la biomasa residual con miras a la obtención de biohidrógeno. Con base en información derivada de una simulación en AspenPlus del macroproyecto “Evaluación de rutas de aprovechamiento de biomasa residual bajo el esquema de biorrefinerías”, se desarrolló una evaluación técnica y ambiental de fermentación oscura a 35 y 45 °C mediante dos balances de masa y energía enfocados a la producción de biohidrógeno y el digestato resultante. A partir de los resultados obtenidos, se estableció que a 35 °C se obtiene un mayor rendimiento de producción energética. Del mismo modo, siguiendo la metodología propuesta en la ISO 14040:2006 para el Análisis de Ciclo de Vida, simulado en el software SimaPro, se identificaron el calentamiento global (GW), la escasez de agua (WS) y la degradación abiótica por el uso de combustibles fósiles (ADFF), como las categorías de impacto ambiental donde se presenta una mayor contribución de efectos ambientales adversos. Es preciso mencionar que la continuidad en la investigación es importante para garantizar el pleno desarrollo de las tecnologías que permitan llevar a cabo la generación de energía a través del aprovechamiento de biomasa residual. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-05T19:54:08Z |
dc.date.available.none.fl_str_mv |
2021-05-05T19:54:08Z |
dc.date.issued.none.fl_str_mv |
2021-05-05 |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Romero Mora, M. A. & Rodríguez Reyes, V. (2021). Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/33993 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
identifier_str_mv |
Romero Mora, M. A. & Rodríguez Reyes, V. (2021). Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás |
url |
http://hdl.handle.net/11634/33993 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] S.Z. Baykara, “Hydrogen: a brief overview on its sources, production and environmental impact”, International Journal of Hydrogen Energy, vol. 43, pp. 10605–10614. 2018. Available: https://dx.doi.org/10.1016/j.ijhydene.2018.02.022 DOI: 10.1016/j.ijhydene.2018.02.022 [2] W. Cieciura-Włoch et al, “Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation”, Renewable Energy, vol. 153, pp. 1226–1237, 2020. Available: https://dx.doi.org/10.1016/j.renene.2020.02.085. DOI: 10.1016/j.renene.2020.02.085 [3] T. Keskin et al, “Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes”, International Journal of Hydrogen Energy, vol. 43, pp. 10666-10677. 2018. Available: https://dx.doi.org/10.1016/j.ijhydene.2018.01.028 DOI: 10.1016/j.ijhydene.2018.01.028 [4] C. Sawatdeenarunat et al., “Anaerobic biorefinery: Current status, challenges, and opportunities,” Bioresource Technology vol. 215, pp. 304–313. 2016. Available: https://dx.doi.org/10.1016/j.biortech.2016.03.074 DOI: 10.1016/j.biortech.2016.03.074 [5] M. R. Atelge et al, "Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies," Bioresource Technology, vol. 322, pp. 124470, 2021. Available: http://dx.doi.org/10.1016/j.biortech.2020.124470. DOI: 10.1016/j.biortech.2020.124470 [6] Weiland, P. “Biogas production: current state and perspectives”, Applied Microbiology and Biotechnology, vol. 85, pp. 849–860, 2010. Available: https://dx.doi.org/10.1007/s00253-09- 2246-7 DOI: 10.1007/s00253-09-2246-7 [7] M. A. Hernández, “Evaluación de rutas de aprovechamiento de biomasa residual bajo el esquema de biorrefinerías”. Colciencias, 2016. [8] Q. Zhang, J. Hu, and D.-J. Lee, “Biogas from anaerobic digestion processes: Research updates”, Renewable Energy, vol. 98, pp. 108–119, 2016. Available: https://dx.doi.org/10.1016/j.renene.2016.02.029. DOI: 10.1016/j.renene.2016.02.029 [9] K. Urbaniec et al. “Biomass residues as raw material for dark hydrogen fermentation – A review,” vol. 40, no. 9, pp. 3648–3658, Mar. 2015. Available: https://dx.doi.org/10.1016/j.ijhydene.2015.01.073 DOI: 10.1016/j.ijhydene.2015.01.073 [10] R. Łukajtis et al. “Hydrogen production from biomass using dark fermentation,” Renewable and Sustainable Energy Review vol. 91. pp. 665–694, 2018. Available: https://dx.doi.org/10.1016/j.rser.2018.04.043 DOI: 10.1016/j.rser.2018.04.043 [11] J. Rajesh Banu et al. "Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route," Bioresource Technology, vol. 298, pp. 122378, 2020. Available: https://dx.doi.org/10.1016/j.biortech.2019.122378 DOI: 10.1016/j.biortech.2019.122378 [12] A. Schievano et al. "Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran," Waste Management (Elmsford), vol. 56, pp. 519-529, 2016. Available: https://www.ncbi.nlm.nih.gov/pubmed/27406307 . DOI: 10.1016/j.wasman.2016.07.001 [13] E. Castelló et al. "Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions," Renewable and Sustainable Energy Reviews, vol. 119, pp. 109602, 2020. Available: https://doi.org/10.1016/j.rser.2019.109602 DOI: 10.1016/j.rser.2019.109602 [14] S. Dahiya et al. "Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives," Bioresource Technology., vol. 321, pp. 124354, 2021. Available: https://dx.doi.org/10.1016/j.biortech.2020.124354 DOI: 10.1016/j.biortech.2020.124354. [15] M. A. Hernández et