Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter

Explicado brevemente, el modelado de sistemas es un intercambio equivalente de variables como Velocidad, precisión y esfuerzo. Al modelar un sistema, es posible que tengamos que elegir dos de estos tres atributos, dejando un lado. Un modelo con un nivel superior de precisión y velocidad siempre requ...

Full description

Autores:
Navarrete Gómez, Jhon Erik
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/31764
Acceso en línea:
http://hdl.handle.net/11634/31764
Palabra clave:
Hardware in the loop
Power electronics
Renewable energy systems
Electric inductors
Electronic data processing
Sistemas embebidos
Inductores eléctricos
Procesamiento electrónico de datos
LabVIEW
Hardware in the loop
Sistemas de energía renovable
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_f7dc725088cd265f1b5449150a9725ca
oai_identifier_str oai:repository.usta.edu.co:11634/31764
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter
title Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter
spellingShingle Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter
Hardware in the loop
Power electronics
Renewable energy systems
Electric inductors
Electronic data processing
Sistemas embebidos
Inductores eléctricos
Procesamiento electrónico de datos
LabVIEW
Hardware in the loop
Sistemas de energía renovable
title_short Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter
title_full Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter
title_fullStr Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter
title_full_unstemmed Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter
title_sort Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter
dc.creator.fl_str_mv Navarrete Gómez, Jhon Erik
dc.contributor.advisor.spa.fl_str_mv Torres Pinzón, Carlos Andrés
Mojica Casallas, Carlos Javier
Ramírez Murillo, Harrynson
dc.contributor.author.spa.fl_str_mv Navarrete Gómez, Jhon Erik
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0003-0367-8143
https://orcid.org/0000-0002-3757-9410
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=gMAr7YEAAAAJ&hl=es
https://scholar.google.com/citations?user=r9kpTz0AAAAJ&hl=es
dc.contributor.cvlac.spa.fl_str_mv http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000692670
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000639214
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001614550
dc.subject.keyword.spa.fl_str_mv Hardware in the loop
Power electronics
Renewable energy systems
Electric inductors
Electronic data processing
topic Hardware in the loop
Power electronics
Renewable energy systems
Electric inductors
Electronic data processing
Sistemas embebidos
Inductores eléctricos
Procesamiento electrónico de datos
LabVIEW
Hardware in the loop
Sistemas de energía renovable
dc.subject.lemb.spa.fl_str_mv Sistemas embebidos
Inductores eléctricos
Procesamiento electrónico de datos
dc.subject.proposal.spa.fl_str_mv LabVIEW
Hardware in the loop
Sistemas de energía renovable
description Explicado brevemente, el modelado de sistemas es un intercambio equivalente de variables como Velocidad, precisión y esfuerzo. Al modelar un sistema, es posible que tengamos que elegir dos de estos tres atributos, dejando un lado. Un modelo con un nivel superior de precisión y velocidad siempre requerirá un esfuerzo impresionante. Lo contrario es raro. Este proyecto de investigación implementará un modelo en una plataforma Hardware in the Loop que permita mejorar los tiempos de diseño e implementación de los prototipos de Power Electronics.
publishDate 2021
dc.date.accessioned.spa.fl_str_mv 2021-02-02T19:32:47Z
dc.date.available.spa.fl_str_mv 2021-02-02T19:32:47Z
dc.date.issued.spa.fl_str_mv 2021-01-29
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
format http://purl.org/coar/resource_type/c_bdcc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Navarrete Gómez, J. E. (2020). Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter [Tesis de Maestría en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucional
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/31764
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Navarrete Gómez, J. E. (2020). Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter [Tesis de Maestría en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucional
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/31764
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv D. Biel, F. Guinjoan, E. Fossas, and J. Chavarria, “Sliding-mode control design of a boost-buck switching converter for AC signal generation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 8, pp. 1539–1551, Aug. 2004, ISSN: 10577122. DOI: 10.1109/TCSI. 2004.832803.