al. "Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure," Bioresource Technology, vol. 168, (SI), pp. 112- 118, 2014. Available: http://dx.doi.org/10.1016/j.biortech.2014.02.101 DOI: 10.1016/j.biortech.2014.02.101. [16] M. Hernandez et al. “Assessment of the Biohydrogen Production Potential of Different Organic Residues In Colombia: Cocoa Waste, Pig Manure and Coffee Mucilage”, Chemical Engineering Transactions, vol. 65, pp. 247-252, Jun. 2018. Available: https://dx.doi.org/10.3303/CET1865042 DOI: 10.3303/CET1865042. [17] Gonzales RR et al. “Optimization of dilute acid and enzymatic hydrolysis for dark fermentative hydrogen production from the empty fruit bunch of oil palm”, International Journal of Hydrogen Energy, vol. 44, pp. 2191–2202, 2019. Available: https://doi.org/10.1016/j.ijhydene.2018.08.022. DOI: 10.1016/j.ijhydene.2018.08.022. [18] Arreola-Vargas J. et al. “Sequential hydrolysis of oat straw and hydrogen production from hydrolysates: role of hydrolysates constituents”. International Journal of Hydrogen Energy, vol. 40, pp. 10756-10765, 2015. Available: https://doi.org/10.1016/j.ijhydene.2015.05.200. DOI: 10.1016/j.ijhydene.2015.05.200. [19] Farghaly, A. et al. “Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater”. Environmental Science and Pollution Research, vol. 23, pp. 3834–3846, 2016. Available: https://doi.org/10.1007/s11356-015-5652-7. DOI: 10.1007/s11356-015-5652-7 [20] Poontaweegeratigarn, T. et al. “Hydrogen production from alcohol wastewater by upflow anaerobic sludge blanket reactors under mesophilic temperature”. International Scholarly and Scientific Research and Innovation, vol. 6, pp. 293-296, 2012. Available: https://doi.org/10.5281/zenodo.1076096 DOI: 10.5281/zenodo.1076096. [21] Kumar, G. et al. “A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options”. Energy Conversion and Management, vol. 141, pp. 390–402, 2017. Available: https://dx.doi.org/10.1016/j.enconman.2016.09.087. DOI: 10.1016/j.enconman.2016.09.087. [22] Poladyan A et al. “Hydrogen production by Escherichia coli using brewery waste: optimal pretreatment of waste and role of different hydrogenases”. Renew Energy, vol. 115, pp. 931-936, 2018. Available: https://dx.doi.org/10.1016/j.renene.2017.09.022. DOI: 10.1016/j.renene.2017.09.022. [23] Moodley P. et al. “Comparative study of three optimized acid-based pretreatments for sugar recovery from sugarcane leaf waste: a sustainable feedstock for biohydrogen production”. Engineering Science and Technology an International Journal, vol. 21, pp. 107-116, 2018. Available: https://dx.doi.org/10.1016/j.jestch.2017.11.010. DOI: 10.1016/j.jestch.2017.11.010. [24] Reddy K. et al.“Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles”. Environmental Science and Pollution Research, vol. 24, pp. 8790- 8804, 2017. Available: https://dx.doi.org/10.1007/s11356-017-8560-1. DOI: 10.1007/s11356-017-8560-1. [25] Rorke D. et al, “Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: optimization of saccharification, hydrogen production and preliminary scale up”. International Journal of Hydrogen Energy, vol. 41, pp. 12941- 12952, 2016. Available: https://dx.doi.org/10.1016/j.ijhydene.2016.06.112. DOI: 10.1016/j.ijhydene.2016.06.112. [26] Tandon M. et al. “Enterobacter ludwigii strain IF2SW-B4 isolated for bio-hydrogen production from rice bran and de-oiled rice bran”. Environmental Technology and Innovation, vol. 10, pp. 345- 354, 2018. Available: https://dx.doi.org/10.1016/j.eti.2018.03.008. DOI: 10.1016/j.eti.2018.03.008. [27] K. Rambabu et al, "Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation," Bioresourse Technology., vol. 319, pp. 124243, 2021. Available: http://dx.doi.org/10.1016/j.biortech.2020.124243 DOI: 10.1016/j.biortech.2020.124243. [28] D. Mu et al, "Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production," Bioresourse Technology., vol. 302, pp. 122879, 2020. Available: http://dx.doi.org/10.1016/j.biortech.2020.122879 DOI: 10.1016/j.biortech.2020.122879. [29] S. A. Lateef et al, "Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature," Bioresource Technology, vol. 110, pp. 251-257, 2012. Available: http://dx.doi.org/10.1016/j.biortech.2012.01.102. DOI: 10.1016/j.biortech.2012.01.102. [30] Rangel, Carol J. et al. “Hydrogen production by dark fermentation process from pig manure, cocoa mucilage and coffee mucilage”, Biomass Conv. Bioref. 2020. Available: https://dx.doi.org/10.1007/s13399-020-00618-z DOI: /10.1007/s13399-020-00618-z. [31] Zhang Y, et al “Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria”. International Journey of Hydrogen Energy. ol 31 pp. 441-446. 2006. Available: http://dx.doi.org/10.1016/j.ijhydene.2005.05.006 DOI: 10.1016/j.ijhydene.2005.05.006 [32] Yokoyama H et al. “Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry”. Applied Microbiology and Biotechnology vol. 74, pp. 474–483. 2007. Available: http://dx.doi.org/10.1007/s00253-006- 0647-4 DOI: 10.1007/s00253-006-0647-4. [33] Fang HHP et al. “Effect of pH on hydrogen production from glucose by a mixed culture”. Bioresource Technology. 2002; vol 82, pp. 87–93. 