J. Chen, D. Maksimovi´c, and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 320–329, Mar. 2006, ISSN: 08858993. DOI: 10.1109/TPEL.2005.869744.
M. Gaboriault and A. Notman, “A high efficiency, non-inverting, buck-boost DC-DC converter,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 3, 2004, pp. 1411–1415. DOI: 10.1109/apec.2004.1296049.
P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buckboost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buckboost converter,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 719–730, 2010, ISSN: 08858993. DOI: 10.1109/TPEL.2009.2031803.
B. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting, synchronous buckboost converter for portable applications,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 443–452, Mar. 2004, ISSN: 08858993. DOI: 10.1109/TPEL.2003.823196.
Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck-boost converter,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1002–1015, 2009, ISSN: 08858993. DOI: 10.1109/TPEL.2008.2010044.
Y. J. Lee, A. Khaligh, A. Chakraborty, and A. Emadi, “Digital Combination of Buck and Boost Converters to Control a Positive Buck-Boost Converter and Improve the Output Transients,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1267–1279, 2009, ISSN: 19410107. DOI: 10.1109/TPEL.2009.2014066.
E. Schaltz, P. O. Rasmussen, and A. Khaligh, “Non-inverting buck-boost converter for fuel cell applications,” in IECON Proceedings (Industrial Electronics Conference), IEEE Computer Society, 2008, pp. 855–860, ISBN: 9781424417667. DOI: 10.1109/IECON.2008.4758065.
J. K. Shiau, C. J. Cheng, and C. E. Tseng, “Stability analysis of a non-inverting synchronous buck-boost power converter for a solar power management system,” in 2008 IEEE International Conference on Sustainable Energy Technologies, ICSET 2008, 2008, pp. 263–268, ISBN: 9781424418886. DOI: 10.1109/ICSET.2008.4747014.
O. Mourra, A. Fernandez, and F. Tonicello, “Buck boost regulator (B2R) for spacecraft solar array power conversion,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2010, pp. 1313–1319, ISBN: 9781424447824. DOI: 10.1109/APEC.2010. 5433399.
S. Waffler and J. W. Kolar, “A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1589–1599, 2009, ISSN: 19410107. DOI: 10.1109/TPEL.2009.2015881.
X. Ren, X. Ruan, H. Qian, M. Li, and Q. Chen, “Three-mode dual-frequency two-edge modulation scheme for four-switch buck-boost converter,” IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 499–509, 2009, ISSN: 08858993. DOI: 10.1109/TPEL.2008.2005578.
D. M. Sable, B. H. Cho, and R. B. Ridley, “Elimination of the positive zero in fixed frequency boost and flyback converters,” in Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition, 1990, pp. 205–211. DOI: 10.1109/APEC.1990.66413.
Wei-Chung Wu, R. M. Bass, and J. R. Yeargan, “Eliminating the effects of the right-half plane zero in fixed frequency boost converters,” in PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), vol. 1, May 1998, 362–366 vol.1. DOI: 10.1109/PESC.1998.701924.
S.-K. E., F. A., M. E., E. J.B., E. V., C. J., and G. A., “Bidirectional High-Power High-Efficiency non-isolated step-up DC-DC Converter,” 2003.
J. Calvente, L. Martinez-Salamero, H. Valderrama, and E. Vidal-Idiarte, “Using magnetic coupling to eliminate right half-plane zeros in boost converters,” IEEE Power Electronics Letters, vol. 2, no. 2, pp. 58–62, 2004, ISSN: 15407985. DOI: 10.1109/LPEL.2004.834615.
B. Poorali and E. Adib, “Right-Half-Plane Zero Elimination of Boost,” vol. 66, no. 11, pp. 8454– 8462, 2019.
C. Restrepo, J. Calvente, A. Cid-Pastor, A. El Aroudi, and R. Giral, “A noninverting buck-boost dc-dc switching converter with high efficiency and wide bandwidth,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2490–2503, 2011, ISSN: 08858993. DOI: 10.1109/TPEL. 2011.2108668.