2007. Available: https://dx.doi.org/10.1016/S0960-8524(01)00110-9 DOI: 10.1016/S0960-8524(01)00110-9. [34] Ginkel SV et al. “Biohydrogen production as a function of pH and substrate concentration”. Environmental Science and Technology vol 35: pp. 4726–4730. 2001. Available: https://dx.doi.org/10.1021/es001979r DOI: 10.1021/es001979r. [35] Temudo MF et al. “Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study”. Biotechnology and Bioengineering vol 98, pp. 69–79. 2007. Available: http://dx.doi.org/10.1002/bit.21412 DOI: 10.1002/bit.21412. [36] Lin CY et al. “Fermentative hydrogen production from wastewaters: a review and prognosis”. International Journey of Hydrogen Energy. vol 37, pp. :15632–15642. 2012. Available: http://dx.doi.org/10.1016/j.ijhydene.2012.02.072 DOI: 10.1016/j.ijhydene.2012.02.072. [37] Chen CC et al. “Fermentative hydrogen production at high sulfate concentration”. International Journey of Hydrogen Energy. vol 33, pp. :1573–1578. 2008. Available: http://dx.doi.org/10.1016/j.ijhydene.2007.09.042 DOI: 10.1016/j.ijhydene.2007.09.042. [38] Wu SY et al. “Hydrogen production with immobilized sewage sludge in three phase fluidized bed bioreactors”. Biotechnology Progress. vol. 19, pp. 828–832. 2003. Available: http://dx.doi.org/10.1021/bp0201354 DOI: 10.1021/bp0201354. [39] Zhu J et al. “Swine manure fermentation for hydrogen production. Bioresource Technology vol 100, pp. 5472–54727. 2009. Available: http://dx.doi.org/10. 1016/j.biortech.2008.11.045 DOI: 10. 1016/j.biortech.2008.11.045. [40] Zahedi S et al. “Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste”. Bioresource Technology. 2013. vol 129, pp. 85–91. Available: http://dx.doi.org/10.1016/j.biortech.2012.11.003 DOI: 10.1016/j.biortech.2012.11.003. [41] Massanet-Nicolau J et al. “Production of hydrogen from sewage biosolids in a continuously fed bioreactor: effect of hydraulic retention time and sparging”. International Journey of Hydrogen Energy. 2010. Available: http://dx.doi.org/10.1016/j.ijhydene.2009.10.076 DOI: 10.1016/j.ijhydene.2009.10.076. [42] Mandal B, et al. “Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae”. Biotechnology Letters vol 28, pp. 831–835. 2006. http://dx.doi.org/10.1007/s10529-006-9008-8 DOI: 10.1007/s10529-006-9008-8. [43] Prabakar et al, "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews., vol. 96, pp. 306-324, 2018. Available: https://doi.org/10.1016/j.rser.2018.08.006 DOI: 10.1016/j.rser.2018.08.006. [44] Linder, T. “Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system”. Food Security Journal., vol. 11, pp. 265–278, 2019. Available: https://doi.org/10.1007/s12571-019-00912-3 DOI: 10.1007/s12571-019- 00912-3. [45] R. Rafieenia et al. "Dark fermentation metabolic models to study strategies for hydrogen consumers inhibition," Bioresource Technology, vol. 267, pp. 445-457, 2018. Available: http://dx.doi.org/10.1016/j.biortech.2018.07.054 . DOI: 10.1016/j.biortech.2018.07.054. [46] F. D. Faloye, et al. "Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique – Semi pilot scale production assessment," International Journal of Hydrogen Energy, vol. 39, (11), pp. 5607-5616, 2014. Available: http://dx.doi.org/10.1016/j.ijhydene.2014.01.163 . DOI: 10.1016/j.ijhydene.2014.01.163. [47] Kitashima, M. et al. “Flexible plastic bioreactors for photobiological hydrogen production by hydrogenase-deficient cyanobacteria”. Bioscience, biotechnology and biochemistry., vol. 76, pp. 831-833, 2012. Available: https://doi.org/10.1271/bbb.110808 DOI: 10.1271/bbb.110808 [48] Instituto Colombiano Agropecuario – ICA. “Censo Pecuario Nacional” [Online]. Available: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo- 2018.aspx. [49] Agronet. “Café: Evaluaciones agropecuarias municipales”. [Online] Available: https://www.agronet.gov.co/Documents/Caf%C3%A9.pdf. [50] Agronet. “Cacao: Evaluaciones agropecuarias municipales”. [Online] Available: https://www.agronet.gov.co/Documents/Cacao.pdf [51] A. P. Becerra-Quiróz, et al. “Sostenibilidad del aprovechamiento del bagazo de caña de azúcar en el Valle del Cauca, Colombia”, Ingeniería Solidaria, vol. 12, n.° 20, pp. 133-149, oct. 2016. Available: http://dx.doi.org/10.16925/in.v12i20.1548 DOI: 10.16925/in.v12i20.1548 [52] C. J. Rangel Villegas, "Evaluación de un esquema de biorefinería mediante fermentación oscura a partir de biomasa residual de Santander". Universidad EAN, Bogotá D.C., 2021. [53] E. Cerdá, “Cambio climático y energía: Una visión a nivel global”, Papeles de Europa, vol. I, no 31, pp. 1-17, 2018. Available: https://doi.org/10.5209/PADE.61486 DOI: 10.5209/PADE.61486. [54] B. Paul, et al, "Primacy of ecological engineering tools for combating eutrophication: An ecohydrological assessment pathway," Science of The Total Environment, vol. 762, pp. 143171, 2021. Available: https://doi.org/10.1016/j.scitotenv.2020.143171 DOI: 10.1016/j.scitotenv.2020.143171 [55] Environmental Protection Agency, “Effects of the Acid Rain” EPA, 4 Mayo 2020. [Online]. Available: https://www.epa.gov/acidrain/effects-acid-rain [56] Ministerio de Ciencia - España, “Impactos ambientales de la producción de electricidad”, [Online]. Available: http://proyectoislarenovable.iter.es/wp- content/uploads/2014/05/17_Estudio_Impactos_MA_mix_electrico_APPA.pdf [57] B. Khoshnevisan et al, "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, vol. 117, pp. 109493, 2020. Available: https://doi.org/10.1016/j.rser.2019.109493 DOI: 10.1016/j.rser.2019.109493 [58] F. Gorini et al, "Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas," Sci. Total Environ., vol. 743, pp. 140818, 2020. Available: https://doi.org/10.1016/j.scitotenv.2020.140818 DOI: 10.1016/j.scitotenv.2020.140818 [59] J. Du et al, "Simulated sulfuric and nitric acid rain inhibits leaf breakdown in streams: A microcosm study with artificial reconstituted fresh water," Ecotoxicology and Environmental Safety, vol. 196, pp. 110535, 2020. Available: https://doi.org/10.1016/j.ecoenv.2020.110535 DOI: /10.1016/j.ecoenv.2020.110535. [60] J. P. Riffo Rivas, "Análisis de ciclo de vida para una planta de tratamiento de aguas residuales: Potencial de calentamiento global generado por PTAR Talagante", Universidad de Chile, Santiago de Chile, 2017. Available: http://repositorio.uchile.cl/handle/2250/148239 [61] M. Davis et al, "Assessment of renewable energy transition pathways for a fossil fuel- dependent electricity-producing jurisdiction," Energy for Sustainable Development, vol. 59, pp. 243-261, 2020. Available: https://doi.org/10.1016/j.esd.2020.10.011 DOI: 10.1016/j.esd.2020.10.011. [62] Y. Liu et al, "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable & Sustainable Energy Reviews, vol. 139, pp. 110716, 2021. Available: http://dx.doi.org/10.1016/j.rser.2021.110716 DOI: 10.1016/j.rser.2021.110716. [63] S. Prasad et al, "Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective," Bioresource Technology, vol. 303, (C), pp. 122964, 2020. Available: http://dx.doi.org/10.1016/j.biortech.2020.122964 DOI: 10.1016/j.biortech.2020.122964. [64] A. Patel et al, "Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review," Bioresource Technology., vol. 321, pp. 124457, 2021. Available: https://doi.org/10.1016/j.biortech.2020.124457 DOI: 10.1016/j.biortech.2020.124457. [65] Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. “Life cycle assessment”. Springer International Publishing, 2018. Available: https://doi. org/10.1007/978-3-319-56475-3 DOI: 10.1007/978-3-319-56475-3. [66] Haya, E. “Análisis de ciclo de vida”. Escuela de Organización Industrial. España, 2016. [67] Antón Vallejo, M. A. “Utilización del Análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo”. Universitat Politècnica de Catalunya, 2004. Available: http://hdl.handle.net/2117/94137 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado de Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/33993/6/2021miguelromero.pdf https://repository.usta.edu.co/bitstream/11634/33993/2/Carta_aprobacion_facultad_autoarchivo%20-%20VALENTINA%20RODRIGUEZ%20Y%20MIGUEL%20ROMERO.pdf https://repository.usta.edu.co/bitstream/11634/33993/3/Carta_autorizacion_autoarchivo_miguelyvalentina.pdf https://repository.usta.edu.co/bitstream/11634/33993/4/license_rdf https://repository.usta.edu.co/bitstream/11634/33993/5/license.txt https://repository.usta.edu.co/bitstream/11634/33993/7/2021miguelromero.pdf.jpg https://repository.usta.edu.co/bitstream/11634/33993/8/Carta_aprobacion_facultad_autoarchivo%20-%20VALENTINA%20RODRIGUEZ%20Y%20MIGUEL%20ROMERO.pdf.jpg https://repository.usta.edu.co/bitstream/11634/33993/9/Carta_autorizacion_autoarchivo_miguelyvalentina.pdf.jpg |
bitstream.checksum.fl_str_mv |
feabc0af075936a0ff60b3522f550962 2a65b5ad06e466c72b7166912f04d61f be6d208d71c80aac7388247e89975f90 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 c4ae3846e2b18b7d70caa9ad36f447a6 37bf667e960c9df0a023d9594a274844 53bd4149bb8cee4e93ecaffd882bc7c6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026129047027712 |
spelling |
Acevedo Pabón, Paola AndreaRangel Villegas, Carol JhuliethRomero Mora, Miguel AngelRodríguez Reyes, Valentinahttps://orcid.org/0000-0002-1549-3819https://orcid.org/0000-0002-4764-9793https://scholar.google.com/citations?user=uBreqmgAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001028111Universidad Santo Tomás2021-05-05T19:54:08Z2021-05-05T19:54:08Z2021-05-05Romero Mora, M. A. & Rodríguez Reyes, V. (2021). Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escala. [Trabajo de pregrado, Universidad Santo Tomás]. Repositorio Institucional.http://hdl.handle.net/11634/33993reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo TomásLa producción de biohidrógeno a partir de biomasa residual ha sido tema de interés en los últimos años, debido a la necesidad de fomentar la investigación y desarrollo de las energías renovables. Por tal razón, el presente estudio se centra en evaluar el efecto de dos temperaturas bajo las cuales se desarrolló la fermentación oscura, que es la ruta más efectiva para la degradación de la biomasa residual con miras a la obtención de biohidrógeno. Con base en información derivada de una simulación en AspenPlus del macroproyecto “Evaluación de rutas de aprovechamiento de biomasa residual bajo el esquema de biorrefinerías”, se desarrolló una evaluación técnica y ambiental de fermentación oscura a 35 y 45 °C mediante dos balances de masa y energía enfocados a la producción de biohidrógeno y el digestato resultante. A partir de los resultados obtenidos, se estableció que a 35 °C se obtiene un mayor rendimiento de producción energética. Del mismo modo, siguiendo la metodología propuesta en la ISO 14040:2006 para el Análisis de Ciclo de Vida, simulado en el software SimaPro, se identificaron el calentamiento global (GW), la escasez de agua (WS) y la degradación abiótica por el uso de combustibles fósiles (ADFF), como las categorías de impacto ambiental donde se presenta una mayor contribución de efectos ambientales adversos. Es preciso mencionar que la continuidad en la investigación es importante para garantizar el pleno desarrollo de las tecnologías que permitan llevar a cabo la generación de energía a través del aprovechamiento de biomasa residual.Ingeniero Ambientalhttp://unidadinvestigacion.usta.edu.coapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluación técnica y ambiental de la influencia de la temperatura en la producción de biohidrógeno en procesos de fermentación oscura de biomasa residual a gran escalaEnvironmental impactISO 14040: 2006 standardEnergy productionResidual biomassEnvironmental careBiomassBiohydrogenTemperatureBiomasa residualProducción energéticaNorma ISO 14040:2006Impacto ambientalTemperaturaBiohidrógenoBiomasaCuidado del medio ambienteTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA Bogotá[1] S.Z. Baykara, “Hydrogen: a brief overview on its sources, production and environmental impact”, International Journal of Hydrogen Energy, vol. 43, pp. 10605–10614. 2018. Available: https://dx.doi.org/10.1016/j.ijhydene.2018.02.022 DOI: 10.1016/j.ijhydene.2018.02.022[2] W. Cieciura-Włoch et al, “Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation”, Renewable Energy, vol. 153, pp. 1226–1237, 2020. Available: https://dx.doi.org/10.1016/j.renene.2020.02.085. DOI: 10.1016/j.renene.2020.02.085[3] T. Keskin et al, “Determining the effect of trace elements on biohydrogen production from fruit and vegetable wastes”, International Journal of Hydrogen Energy, vol. 43, pp. 10666-10677. 2018. Available: https://dx.doi.org/10.1016/j.ijhydene.2018.01.028 DOI: 10.1016/j.ijhydene.2018.01.028[4] C. Sawatdeenarunat et al., “Anaerobic biorefinery: Current status, challenges, and opportunities,” Bioresource Technology vol. 215, pp. 304–313. 2016. Available: https://dx.doi.org/10.1016/j.biortech.2016.03.074 DOI: 10.1016/j.biortech.2016.03.074[5] M. R. Atelge et al, "Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies," Bioresource Technology, vol. 322, pp. 124470, 2021. Available: http://dx.doi.org/10.1016/j.biortech.2020.124470. DOI: 10.1016/j.biortech.2020.124470[6] Weiland, P. “Biogas production: current state and perspectives”, Applied Microbiology and Biotechnology, vol. 85, pp. 849–860, 2010. Available: https://dx.doi.org/10.1007/s00253-09- 2246-7 DOI: 10.1007/s00253-09-2246-7[7] M. A. Hernández, “Evaluación de rutas de aprovechamiento de biomasa residual bajo el esquema de biorrefinerías”. Colciencias, 2016.[8] Q. Zhang, J. Hu, and D.-J. Lee, “Biogas from anaerobic digestion processes: Research updates”, Renewable Energy, vol. 98, pp. 108–119, 2016. Available: https://dx.doi.org/10.1016/j.renene.2016.02.029. DOI: 10.1016/j.renene.2016.02.029[9] K. Urbaniec et al. “Biomass residues as raw material for dark hydrogen fermentation – A review,” vol. 40, no. 9, pp. 3648–3658, Mar. 2015. Available: https://dx.doi.org/10.1016/j.ijhydene.2015.01.073 DOI: 10.1016/j.ijhydene.2015.01.073[10] R. Łukajtis et al. “Hydrogen production from biomass using dark fermentation,” Renewable and Sustainable Energy Review vol. 91. pp. 665–694, 2018. Available: https://dx.doi.org/10.1016/j.rser.2018.04.043 DOI: 10.1016/j.rser.2018.04.043[11] J. Rajesh Banu et al. "Industrial wastewater to biohydrogen: Possibilities towards successful biorefinery route," Bioresource Technology, vol. 298, pp. 122378, 2020. Available: https://dx.doi.org/10.1016/j.biortech.2019.122378 DOI: 10.1016/j.biortech.2019.122378[12] A. Schievano et al. "Dark fermentation, anaerobic digestion and microbial fuel cells: An integrated system to valorize swine manure and rice bran," Waste Management (Elmsford), vol. 56, pp. 519-529, 2016. Available: https://www.ncbi.nlm.nih.gov/pubmed/27406307 . DOI: 10.1016/j.wasman.2016.07.001[13] E. Castelló et al. "Stability problems in the hydrogen production by dark fermentation: Possible causes and solutions," Renewable and Sustainable Energy Reviews, vol. 119, pp. 109602, 2020. Available: https://doi.org/10.1016/j.rser.2019.109602 DOI: 10.1016/j.rser.2019.109602[14] S. Dahiya et al. "Renewable hydrogen production by dark-fermentation: Current status, challenges and perspectives," Bioresource Technology., vol. 321, pp. 124354, 2021. Available: https://dx.doi.org/10.1016/j.biortech.2020.124354 DOI: 10.1016/j.biortech.2020.124354.[15] M. A. Hernández et al. "Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure," Bioresource Technology, vol. 168, (SI), pp. 112- 118, 2014. Available: http://dx.doi.org/10.1016/j.biortech.2014.02.101 DOI: 10.1016/j.biortech.2014.02.101.[16] M. Hernandez et al. “Assessment of the Biohydrogen Production Potential of Different Organic Residues In Colombia: Cocoa Waste, Pig Manure and Coffee Mucilage”, Chemical Engineering Transactions, vol. 65, pp. 247-252, Jun. 2018. Available: https://dx.doi.org/10.3303/CET1865042 DOI: 10.3303/CET1865042.[17] Gonzales RR et al. “Optimization of dilute acid and enzymatic hydrolysis for dark fermentative hydrogen production from the empty fruit bunch of oil palm”, International Journal of Hydrogen Energy, vol. 44, pp. 2191–2202, 2019. Available: https://doi.org/10.1016/j.ijhydene.2018.08.022. DOI: 10.1016/j.ijhydene.2018.08.022.[18] Arreola-Vargas J. et al. “Sequential hydrolysis of oat straw and hydrogen production from hydrolysates: role of hydrolysates constituents”. International Journal of Hydrogen Energy, vol. 40, pp. 10756-10765, 2015. Available: https://doi.org/10.1016/j.ijhydene.2015.05.200. DOI: 10.1016/j.ijhydene.2015.05.200.[19] Farghaly, A. et al. “Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater”. Environmental Science and Pollution Research, vol. 23, pp. 3834–3846, 2016. Available: https://doi.org/10.1007/s11356-015-5652-7. DOI: 10.1007/s11356-015-5652-7[20] Poontaweegeratigarn, T. et al. “Hydrogen production from alcohol wastewater by upflow anaerobic sludge blanket reactors under mesophilic temperature”. International Scholarly and Scientific Research and Innovation, vol. 6, pp. 293-296, 2012. Available: https://doi.org/10.5281/zenodo.1076096 DOI: 10.5281/zenodo.1076096.[21] Kumar, G. et al. “A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options”. Energy Conversion and Management, vol. 141, pp. 390–402, 2017. Available: https://dx.doi.org/10.1016/j.enconman.2016.09.087. DOI: 10.1016/j.enconman.2016.09.087.[22] Poladyan A et al. “Hydrogen production by Escherichia coli using brewery waste: optimal pretreatment of waste and role of different hydrogenases”. Renew Energy, vol. 115, pp. 931-936, 2018. Available: https://dx.doi.org/10.1016/j.renene.2017.09.022. DOI: 10.1016/j.renene.2017.09.022.[23] Moodley P. et al. “Comparative study of three optimized acid-based pretreatments for sugar recovery from sugarcane leaf waste: a sustainable feedstock for biohydrogen production”. Engineering Science and Technology an International Journal, vol. 21, pp. 107-116, 2018. Available: https://dx.doi.org/10.1016/j.jestch.2017.11.010. DOI: 10.1016/j.jestch.2017.11.010.[24] Reddy K. et al.“Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles”. Environmental Science and Pollution Research, vol. 24, pp. 8790- 8804, 2017. Available: https://dx.doi.org/10.1007/s11356-017-8560-1. DOI: 10.1007/s11356-017-8560-1.[25] Rorke D. et al, “Biohydrogen process development on waste sorghum (Sorghum bicolor) leaves: optimization of saccharification, hydrogen production and preliminary scale up”. International Journal of Hydrogen Energy, vol. 41, pp. 12941- 12952, 2016. Available: https://dx.doi.org/10.1016/j.ijhydene.2016.06.112. DOI: 10.1016/j.ijhydene.2016.06.112.[26] Tandon M. et al. “Enterobacter ludwigii strain IF2SW-B4 isolated for bio-hydrogen production from rice bran and de-oiled rice bran”. Environmental Technology and Innovation, vol. 10, pp. 345- 354, 2018. Available: https://dx.doi.org/10.1016/j.eti.2018.03.008. DOI: 10.1016/j.eti.2018.03.008.[27] K. Rambabu et al, "Augmented biohydrogen production from rice mill wastewater through nano-metal oxides assisted dark fermentation," Bioresourse Technology., vol. 319, pp. 124243, 2021. Available: http://dx.doi.org/10.1016/j.biortech.2020.124243 DOI: 10.1016/j.biortech.2020.124243.[28] D. Mu et al, "Simultaneous biohydrogen production from dark fermentation of duckweed and waste utilization for microalgal lipid production," Bioresourse Technology., vol. 302, pp. 122879, 2020. Available: http://dx.doi.org/10.1016/j.biortech.2020.122879 DOI: 10.1016/j.biortech.2020.122879.[29] S. A. Lateef et al, "Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature," Bioresource Technology, vol. 110, pp. 251-257, 2012. Available: http://dx.doi.org/10.1016/j.biortech.2012.01.102. DOI: 10.1016/j.biortech.2012.01.102.[30] Rangel, Carol J. et al. “Hydrogen production by dark fermentation process from pig manure, cocoa mucilage and coffee mucilage”, Biomass Conv. Bioref. 2020. Available: https://dx.doi.org/10.1007/s13399-020-00618-z DOI: /10.1007/s13399-020-00618-z.[31] Zhang Y, et al “Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria”. International Journey of Hydrogen Energy. ol 31 pp. 441-446. 2006. Available: http://dx.doi.org/10.1016/j.ijhydene.2005.05.006 DOI: 10.1016/j.ijhydene.2005.05.006[32] Yokoyama H et al. “Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry”. Applied Microbiology and Biotechnology vol. 74, pp. 474–483. 