C. Restrepo, S. Member, J. Calvente, A. Romero, E. Vidal-idiarte, R. Giral, and S. Member, “Current-Mode Control of a Coupled-Inductor Buck – Boost DC – DC Switching Converter,” vol. 27, no. 5, pp. 2536–2549, 2012.
J. Calvente, L. Martínez-Salamero, P. Garcés, and A. Romero, “Zero Dynamics-Based Design of Damping Networks for Switching Converters,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1292–1303, 2003, ISSN: 00189251. DOI: 10.1109/TAES.2003. 1261129.
C. Restrepo, T. Konjedic, J. Calvente, M. Milanoviˇc, and R. Giral, “Fast transitions between current control loops of the coupled-inductor buck-boost DC-DC switching converter,” IEEE Transactions on Power Electronics, vol. 28, no. 8, pp. 3648–3652, 2013, ISSN: 08858993. DOI: 10.1109/TPEL.2012.2231882.
M. N. Alexander, Charles K. and Sadiku, Fundamentals of Electric Circuits, Fifth Edit. Cleveland, Ohio: McGraw-Hill, 2013, p. 905, ISBN: 978-0-07-338057-5.
Z. Zhang, “Coupled-Inductor Magnetics,” Ph.D. dissertation, California Institute of Technology, 1987, p. 243.
M. A. Mannah, A. Haddad, and H. Bazzi, “Hardware in the loop simulation for optimal management of electrical power converters,” 2014 International Conference on Renewable Energies for Developing Countries, REDEC 2014, pp. 43–48, 2014. DOI: 10.1109/REDEC.2014.7038529.
W. Ren, M. Steurer, and S. Woodruff, “Progress and challenges in real time hardware-in-the loop simulations of integrated ship power systems,” 2005 IEEE Power Engineering Society General Meeting, vol. 1, pp. 534–537, 2005. DOI: 10.1109/pes.2005.1489721.
A. Monti, H. Figueroa, S. Lentijo, X. Wu, and R. Dougal, “Interface issues in hardware-in-theloop simulation,” 2005 IEEE Electric Ship Technologies Symposium, vol. 2005, pp. 39–44, 2005. DOI: 10.1109/ESTS.2005.1524650.
Z. Jiang, R. A. Dougal, R. Leonard, H. Figueroa, and A. Monti, “Hardware-in-the-loop testing of digital power controllers,” Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 2006, pp. 901–906, 2006. DOI: 10.1109/apec.2006.1620645.
B. Lu, X. Wu, H. Figueroa, and A. Monti, “A low-cost real-time hardware-in-the-loop testing approach of power electronics controls,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 919–931, 2007, ISSN: 02780046. DOI: 10.1109/TIE.2007.892253.
J. Wu, Y. Cheng, A. K. Srivastava, N. N. Schulz, and H. L. Ginn, “Hardware in the Loop test for power system modeling and simulation,” 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006 - Proceedings, pp. 1892–1897, 2006. DOI: 10.1109/PSCE.2006. 296201.
M. Steurer, F. Bogdan, W. Ren, M. Sloderbeck, and S. Woodruff, “Controller and power hardware-in-loop methods for accelerating renewable energy integration,” 2007 IEEE Power Engineering Society General Meeting, PES, pp. 44–47, 2007. DOI: 10.1109/PES.2007.386022.
L. A. Gregoire, K. Al-Haddad, and G. Nanjundaiah, “Hardware-in-the-Loop (HIL) to reduce the development cost of power electronic converters,” India International Conference on Power Electronics, IICPE 2010, 2011. DOI: 10.1109/IICPE.2011.5728153.
M. Lemaire, P. Sicard, and J. Belanger, “Prototyping and Testing Power Electronics Systems Using Controller Hardware-In-the-Loop (HIL) and Power Hardware-In-the-Loop (PHIL) Simulations,” 2015 IEEE Vehicle Power and Propulsion Conference, VPPC 2015 - Proceedings, pp. 2–7, 2015. DOI: 10.1109/VPPC.2015.7353000.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/31764/2/2020jhonnavarrete.pdf
https://repository.usta.edu.co/bitstream/11634/31764/3/Carta_aprobacion_facultad_Jhon_Navarrete.pdf
https://repository.usta.edu.co/bitstream/11634/31764/4/Carta%20Autorizacion%20para%20Datos%20Personales.pdf
https://repository.usta.edu.co/bitstream/11634/31764/5/Carta_Autorizacion.pdf
https://repository.usta.edu.co/bitstream/11634/31764/7/license.txt
https://repository.usta.edu.co/bitstream/11634/31764/6/license_rdf
https://repository.usta.edu.co/bitstream/11634/31764/8/2020jhonnavarrete.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/31764/9/Carta_aprobacion_facultad_Jhon_Navarrete.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/31764/10/Carta%20Autorizacion%20para%20Datos%20Personales.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/31764/11/Carta_Autorizacion.pdf.jpg
bitstream.checksum.fl_str_mv 313de1a406cfe50550c76c9dfbb9c4ed
c3b59308af8e43940ba8319879bb3f96
79335dfb0c23cfaac5d186d48afcf3d6
97e2913d014309d42256498087e7f7b9
aedeaf396fcd827b537c73d23464fc27
217700a34da79ed616c2feb68d4c5e06
a38dff390e73d04dde7f9e5431c23b04
13023ac205ff845b40b701ec4f0868b5
d33ab3b50dfaebac6f826eb28c5b4085
918f574cfbf6df25ace9ce593053e99e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026344597553152
spelling Torres Pinzón, Carlos AndrésMojica Casallas, Carlos JavierRamírez Murillo, HarrynsonNavarrete Gómez, Jhon Erikhttps://orcid.org/0000-0003-0367-8143https://orcid.org/0000-0002-3757-9410https://scholar.google.es/citations?user=gMAr7YEAAAAJ&hl=eshttps://scholar.google.com/citations?user=r9kpTz0AAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000692670http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000639214http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00016145502021-02-02T19:32:47Z2021-02-02T19:32:47Z2021-01-29Navarrete Gómez, J. E. (2020). Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converter [Tesis de Maestría en Ingeniería Electrónica, Universidad Santo Tomás] Repositorio Institucionalhttp://hdl.handle.net/11634/31764reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coExplicado brevemente, el modelado de sistemas es un intercambio equivalente de variables como Velocidad, precisión y esfuerzo. Al modelar un sistema, es posible que tengamos que elegir dos de estos tres atributos, dejando un lado. Un modelo con un nivel superior de precisión y velocidad siempre requerirá un esfuerzo impresionante. Lo contrario es raro. Este proyecto de investigación implementará un modelo en una plataforma Hardware in the Loop que permita mejorar los tiempos de diseño e implementación de los prototipos de Power Electronics.Briefly explained, systems modeling is an equivalent exchange of variables such as Speed, precision and effort. When modeling a system, we may have to choose two of these three attributes, leaving one side. A model with a top level of precision and speed will always require an impressive deal of effort. The opposite is rare. This research project will implement a model on a Hardware in the Loop platform that allows improving the design and implementation times of Power Electronics prototypes.Magister en Ingeniería Electrónicahttp://unidadinvestigacion.usta.edu.coMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Development of a platform using hardware in the loop technique to validate the dynamic behavior of a coupled-inductor buck-boost dc/dc converterHardware in the loopPower electronicsRenewable energy systemsElectric inductorsElectronic data processingSistemas embebidosInductores eléctricosProcesamiento electrónico de datosLabVIEWHardware in the loopSistemas de energía renovableTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BogotáD. Biel, F. Guinjoan, E. Fossas, and J. Chavarria, “Sliding-mode control design of a boost-buck switching converter for AC signal generation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 8, pp. 1539–1551, Aug. 2004, ISSN: 10577122. DOI: 10.1109/TCSI. 2004.832803.J. Chen, D. Maksimovi´c, and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 320–329, Mar. 2006, ISSN: 08858993. DOI: 10.1109/TPEL.2005.869744.M. Gaboriault and A. Notman, “A high efficiency, non-inverting, buck-boost DC-DC converter,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 3, 2004, pp. 1411–1415. DOI: 10.1109/apec.2004.1296049.P. C. Huang, W. Q. Wu, H. H. Ho, and K. H. Chen, “Hybrid buckboost feedforward and reduced average inductor current techniques in fast line transient and high-efficiency buckboost converter,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 719–730, 2010, ISSN: 08858993. DOI: 10.1109/TPEL.2009.2031803.B. Sahu and G. A. Rincon-Mora, “A low voltage, dynamic, noninverting, synchronous buckboost converter for portable applications,” IEEE Transactions on Power Electronics, vol. 19, no. 2, pp. 443–452, Mar. 2004, ISSN: 08858993. DOI: 10.1109/TPEL.2003.823196.Y. J. Lee, A. Khaligh, and A. Emadi, “A compensation technique for smooth transitions in a noninverting buck-boost converter,” IEEE Transactions on Power Electronics, vol. 24, no. 4, pp. 1002–1015, 2009, ISSN: 08858993. DOI: 10.1109/TPEL.2008.2010044.Y. J. Lee, A. Khaligh, A. Chakraborty, and A. Emadi, “Digital Combination of Buck and Boost Converters to Control a Positive Buck-Boost Converter and Improve the Output Transients,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1267–1279, 2009, ISSN: 19410107. DOI: 10.1109/TPEL.2009.2014066.E. Schaltz, P. O. Rasmussen, and A. Khaligh, “Non-inverting buck-boost converter for fuel cell applications,” in IECON Proceedings (Industrial Electronics Conference), IEEE Computer Society, 2008, pp. 855–860, ISBN: 9781424417667. DOI: 10.1109/IECON.2008.4758065.J. K. Shiau, C. J. Cheng, and C. E. Tseng, “Stability analysis of a non-inverting synchronous buck-boost power converter for a solar power management system,” in 2008 IEEE International Conference on Sustainable Energy Technologies, ICSET 2008, 2008, pp. 263–268, ISBN: 9781424418886. DOI: 10.1109/ICSET.2008.4747014.O. Mourra, A. Fernandez, and F. Tonicello, “Buck boost regulator (B2R) for spacecraft solar array power conversion,” in Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2010, pp. 1313–1319, ISBN: 9781424447824. DOI: 10.1109/APEC.2010. 5433399.S. Waffler and J. W. Kolar, “A Novel Low-Loss Modulation Strategy for High-Power Bidirectional Buck + Boost Converters,” IEEE Transactions on Power Electronics, vol. 24, no. 6, pp. 1589–1599, 2009, ISSN: 19410107. DOI: 10.1109/TPEL.2009.2015881.X. Ren, X. Ruan, H. Qian, M. Li, and Q. Chen, “Three-mode dual-frequency two-edge modulation scheme for four-switch buck-boost converter,” IEEE Transactions on Power Electronics, vol. 24, no. 2, pp. 499–509, 2009, ISSN: 08858993. DOI: 10.1109/TPEL.2008.2005578.D. M. Sable, B. H. Cho, and R. B. Ridley, “Elimination of the positive zero in fixed frequency boost and flyback converters,” in Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition, 1990, pp. 205–211. DOI: 10.1109/APEC.1990.66413.Wei-Chung Wu, R. M. Bass, and J. R. Yeargan, “Eliminating the effects of the right-half plane zero in fixed frequency boost converters,” in PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196), vol. 1, May 1998, 362–366 vol.1. DOI: 10.1109/PESC.1998.701924.S.-K. E., F. A., M. E., E. J.B., E. V., C. J., and G. A., “Bidirectional High-Power High-Efficiency non-isolated step-up DC-DC Converter,” 2003.J. Calvente, L. Martinez-Salamero, H. Valderrama, and E. Vidal-Idiarte, “Using magnetic coupling to eliminate right half-plane zeros in boost converters,” IEEE Power Electronics Letters, vol. 2, no. 2, pp. 58–62, 2004, ISSN: 15407985. DOI: 10.1109/LPEL.2004.834615.B. Poorali and E. Adib, “Right-Half-Plane Zero Elimination of Boost,” vol. 66, no. 11, pp. 8454– 8462, 2019.C. Restrepo, J. Calvente, A. Cid-Pastor, A. El Aroudi, and R. Giral, “A noninverting buck-boost dc-dc switching converter with high efficiency and wide bandwidth,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2490–2503, 2011, ISSN: 08858993. DOI: 10.1109/TPEL. 2011.2108668.C. Restrepo, S. Member, J. Calvente, A. Romero, E. Vidal-idiarte, R. Giral, and S. Member, “Current-Mode Control of a Coupled-Inductor Buck – Boost DC – DC Switching Converter,” vol. 27, no. 5, pp. 2536–2549, 2012.J. Calvente, L. Martínez-Salamero, P. Garcés, and A. Romero, “Zero Dynamics-Based Design of Damping Networks for Switching Converters,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1292–1303, 2003, ISSN: 00189251. DOI: 10.1109/TAES.2003. 1261129.C. Restrepo, T. Konjedic, J. Calvente, M. Milanoviˇc, and R. Giral, “Fast transitions between current control loops of the coupled-inductor buck-boost DC-DC switching converter,” IEEE Transactions on Power Electronics, vol. 28, no. 8, pp. 3648–3652, 2013, ISSN: 08858993. DOI: 10.1109/TPEL.2012.2231882.M. N. Alexander, Charles K. and Sadiku, Fundamentals of Electric Circuits, Fifth Edit. Cleveland, Ohio: McGraw-Hill, 2013, p. 905, ISBN: 978-0-07-338057-5.Z. Zhang, “Coupled-Inductor Magnetics,” Ph.D. dissertation, California Institute of Technology, 1987, p. 243.M. A. Mannah, A. Haddad, and H. Bazzi, “Hardware in the loop simulation for optimal management of electrical power converters,” 2014 International Conference on Renewable Energies for Developing Countries, REDEC 2014, pp. 43–48, 2014. DOI: 10.1109/REDEC.2014.7038529.W. Ren, M. Steurer, and S. Woodruff, “Progress and challenges in real time hardware-in-the loop simulations of integrated ship power systems,” 2005 IEEE Power Engineering Society General Meeting, vol. 1, pp. 534–537, 2005. DOI: 10.1109/pes.2005.1489721.A. Monti, H. Figueroa, S. Lentijo, X. Wu, and R. Dougal, “Interface issues in hardware-in-theloop simulation,” 2005 IEEE Electric Ship Technologies Symposium, vol. 2005, pp. 39–44, 2005. DOI: 10.1109/ESTS.2005.1524650.Z. Jiang, R. A. Dougal, R. Leonard, H. Figueroa, and A. Monti, “Hardware-in-the-loop testing of digital power controllers,” Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 2006, pp. 901–906, 2006. DOI: 10.1109/apec.2006.1620645.B. Lu, X. Wu, H. Figueroa, and A. Monti, “A low-cost real-time hardware-in-the-loop testing approach of power electronics controls,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 919–931, 2007, ISSN: 02780046. DOI: 10.1109/TIE.2007.892253.J. Wu, Y. Cheng, A. K. Srivastava, N. N. Schulz, and H. L. Ginn, “Hardware in the Loop test for power system modeling and simulation,” 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006 - Proceedings, pp. 1892–1897, 2006. DOI: 10.1109/PSCE.2006. 296201.M. Steurer, F. Bogdan, W. Ren, M. Sloderbeck, and S. Woodruff, “Controller and power hardware-in-loop methods for accelerating renewable energy integration,” 2007 IEEE Power Engineering Society General Meeting, PES, pp. 44–47, 2007. DOI: 10.1109/PES.2007.386022.L. A. Gregoire, K. Al-Haddad, and G. Nanjundaiah, “Hardware-in-the-Loop (HIL) to reduce the development cost of power electronic converters,” India International Conference on Power Electronics, IICPE 2010, 2011. DOI: 10.1109/IICPE.2011.5728153.M. Lemaire, P. Sicard, and J. Belanger, “Prototyping and Testing Power Electronics Systems Using Controller Hardware-In-the-Loop (HIL) and Power Hardware-In-the-Loop (PHIL) Simulations,” 2015 IEEE Vehicle Power and Propulsion Conference, VPPC 2015 - Proceedings, pp. 2–7, 2015. DOI: 10.1109/VPPC.2015.7353000.ORIGINAL2020jhonnavarrete.pdf2020jhonnavarrete.pdfapplication/pdf2564670https://repository.usta.edu.co/bitstream/11634/31764/2/2020jhonnavarrete.pdf313de1a406cfe50550c76c9dfbb9c4edMD52open accessCarta_aprobacion_facultad_Jhon_Navarrete.pdfCarta_aprobacion_facultad_Jhon_Navarrete.pdfCarta de Aprobación Facultadapplication/pdf132975https://repository.usta.edu.co/bitstream/11634/31764/3/Carta_aprobacion_facultad_Jhon_Navarrete.pdfc3b59308af8e43940ba8319879bb3f96MD53metadata only accessCarta Autorizacion para Datos Personales.pdfCarta Autorizacion para Datos Personales.pdfCarta de Autorizaciónapplication/pdf221582https://repository.usta.edu.co/bitstream/11634/31764/4/Carta%20Autorizacion%20para%20Datos%20Personales.pdf79335dfb0c23cfaac5d186d48afcf3d6MD54metadata only accessCarta_Autorizacion.pdfCarta_Autorizacion.pdfCarta Autorización CRAIapplication/pdf291671https://repository.usta.edu.co/bitstream/11634/31764/5/Carta_Autorizacion.pdf97e2913d014309d42256498087e7f7b9MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/31764/7/license.txtaedeaf396fcd827b537c73d23464fc27MD57open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/31764/6/license_rdf217700a34da79ed616c2feb68d4c5e06MD56open accessTHUMBNAIL2020jhonnavarrete.pdf.jpg2020jhonnavarrete.pdf.jpgIM Thumbnailimage/jpeg8617https://repository.usta.edu.co/bitstream/11634/31764/8/2020jhonnavarrete.pdf.jpga38dff390e73d04dde7f9e5431c23b04MD58open accessCarta_aprobacion_facultad_Jhon_Navarrete.pdf.jpgCarta_aprobacion_facultad_Jhon_Navarrete.pdf.jpgIM Thumbnailimage/jpeg6962https://repository.usta.edu.co/bitstream/11634/31764/9/Carta_aprobacion_facultad_Jhon_Navarrete.pdf.jpg13023ac205ff845b40b701ec4f0868b5MD59open accessCarta Autorizacion para Datos Personales.pdf.jpgCarta Autorizacion para Datos Personales.pdf.jpgIM Thumbnailimage/jpeg5422https://repository.usta.edu.co/bitstream/11634/31764/10/Carta%20Autorizacion%20para%20Datos%20Personales.pdf.jpgd33ab3b50dfaebac6f826eb28c5b4085MD510open accessCarta_Autorizacion.pdf.jpgCarta_Autorizacion.pdf.jpgIM Thumbnailimage/jpeg8810https://repository.usta.edu.co/bitstream/11634/31764/11/Carta_Autorizacion.pdf.jpg918f574cfbf6df25ace9ce593053e99eMD511open access11634/31764oai:repository.usta.edu.co:11634/317642022-12-11 03:14:07.357metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K