2007. Available: http://dx.doi.org/10.1007/s00253-006- 0647-4 DOI: 10.1007/s00253-006-0647-4.[33] Fang HHP et al. “Effect of pH on hydrogen production from glucose by a mixed culture”. Bioresource Technology. 2002; vol 82, pp. 87–93. 2007. Available: https://dx.doi.org/10.1016/S0960-8524(01)00110-9 DOI: 10.1016/S0960-8524(01)00110-9.[34] Ginkel SV et al. “Biohydrogen production as a function of pH and substrate concentration”. Environmental Science and Technology vol 35: pp. 4726–4730. 2001. Available: https://dx.doi.org/10.1021/es001979r DOI: 10.1021/es001979r.[35] Temudo MF et al. “Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study”. Biotechnology and Bioengineering vol 98, pp. 69–79. 2007. Available: http://dx.doi.org/10.1002/bit.21412 DOI: 10.1002/bit.21412.[36] Lin CY et al. “Fermentative hydrogen production from wastewaters: a review and prognosis”. International Journey of Hydrogen Energy. vol 37, pp. :15632–15642. 2012. Available: http://dx.doi.org/10.1016/j.ijhydene.2012.02.072 DOI: 10.1016/j.ijhydene.2012.02.072.[37] Chen CC et al. “Fermentative hydrogen production at high sulfate concentration”. International Journey of Hydrogen Energy. vol 33, pp. :1573–1578. 2008. Available: http://dx.doi.org/10.1016/j.ijhydene.2007.09.042 DOI: 10.1016/j.ijhydene.2007.09.042.[38] Wu SY et al. “Hydrogen production with immobilized sewage sludge in three phase fluidized bed bioreactors”. Biotechnology Progress. vol. 19, pp. 828–832. 2003. Available: http://dx.doi.org/10.1021/bp0201354 DOI: 10.1021/bp0201354.[39] Zhu J et al. “Swine manure fermentation for hydrogen production. Bioresource Technology vol 100, pp. 5472–54727. 2009. Available: http://dx.doi.org/10. 1016/j.biortech.2008.11.045 DOI: 10. 1016/j.biortech.2008.11.045.[40] Zahedi S et al. “Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste”. Bioresource Technology. 2013. vol 129, pp. 85–91. Available: http://dx.doi.org/10.1016/j.biortech.2012.11.003 DOI: 10.1016/j.biortech.2012.11.003.[41] Massanet-Nicolau J et al. “Production of hydrogen from sewage biosolids in a continuously fed bioreactor: effect of hydraulic retention time and sparging”. International Journey of Hydrogen Energy. 2010. Available: http://dx.doi.org/10.1016/j.ijhydene.2009.10.076 DOI: 10.1016/j.ijhydene.2009.10.076.[42] Mandal B, et al. “Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae”. Biotechnology Letters vol 28, pp. 831–835. 2006. http://dx.doi.org/10.1007/s10529-006-9008-8 DOI: 10.1007/s10529-006-9008-8.[43] Prabakar et al, "Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects," Renewable and Sustainable Energy Reviews., vol. 96, pp. 306-324, 2018. Available: https://doi.org/10.1016/j.rser.2018.08.006 DOI: 10.1016/j.rser.2018.08.006.[44] Linder, T. “Making the case for edible microorganisms as an integral part of a more sustainable and resilient food production system”. Food Security Journal., vol. 11, pp. 265–278, 2019. Available: https://doi.org/10.1007/s12571-019-00912-3 DOI: 10.1007/s12571-019- 00912-3.[45] R. Rafieenia et al. "Dark fermentation metabolic models to study strategies for hydrogen consumers inhibition," Bioresource Technology, vol. 267, pp. 445-457, 2018. Available: http://dx.doi.org/10.1016/j.biortech.2018.07.054 . DOI: 10.1016/j.biortech.2018.07.054.[46] F. D. Faloye, et al. "Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique – Semi pilot scale production assessment," International Journal of Hydrogen Energy, vol. 39, (11), pp. 5607-5616, 2014. Available: http://dx.doi.org/10.1016/j.ijhydene.2014.01.163 . DOI: 10.1016/j.ijhydene.2014.01.163.[47] Kitashima, M. et al. “Flexible plastic bioreactors for photobiological hydrogen production by hydrogenase-deficient cyanobacteria”. Bioscience, biotechnology and biochemistry., vol. 76, pp. 831-833, 2012. Available: https://doi.org/10.1271/bbb.110808 DOI: 10.1271/bbb.110808[48] Instituto Colombiano Agropecuario – ICA. “Censo Pecuario Nacional” [Online]. Available: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo- 2018.aspx.[49] Agronet. “Café: Evaluaciones agropecuarias municipales”. [Online] Available: https://www.agronet.gov.co/Documents/Caf%C3%A9.pdf.[50] Agronet. “Cacao: Evaluaciones agropecuarias municipales”. [Online] Available: https://www.agronet.gov.co/Documents/Cacao.pdf[51] A. P. Becerra-Quiróz, et al. “Sostenibilidad del aprovechamiento del bagazo de caña de azúcar en el Valle del Cauca, Colombia”, Ingeniería Solidaria, vol. 12, n.° 20, pp. 133-149, oct. 2016. Available: http://dx.doi.org/10.16925/in.v12i20.1548 DOI: 10.16925/in.v12i20.1548[52] C. J. Rangel Villegas, "Evaluación de un esquema de biorefinería mediante fermentación oscura a partir de biomasa residual de Santander". Universidad EAN, Bogotá D.C., 2021.[53] E. Cerdá, “Cambio climático y energía: Una visión a nivel global”, Papeles de Europa, vol. I, no 31, pp. 1-17, 2018. Available: https://doi.org/10.5209/PADE.61486 DOI: 10.5209/PADE.61486.[54] B. Paul, et al, "Primacy of ecological engineering tools for combating eutrophication: An ecohydrological assessment pathway," Science of The Total Environment, vol. 762, pp. 143171, 2021. Available: https://doi.org/10.1016/j.scitotenv.2020.143171 DOI: 10.1016/j.scitotenv.2020.143171[55] Environmental Protection Agency, “Effects of the Acid Rain” EPA, 4 Mayo 2020. [Online]. Available: https://www.epa.gov/acidrain/effects-acid-rain[56] Ministerio de Ciencia - España, “Impactos ambientales de la producción de electricidad”, [Online]. Available: http://proyectoislarenovable.iter.es/wp- content/uploads/2014/05/17_Estudio_Impactos_MA_mix_electrico_APPA.pdf[57] B. Khoshnevisan et al, "Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid," Renewable and Sustainable Energy Reviews, vol. 117, pp. 109493, 2020. Available: https://doi.org/10.1016/j.rser.2019.109493 DOI: 10.1016/j.rser.2019.109493[58] F. Gorini et al, "Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas," Sci. Total Environ., vol. 743, pp. 140818, 2020. Available: https://doi.org/10.1016/j.scitotenv.2020.140818 DOI: 10.1016/j.scitotenv.2020.140818[59] J. Du et al, "Simulated sulfuric and nitric acid rain inhibits leaf breakdown in streams: A microcosm study with artificial reconstituted fresh water," Ecotoxicology and Environmental Safety, vol. 196, pp. 110535, 2020. Available: https://doi.org/10.1016/j.ecoenv.2020.110535 DOI: /10.1016/j.ecoenv.2020.110535.[60] J. P. Riffo Rivas, "Análisis de ciclo de vida para una planta de tratamiento de aguas residuales: Potencial de calentamiento global generado por PTAR Talagante", Universidad de Chile, Santiago de Chile, 2017. Available: http://repositorio.uchile.cl/handle/2250/148239[61] M. Davis et al, "Assessment of renewable energy transition pathways for a fossil fuel- dependent electricity-producing jurisdiction," Energy for Sustainable Development, vol. 59, pp. 243-261, 2020. Available: https://doi.org/10.1016/j.esd.2020.10.011 DOI: 10.1016/j.esd.2020.10.011.[62] Y. Liu et al, "Review of waste biorefinery development towards a circular economy: From the perspective of a life cycle assessment," Renewable & Sustainable Energy Reviews, vol. 139, pp. 110716, 2021. Available: http://dx.doi.org/10.1016/j.rser.2021.110716 DOI: 10.1016/j.rser.2021.110716.[63] S. Prasad et al, "Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective," Bioresource Technology, vol. 303, (C), pp. 122964, 2020. Available: http://dx.doi.org/10.1016/j.biortech.2020.122964 DOI: 10.1016/j.biortech.2020.122964.[64] A. Patel et al, "Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review," Bioresource Technology., vol. 321, pp. 124457, 2021. Available: https://doi.org/10.1016/j.biortech.2020.124457 DOI: 10.1016/j.biortech.2020.124457.[65] Hauschild, M. Z., Rosenbaum, R. K., & Olsen, S. I. “Life cycle assessment”. Springer International Publishing, 2018. Available: https://doi. org/10.1007/978-3-319-56475-3 DOI: 10.1007/978-3-319-56475-3.[66] Haya, E. “Análisis de ciclo de vida”. Escuela de Organización Industrial. España, 2016.[67] Antón Vallejo, M. A. “Utilización del Análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo”. Universitat Politècnica de Catalunya, 2004. Available: http://hdl.handle.net/2117/94137ORIGINAL2021miguelromero.pdf2021miguelromero.pdfapplication/pdf1090617https://repository.usta.edu.co/bitstream/11634/33993/6/2021miguelromero.pdffeabc0af075936a0ff60b3522f550962MD56open accessCarta_aprobacion_facultad_autoarchivo - VALENTINA RODRIGUEZ Y MIGUEL ROMERO.pdfCarta_aprobacion_facultad_autoarchivo - VALENTINA RODRIGUEZ Y MIGUEL ROMERO.pdfapplication/pdf311387https://repository.usta.edu.co/bitstream/11634/33993/2/Carta_aprobacion_facultad_autoarchivo%20-%20VALENTINA%20RODRIGUEZ%20Y%20MIGUEL%20ROMERO.pdf2a65b5ad06e466c72b7166912f04d61fMD52metadata only accessCarta_autorizacion_autoarchivo_miguelyvalentina.pdfCarta_autorizacion_autoarchivo_miguelyvalentina.pdfapplication/pdf312875https://repository.usta.edu.co/bitstream/11634/33993/3/Carta_autorizacion_autoarchivo_miguelyvalentina.pdfbe6d208d71c80aac7388247e89975f90MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/33993/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/33993/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2021miguelromero.pdf.jpg2021miguelromero.pdf.jpgIM Thumbnailimage/jpeg7278https://repository.usta.edu.co/bitstream/11634/33993/7/2021miguelromero.pdf.jpgc4ae3846e2b18b7d70caa9ad36f447a6MD57open accessCarta_aprobacion_facultad_autoarchivo - VALENTINA RODRIGUEZ Y MIGUEL ROMERO.pdf.jpgCarta_aprobacion_facultad_autoarchivo - VALENTINA RODRIGUEZ Y MIGUEL ROMERO.pdf.jpgIM Thumbnailimage/jpeg6181https://repository.usta.edu.co/bitstream/11634/33993/8/Carta_aprobacion_facultad_autoarchivo%20-%20VALENTINA%20RODRIGUEZ%20Y%20MIGUEL%20ROMERO.pdf.jpg37bf667e960c9df0a023d9594a274844MD58open accessCarta_autorizacion_autoarchivo_miguelyvalentina.pdf.jpgCarta_autorizacion_autoarchivo_miguelyvalentina.pdf.jpgIM Thumbnailimage/jpeg8352https://repository.usta.edu.co/bitstream/11634/33993/9/Carta_autorizacion_autoarchivo_miguelyvalentina.pdf.jpg53bd4149bb8cee4e93ecaffd882bc7c6MD59open access11634/33993oai:repository.usta.edu.co:11634/339932022-10-10 14:43:30.605open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |