Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes

Debido a las actividades antropogénicas que promueven la contaminación del recurso agua, incluyendo los procesos industriales en los que intervienen los colorantes, día a día se buscan alternativas para su tratamiento. El uso de filtros o sistemas que permitan la eliminación de estos colorantes en a...

Full description

Autores:
Santos Acuña, Camila Andrea
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/16694
Acceso en línea:
http://hdl.handle.net/11634/16694
Palabra clave:
Anethole
Star anise essential oil
Dye adsorption
Cationic polymerization
Sulfonation
Adsorbentes
Polimerización
Purificación de aguas residuales
Sulfonación
Anetol
Aceite esencial del anís estrellado
Adsorción de colorantes
Polimerización catiónica
Sulfonación
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_e4a92cf5e02af66427e0de51e537c896
oai_identifier_str oai:repository.usta.edu.co:11634/16694
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes
title Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes
spellingShingle Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes
Anethole
Star anise essential oil
Dye adsorption
Cationic polymerization
Sulfonation
Adsorbentes
Polimerización
Purificación de aguas residuales
Sulfonación
Anetol
Aceite esencial del anís estrellado
Adsorción de colorantes
Polimerización catiónica
Sulfonación
title_short Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes
title_full Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes
title_fullStr Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes
title_full_unstemmed Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes
title_sort Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes
dc.creator.fl_str_mv Santos Acuña, Camila Andrea
dc.contributor.advisor.spa.fl_str_mv Merchán Arenas, Diego Rolando
Martínez Bonilla, Carlos Andrés
dc.contributor.author.spa.fl_str_mv Santos Acuña, Camila Andrea
dc.subject.keyword.spa.fl_str_mv Anethole
Star anise essential oil
Dye adsorption
Cationic polymerization
Sulfonation
topic Anethole
Star anise essential oil
Dye adsorption
Cationic polymerization
Sulfonation
Adsorbentes
Polimerización
Purificación de aguas residuales
Sulfonación
Anetol
Aceite esencial del anís estrellado
Adsorción de colorantes
Polimerización catiónica
Sulfonación
dc.subject.lemb.spa.fl_str_mv Adsorbentes
Polimerización
Purificación de aguas residuales
Sulfonación
dc.subject.proposal.spa.fl_str_mv Anetol
Aceite esencial del anís estrellado
Adsorción de colorantes
Polimerización catiónica
Sulfonación
description Debido a las actividades antropogénicas que promueven la contaminación del recurso agua, incluyendo los procesos industriales en los que intervienen los colorantes, día a día se buscan alternativas para su tratamiento. El uso de filtros o sistemas que permitan la eliminación de estos colorantes en aguas residuales persiste como un reto ambiental actual. Por tal razón, se sintetizó un polímero sulfonado de bajo costo a base de anetol (PAS), componente mayoritario del aceite esencial del anís estrellado. Se obtuvo un sólido blanco insoluble con un rendimiento del 85 %, el cual fue caracterizado empleando técnicas instrumentales como: espectroscopía infrarroja, identificando bandas de grupos sulfónico en 1142 y 1342 cm-1; análisis termogravimétrico, donde se evidenció la fase final de la degradación térmica del polímero (90 – 95 %) por encima de 600 °C; MALDI-TOF, donde se calculó una masa molar promedio (Mn ) entre 1013 - 1412 Da.; y finalmente, a través del análisis SEM-EDS se determinó su morfología ovalada con superficies suaves y lisas, detectando la presencia de los elementos característicos, C (37 %), O (40 %), S (5 %) y Na (10 %). El material obtenido se empleó por primera vez en pruebas de adsorción de colorantes, dando como resultado una capacidad máxima de adsorción de 30.7 mg/g para el colorante AM y una cinética de adsorción descrita por una ecuación de pseudo-segundo orden, alcanzando el equilibrio dentro de los primeros 25 min de contacto. Los datos presentes mostraron un mejor ajuste con el modelo de la isoterma de Langmuir.
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-05-14T23:23:35Z
dc.date.available.spa.fl_str_mv 2019-05-14T23:23:35Z
dc.date.issued.spa.fl_str_mv 2019-05-13
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Santos Acuña C. A. (2019). Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/16694
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Santos Acuña C. A. (2019). Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/16694
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adak A., Bandyopadhyay M. & Pal A. (2005). Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep. Purif. Technol., 44, 139–144.
Al-Ghouti M. A., Khraisheh M. A. M., Allen S. J. & Ahmad M. N. (2003). The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage., 69(3), 229–238.
Al-Harbi M. M., Qureshi S., Raza M., Ahmed M. M., Giangreco A. B. & Shah A. H. (1995). Influence of anethole treatment on the tumour induced by Ehrlich ascites carcinoma cells in paw of Swiss albino mice. Eur J Cancer Prev, 4(4), 307–318.
Alkaim A. F. (2013). Study the adsorption of remazol brilliant blue dye from aqueous solutions using bioresource activated carbon. Iraqi Natl. J. Chem, 52, 369–381.
Annadurai G., Juang R. S. & Lee D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater., 92(3), 263–274.
Aoshima S. & Kanaoka S. (2009). A renaissance in living cationic polymerization. Chem. Rev., 109(11), 5245–5287.
Bakkali F., Averbeck S., Averbeck D. & Idaomar M. (2008). Biological effects of essential oils A review. Food. Chem. Toxicol., 46(2), 446–475.
Balapure K., Bhatt N. & Madamwar D. (2015). Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour. Technol., 175, 1–7.
Battu S., Rabinovitch-Chable H. & Beneytout J. (1994). Effectiveness of Talc as Adsorbent for Purification and Immobilization of Plant Lipoxygenases. J. Agric. Food Chem., 42, 2115–2119.
Bello O. S., Bello O. U. & Lateef I. O. (2014). Adsorption Characteristics of Mango Leaf (Mangifera indica) Powder as Adsorbent for Malachite Green Dye Removal from Aqueous Solution. Covenant J. Physic Life Sci., 2(1), 1–13.
Bhattacharya K. G. & Sharma A. (2005). Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder. Dye. Pigment., 65(1), 51–59.
Bishop C. (1995). Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden and Betche) Cheel (tea tree) against tobacoo mosaic virus. J. Essent. Oil Res., 7, 641–644.
Bruckner R. (2002). Advanced Organic Chemistry Reaction Mechanisms.
Bulut E., Özacar M. & Ayhan I. (2008). Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater., 154, 613–622.
Bulut Y. & Aydin H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1–3), 259–267.
Burt S. (2004). Essential oils: their antibacterial properties and potential applications in foods a review. Int. J. Food. Microbiol., 94, 223–253.
Cai M., Guo X., Liang H. & Sun P. (2013). Microwave-assisted extraction and antioxidant activity of star anise oil from Illicium verum Hook . f. J. Food Sci. Technol., 1–7.
Calabrese C., Gou Q., Maris A., Melandri S. & Caminati W. (2016). Conformational Equilibrium and Internal Dynamics of E-Anethole: A Rotational Study. J. Phys. Chem. B, 120(27), 6587–6591.
Chang K. & Ahn Y. (2001). Fumigant activity of ( E ) -anethole identified in Illicium verum fruit against Blattella germanica. Pest. Manag. Sci., 58, 161–166.
Chapman C. & Siebold A. (1916). Proceedings of the Society of Public Analysts and Other Analytical Chemists. On the Application of Adsorption too the Detection and Separation of Certain Dyes. Analyst, 44(520), 339–345.
Charles D. (2013). Anise Star. In Antioxidant Properties of Spices, Herbs and Other Sources (p. 165). New York: Springer.
Chen B., Miller M. E. & Gross R. A. (2007). Effects of porous polystyrene resin parameters on Candida antarctica lipase B adsorption, distribution, and polyester synthesis activity. Langmuir, 23(11), 6467–6474.
Cornel P. & Sontheimer H. (1986). Sorption of Dissolved Organics From Aqueous Solution By Polystyrene Resin I. Resin Characterization and Sorption Equilibrium. Chem Eng Sci., 41(7), 1791–1800.
Correia V. M., Stephenson T. & Judd S. J. (1994). Characterisation of textile wastewaters a review. Environ. Technol., 15(10), 917–929.
Costa J. (2005). Diccionario de Química y Física. España: Díaz de Santos.
Crini G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 30, 38–70.
Crini G. (2008). Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dye. Pigment., 77, 415–426.
Da browski A. (2001). Adsorption - From theory to practice. Adv. Colloid Interface Sci., 93(1–3), 135–224.
Davis M. C., Guenthner A. J., Sahagun C. M., Lamison K. R., Reams J. T. & Mabry J. M. (2013). Polycyanurate networks from dehydroanethole cyclotrimers: Synthesis and characterization. Polymer, 54(26), 6902–6909.
Dhakal B., Bohé L. & Crich D. (2017). Trifluoromethanesulfonate Anion as Nucleophile in Organic Chemistry. J. Org. Chem., 82(18), 9263–9269.
Eckenrode H. M., Jen S., Han J., Yeh A. & Dai H. (2005). Adsorption of a Cationic Dye Molecule on Polystyrene Microspheres in Colloids : Effect of Surface Charge and Composition Probed by Second Harmonic Generation. J. Phys. Chem. B, 109, 4646–4653.
Engineers N. B. of C. &. (2013). Spices & Condiments (Second). Asia Pacific Business Press Inc.
Espantaleón A. G., Nieto J. A., Fernández M. & Marsal A. (2003). Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl. Clay Sci., 24(1–2), 105–110.
Fernández J., Kiwi J., Lizama C., Freer J., Baeza J. & Mansilla H. D. (2002). Factorial experimental design of orange II photocatalytic discolouration. J. Photochem. Photobiol. A Chem., 151(1–3), 213–219.
Fleischmann C., Lievenbrück M. & Ritter H. (2015). Polymers and Dyes: Developments and Applications. Polymers, 7, 717–746.
Freire R. S., Morais S. M., Catunda F. E. A. & Pinheiro D. C. S. N. (2005). Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds. Bioorganic Med. Chem., 13(13), 4353–4358.
Galeotti N., Ghelardini C., Di L., Mannelli C., Mazzanti G., Baghiroli L. & Bartolini A. (2001). Local Anaesthetic Activity of (+) and (-) Menthol. Planta Med., 67, 174–176.
Garcia-segura S., Centellas F., Arias C., Garrido J. A., Rodríguez R. M., Cabot P. L. & Brillas E. (2011). Electrochimica Acta Comparative decolorization of monoazo , diazo and triazo dyes by electro-Fenton process. Electrochimica Acta, 58, 303–311.
Gibson H. W. & Bailey F. (1980). Chemical Modification of Polymers. 13.’ Sulfonation of Polystyrene Surfaces. Macromolecules, 13, 34–41.
Gilbert E. E. (1962). The Reactions of Sulfur Trioxide, and of its adducts, with organic compounds. Chem. Rev., 62(6), 549–589.
Gómez J. M., Galán J., Rodríguez A. & Walker G. M. (2014). Dye adsorption onto mesoporous materials: PH influence, kinetics and equilibrium in buffered and saline media. J. Environ. Manage., 146, 355–361.
Gong R., Li M., Yang C., Sun Y. & Chen J. (2005). Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater., 121(1–3), 247–250.
Gross M., Friedman J., Dudai N., Larko O., Cohen Y., Bar E., Ravid U., Putievsky E. & Lewinsohn E. (2002). Biosynthesis of estragole and t-anethole in bitter fennel (Foeniculum vulgare Mill . var . vulgare) chemotypes . Changes in SAM: phenylpropene O-methyltransferase activities during development. Plant. Sci, 163(5), 1047–1053.
Gudelj I., Hrenović J., Dragičević T. L., Delaš F., Soljan V. & Gudelj H. (2011). Azo Boje, Njihov Utjecaj Na Okolis I Potencijal Biotehnoloske Strategije Za Njihovu Biorazgradnju I Detoksifikaciju. Arh Hig Rada Toksikol, 62(1), 91–101.
Gupta V. K. (2009). Application of low-cost adsorbents for dye removal – A review. J. Environ. Manage., 90(8), 2313–2342.
Hachem C., Bocquillon F., Zahraa O. & Bouchy M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. Dye. Pigment., 49(2), 117–125.
Hameed B. H. & Tan I. A. W. (2010). Nitric acid-treated bamboo waste as low-cost adsorbent for removal of cationic dye from aqueous solution. Desalin. Water Treat., 21, 357–363.
He F., Gao Y., Jin K., Wang J., Sun J. & Fang Q. (2016). Conversion of a Biorenewable Plant Oil (Anethole) to a New Fluoropolymer with Both Low Dielectric Constant and Low Water Uptake. ACS Sustain. Chem. Eng., 4(8), 4451–4456.
Higashimura T., Hirokawa Y., Matsuzaki K., Kawamura T. & Uryu T. (1979). Cationic Polymerization of Anethole adn its Model Reaction: A stereochemical approah to the propagation mechanism. Polym. J, 11(11), 855–862.
Higashimura T. & Hiza M. (1981). Cationic Oligomerization of Anethole: Selective Synthesis of Dimers and Trimers. J. Polym. Sci., 19, 1957–1966.
Hillmyer M. A. (2012). Polymer Synthesis. Polymer Science:A Comprehensive Reference (Vol. 1). Elsevier B.V.
Hirokawa Y. (1979). Cationic Polymerization of Anethole and Its Model Reaction : A Stereochemical Approach to the Propagation Mechanism. Polym. J., 11(11), 855–862.
Howes M.-J. R., Kite G. C. & Simmonds M. S. J. (2009). Distinguishing chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry. J. Agric. Food Chem., 57(13), 5783–5789.
Hsueh C. C. & Chen B. Y. (2008). Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. J. Hazard. Mater., 154(1–3), 703–710.
Hussain F., Hojjati M., Okamoto M. & Gorga R. E. (2006). Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater., 40(17), 1511–1575.
Inbaraj B. S., Chien J. T., Ho G. H., Yang J. & Chen B. H. (2006). Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly(γ-glutamic acid). Biochem. Eng. J., 31(3), 204–215.
J W. & JR W. (n.d.). Control de la calidad del agua, Procesos Fisicoquímicos (pp. 210–211). Reverté S.A.
Jeffords D., Lance P. & Dewolf W. (1977). Severe Hypertensive Reaction to Indigo Carmin. Urology, 9(2), 180–181.
Ji J., Zhang G., Chen H., Wang S., Zhang G., Zhang F. & Fan X. (2011). Sulfonated graphene as water-tolerant solid acid catalyst. Chem.Sci, 2, 484–487.
Joulain D. (1996). Investigating new essential oils: rationale, results and limitations. Perfum. Flavorist, 21(2), 1–10.
Kanaoka S. & Aoshima S. (2012). Cationic Polymerization of Polar Monomers. Polymer Science: A Comprehensive Reference (Vol. 3).
Karcher S., Kornmüller A. & Jekel M. (2001). Screening of commercial sorbents for the removal of reactive dyes. Dye. Pigment., 51, 111–125.
Khan S. B., Ali F., Kamal T., Anwar Y., Asiri A. M. & Seo J. (2016). CuO embedded chitosan spheres as antibacterial adsorbent for dyes. Int. J. Biol. Macromol., 88, 113–119.
Kiurski J., Adamovic S., Oros I., Krstic J. & Kovacevic I. (2012). Adsorption feasibility in the Cr(Total) ions removal from waste printing developer. Global NEST Journal, 14(1), 18–23.
Koo J. H. & Pilato L. A. (2005). Polymer nanostructured materials for high temperature applications. Sampe Journal, 41(2), 7–19.
Kosalec I., Pepeljnjak S. & Kustrak D. (2005). Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta. Pharm, 55(4), 377–385.
Kricheldorf H., Nuyken O. & Swift G. (2005). Handbook of Polymer Synthesis (2nd ed.). New York: Marcel Dekker.
Kruse T. M., Wong H. & Broadbelt L. J. (2003). Modeling the Evolution of the Full Polystyrene Molecular Weight Distribution during Polystyrene Pyrolysis. Ind. Eng. Chem, 42, 2722–2735.
Krysztafkiewicz A., Binkowski S. & Jesionowski T. (2002). Adsorption of dyes on a silica surface. Appl. Surf. Sci., 199, 31–39.
Kucera F. & Jancar J. (1996). Preliminary Study of Sulfonation of Polystyrene by Homogeneous and Heterogeneous Reaction. Chem. Pap., 50(4), 224–227.
Kucera F. & Jancar J. (1998). Homogeneous and Heterogeneous Sulfonation of Polymers: A Reviw. Polym. Eng. Sci, 38(5), 783–792.
Lee C. K., Liu S. S., Juang L. C., Wang C. C., Lin K. S. & Lyu M. Du. (2007). Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mater., 147(3), 997–1005.
Levine W. G. (1991). Metabolism of AZO Dyes : Implication for Detoxication and Activation. Drug Metabolism Reviews, 23, 253–309.
Limousin G., Gaudet J., Charlet L., Szenknect S., Barthes V. & Krimissa M. (2007). Sorption isotherms : A review on physical bases , modeling and measurement. Appl. Geochemistry, 22, 249–275.
Linstromberg W. (1979). El color en los compuestos orgánicos colorantes. In Curso Breve de Química Orgánica (pp. 475–483). España.
Liu L., Gao Z. Y., Su X. P., Chen X., Jiang L. & Yao J. M. (2015). Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain. Chem. Eng., 3(3), 432–442.
Liu Z., Qi Y., Gui M., Feng C., Wang X. & Lei Y. (2019). Sulfonated carbon derived from the residue obtained after recovery of essential oil from the leaves of Cinnamomum longepaniculatum using Brønsted acid ionic liquid , and its use in the preparation of ellagic acid and gallic acid. RSC. Adv, 9, 5142–5150.
Lucchesi M. E., Chemat F. & Smadja J. (2004). An original solvent free microwave extraction of essential oils from spices. Flavour Fragr. J., 19(2), 134–138.
Manning B. W., Cerniglia C. E. & Federle T. W. (1985). Metabolism of the benzidine-based azo dye direct black 38 by human intestinal microbiota. Appl. Environ. Microbiol., 50(1), 10–15.
Masel R. (1951). Principles of adsorption and reaction on solid surfaces (first). United States of America: A Wiley Interscience Publication.
Matyjaszewski K. (1996). Cationic Polymerizations Mechanisms, Synthesis and Applications. New York: Marcel Dekker.
Matyjaszewski K. & Lin C.-H. (1991). Cationic Polymerization of Styrenes by Activated Covalent Species. Direct H-NMR Observation of Complexes of 1 -Phenylethyl Acetates with Lewis Acids. J Polym Sci A Polym Chem., 29, 1439–1446.
Möller M. (2012). Polymer Synthesis. In Polymer Science: A comprehensive Reference (primera, pp. 31–36). Krzysztof Matyjaszewski.
Morrison R. T. & Boyd R. N. (n.d.). Sustitución electrófilica aromática. In Química Orgánica (5th ed., p. 500). New York: Pearson Educación.
Namasivayam C. & Kavitha D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dye. Pigment., 54, 47–58.
Namasivayam C., Muniasamy N., Gayatri K., Rani M. & Ranganathan K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour. Technol., 57(1), 37–43.
Nonoyama Y., Satoh K. & Kamigaito M. (2014). Renewable β-methylstyrenes for bio-based heat-resistant styrenic copolymers: radical copolymerization enhanced by fluoroalcohol and controlled/living copolymerization by RAFT. Polymer. Chem, 5, 3182–3189.
OECD. (2014). OECD Environmental Performance Reviews: Colombia 2014. OECD Environmental Performance Reviews.
Ogugbue C. J. & Sawidis T. (2011). Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent. Biotechnol . Res. Int., 1–12.
Ojedokun A. T. & Bello O. (2016). Liquid Phase Adsorption Of Congo Red Dye on Functionalize Corn Cobs. J. Disper. Sci. Technol., 38(9), 1–48.
Okeola F. . & Odebunmi E. . (2010). Comparison of Freundlich and Langmuir isotherms for adsorption of methylene blue by agrowaste derived activated carbon. Adv. Environ. Biol., 4(3), 329–335.
Padmesh T. V. N., Vijayaraghavan K., Sekaran G. & Velan M. (2005). Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides. J. Hazard. Mater., 125(1–3), 121–129.
Palarasah Y., Skjoedt M. O., Vitved L., Andersen T. E., Skjoedt K. & Koch C. (2010). Sodium polyanethole sulfonate as an inhibitor of activation of complement function in blood culture systems. J. Clin. Microbiol., 48(3), 908–914.
Palma C., Lloret L., Puen A., Tobar M. & Contreras E. (2016). Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chinese J. Chem. Eng., 24(4), 521–528.
Pasch H. & Schrepp W. (2003). MALDI-TOF Mass Spectrometry of Synthetic. Board. Germany.
Pinto Peres B., Santa María L. C. & Sena M. E. (2007). Sulfonated poly (ether imide): A versatile route to prepare functionalized polymers by homogenous sulfonation. Mater. Lett., 61, 2540–2543.
Platzek T., Lang C., Grohmann G., Gi U. S. & Baltes W. (1999). Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Human & Experimental Toxicology, 18(9), 552–559.
Porta G. Della, Taddeo R., Urso E. D. & Reverchon E. (1998). Isolation of Clove Bud and Star Anise Essential Oil by Supercritical CO2 Extraction. Lebensm.-Wiss. u.-Technol, 31, 454–460.
R J. C. (2004). Ministerio de medio ambiente 3285, 6494–6515.
R L. & Raj S. (2008). Bio-decolourization of textile effluent containing Reactive Black-B by effluent-adapted and non-adapted bacteria. Afr J Biotechnol, 7(18), 3309–3313.
Räder H. & Schrepp W. (1998). MALDI-TOF mass spectrometry in the analysis of synthetic polymers. Acta Polymer, 49, 272–293.
Ramón J. A., Amaya J. D. & Losada L. M. (2013). Degradación Fotocatalitica De Rojo Congo En Un Colector Parabolico Solar Y Dióxido De Titanio En Suspensión. Rev. Invest. Univ. Quindío, 24(1), 71–83.
Raza S., Yong X., Yang B., Xu R. & Deng J. (2017). Biomass trans-Anethole-Based Hollow Polymer Particles: Preparation and Application as Sustainable Absorbent. ACS Sustain. Chem. Eng., 5(11), 10011–10018.
Reddy S. (2006). Removal of direct dye from aqueous solutions with an adsorbent made from tamarind fruit shell, an agricultural solid waste. J. Sci. Ind. Res., 65(5), 443–446.
Rehman M. S. U., Kim I. & Han J. I. (2012). Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydr. Polym., 90(3), 1314–1322.
Robinson T., McMullan G., Marchant R. & Nigam P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77(3), 247–255.
Rojo L. (2008). Derivados Poliméricos de Eugenol para Aplicaciones Biomédicas. Universidad Complutense de Madrid.
Rouguerol F., Rouquerol J., Llewelly P. & Maurin G. (2014). General Definitions and Terminology. In Adsorption by powders and porous solids principles, methodology and applications (2nd ed., pp. 6–11). Marseille: Elsevier.
Rubín E., Rodríguez P., Herrero R. & Sastre de Vicente M. E. (2010). Adsorption of Methylene Blue on Chemically Modified Algal Biomass: Equilibrium, Dynamic, and Surface Data. J. Chem. Eng. Data, 55(12), 5707–5714.
Salleh M. A. M., Mahmoud D. K., Karim W. A. W. A. & Idris A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.
Saratale R. G., Saratale G. D., Chang J. S. & Govindwar S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng., 42(1), 138–157.
Satoh K. (2015). Controlled / living polymerization of renewable vinyl monomers into bio-based polymers. Polymer Journal, 1–10.
Satoh K., Saitoh S. & Kamigaito M. (2007). A linear lignin analogue: Phenolic alternating copolymers from naturally occurring p-methylstyrene via aqueous-controlled cationic copolymerization. J. Am. Chem. Soc., 129(31), 9586–9587.
Senthil Kumar P., Ramalingam S., Senthamarai C., Niranjanaa M., Vijayalakshmi P. & Sivanesan S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261(1–2), 52–60.
Shaffer T. (1997). Kinetics of Carbocationic Polymerizations: Initiation, Propagation, and Transfer Steps. In Carbocationic Polymerization: A Rejuvenation (pp. 1–11).
Shahat A. A., Ibrahim A. Y., Hendawy S. F., Omer E. A., Hammouda F. M., Abdel-Rahman F. H. & Saleh M. A. (2011). Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules, 16(2), 1366–1377.
Sharma Y. C., Uma & Upadhyay S. N. (2009). Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy and Fuels, 23(6), 2983–2988.
Silverstein R. M., Webster F. X. & Kiemle D. J. (n.d.). Infrared spectrometry. In Spectrometric identification or organic compounds (7th ed., pp. 106–107).
Siti Maryam R. & Shaliza I. (2010). Adsorption of textile reactive dye by palm shell activated carbon: Response Surface Methodology. Int. J. Mater. Text. Eng, 4(7), 441–444.
Smitha B., Sridhar S. & Khan A. A. (2003). Synthesis and characterization of proton conducting polymer membranes for fuel cells. J. Membrane Sci. Technol., 225, 63–76.
Stylianou M. A., Inglezakis V. J., Moustakas K. G., Malamis S. P. & Loizidou M. D. (2007). Removal of Cu ( II ) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents. Desalination, 215, 133–142.
Swamy M. K., Akhtar M. S. & Sinniah U. R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action : An Updated Review. Hindawi Publishing, 1–22.
Tanada S., Kabayama M., Kawasaki N., Sakiyama T., Nakamura T., Araki M. & Tamura T. (2003). Removal of phosphate by aluminum oxide hydroxide. J. Colloid Interface Sci., 257, 135–140.
Theivarasu C., Mylsamy S. & Sivakumar N. (2011). Cocoa Shell as Adsorbent for the Removal of Methylene Blue from Aqueous Solution : Kinetic and Equilibrium Study. Univers. j. Environ. Res., 1, 70–78.
Thornton Morrison R. & Neilson Boyd R. (1998). Química Orgánica (5th ed.). Pearson Educación.
Tuan D. Q. & Ilangantileke S. G. (1997). Liquid CO2 extraction of essential oil from star anise fruits (Illicium verum H.). J. Food Eng., 31(1), 47–57.
Vaishali J. & Pullela S. (2005). Rapid and easy identification of Illicium verum Hook. f. and its adulterant Illicium anisatum Linn. by fluorescent microscopy and gas chromatography. J. AOAC Int., 88(3), 703–706.
Van Den Hul H. J. & Lyklema J. (1968). Determination of Specific Surface Areas of Dispersed Materials. Comparison of the Negative Adsorption Method with Some Other Methods. J. Am. Chem. Soc., 90(12), 3010–3015.
Verma A. K., Dash R. R. & Bhunia P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage., 93(1), 154–168.
Villegas E. (2012). Caracterización de polímeros aplicando el método termogravimétrico. Métodos y Mater., 2, 25–32.
Wang C., LI J., Wang L., Sun X. & Huang J. (2009). Adsorption of Dye from Wastewater by Zeolites Synthesized from Fly Ash: Kinetic and Equilibrium Studies. Chinese J. Chem. Eng. Technol., 17(3), 513–521.
Wang W., Huang G., An C., Xin X., Zhang Y. & Liu X. (2017). Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies. Appl. Surf. Sci., 405(31), 119–128.
Weglarz-Tomczak E. & Gorecki L. (2012). Azo dyes - Biological activity and synthetic strategy. Chemik, 66(12), 1298–1307.
Weiss R., Sen A., Willis C. & Pottick L. (1991). Block copolymer ionomers : 1. Synthesis and physical properties of sulphonated poly(styrene-ethylene/butylene-styrene). Polymer, 32(10), 1867–1874.
Yong X. & Deng J. (2016). Biomass trans-anethole-based heat-resistant copolymer microspheres: Preparation and thermostability. Mater. Today Commun., 9, 60–66.
Yuan Y., Yong X., Zhang H. & Deng J. (2016). Biobased Microspheres Consisting of Poly(trans-anethole-co-maleic anhydride) Prepared by Precipitation Polymerization and Adsorption Performance. ACS Sustain. Chem. Eng., 4(3), 1446–1453.
Zaharia C., Suteu D., Muresan A. & Popescu A. (2009). Textile Wastewater Treatment by Homogeneous Oxidation with Hydrogen Peroxide. Environ. Eng. Manag. J., 8(6), 1359–1369.
Zhou K., Zhang Q., Wang B., Liu J., Wen P., Gui Z. & Hu Y. (2014). The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites. J. Clean. Prod., 1–9.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Química Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Química Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/16694/5/2019SantosCamila.pdf
https://repository.usta.edu.co/bitstream/11634/16694/2/2019SantosCamila1.pdf
https://repository.usta.edu.co/bitstream/11634/16694/3/2019SantosCamila2.pdf
https://repository.usta.edu.co/bitstream/11634/16694/6/license.txt
https://repository.usta.edu.co/bitstream/11634/16694/7/2019SantosCamila1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/16694/8/2019SantosCamila2.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/16694/9/2019SantosCamila.pdf.jpg
bitstream.checksum.fl_str_mv 47392d7497666109854567edb26d75fa
62a3e068b685d8611c90c48a55a1d563
8bf3f049a412d494b96e44ef3c5dd1e2
f6b8c5608fa6b2f649b2d63e10c5fa73
9102cafe7517962fac8e4bf3d6a2599d
c0b7b2cd589f684eff58def43e556f0f
89cbd205b1d8d7eb21823b1df7bf7bc0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026326940581888
spelling Merchán Arenas, Diego RolandoMartínez Bonilla, Carlos AndrésSantos Acuña, Camila Andrea2019-05-14T23:23:35Z2019-05-14T23:23:35Z2019-05-13Santos Acuña C. A. (2019). Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantes [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombiahttp://hdl.handle.net/11634/16694reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coDebido a las actividades antropogénicas que promueven la contaminación del recurso agua, incluyendo los procesos industriales en los que intervienen los colorantes, día a día se buscan alternativas para su tratamiento. El uso de filtros o sistemas que permitan la eliminación de estos colorantes en aguas residuales persiste como un reto ambiental actual. Por tal razón, se sintetizó un polímero sulfonado de bajo costo a base de anetol (PAS), componente mayoritario del aceite esencial del anís estrellado. Se obtuvo un sólido blanco insoluble con un rendimiento del 85 %, el cual fue caracterizado empleando técnicas instrumentales como: espectroscopía infrarroja, identificando bandas de grupos sulfónico en 1142 y 1342 cm-1; análisis termogravimétrico, donde se evidenció la fase final de la degradación térmica del polímero (90 – 95 %) por encima de 600 °C; MALDI-TOF, donde se calculó una masa molar promedio (Mn ) entre 1013 - 1412 Da.; y finalmente, a través del análisis SEM-EDS se determinó su morfología ovalada con superficies suaves y lisas, detectando la presencia de los elementos característicos, C (37 %), O (40 %), S (5 %) y Na (10 %). El material obtenido se empleó por primera vez en pruebas de adsorción de colorantes, dando como resultado una capacidad máxima de adsorción de 30.7 mg/g para el colorante AM y una cinética de adsorción descrita por una ecuación de pseudo-segundo orden, alcanzando el equilibrio dentro de los primeros 25 min de contacto. Los datos presentes mostraron un mejor ajuste con el modelo de la isoterma de Langmuir.Due to the anthropogenic activities that promote the contamination of the water resource, including the industrial processes in which the dyes intervene, day by day alternatives for its treatment are looked for. The use of filters or systems that allow the elimination of these dyes in wastewater persists as a current environmental challenge. For this reason, a low-cost sulfonated polymer based on anethole (PAS), a major component of the essential oil of star anise, was synthesized. An insoluble white solid was obtained with a yield of 85%, which was characterized using instrumental techniques such as: infrared spectroscopy, identifying bands of sulfonic groups at 1142 and 1342 cm-1; thermogravimetric analysis, where the final phase of the thermal degradation of the polymer (90-95%) above 600 ° C was evidenced; MALDI-TOF, where an average molar mass (Mn ) between 1013 - 1412 Da was calculated; and finally, through the SEM-EDS analysis, its oval morphology was determined with irregular and smooth surfaces, detecting the presence of the characteristic elements, C (37%), O (40%), S (5%) and Na (10 %). The material obtained was used for the first time in dye adsorption tests, resulting in a maximum adsorption capacity of 30.7 mg / g for the AM dye and an adsorption kinetics described by a pseudo-second order equation, reaching equilibrium within the first 25 minutes of contact. The present data showed a better fit with the Langmuir isotherm model.Químico Ambientalhttp://www.ustabuca.edu.co/ustabmanga/presentacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Química AmbientalFacultad de Química AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diseño y obtención de un polímero sulfonado a base de anetol, material semisintético promisorio en el desarrollo de nuevos adsorbentes de colorantesAnetholeStar anise essential oilDye adsorptionCationic polymerizationSulfonationAdsorbentesPolimerizaciónPurificación de aguas residualesSulfonaciónAnetolAceite esencial del anís estrelladoAdsorción de colorantesPolimerización catiónicaSulfonaciónTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BucaramangaAdak A., Bandyopadhyay M. & Pal A. (2005). Removal of crystal violet dye from wastewater by surfactant-modified alumina. Sep. Purif. Technol., 44, 139–144.Al-Ghouti M. A., Khraisheh M. A. M., Allen S. J. & Ahmad M. N. (2003). The removal of dyes from textile wastewater: A study of the physical characteristics and adsorption mechanisms of diatomaceous earth. J. Environ. Manage., 69(3), 229–238.Al-Harbi M. M., Qureshi S., Raza M., Ahmed M. M., Giangreco A. B. & Shah A. H. (1995). Influence of anethole treatment on the tumour induced by Ehrlich ascites carcinoma cells in paw of Swiss albino mice. Eur J Cancer Prev, 4(4), 307–318.Alkaim A. F. (2013). Study the adsorption of remazol brilliant blue dye from aqueous solutions using bioresource activated carbon. Iraqi Natl. J. Chem, 52, 369–381.Annadurai G., Juang R. S. & Lee D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater., 92(3), 263–274.Aoshima S. & Kanaoka S. (2009). A renaissance in living cationic polymerization. Chem. Rev., 109(11), 5245–5287.Bakkali F., Averbeck S., Averbeck D. & Idaomar M. (2008). Biological effects of essential oils A review. Food. Chem. Toxicol., 46(2), 446–475.Balapure K., Bhatt N. & Madamwar D. (2015). Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour. Technol., 175, 1–7.Battu S., Rabinovitch-Chable H. & Beneytout J. (1994). Effectiveness of Talc as Adsorbent for Purification and Immobilization of Plant Lipoxygenases. J. Agric. Food Chem., 42, 2115–2119.Bello O. S., Bello O. U. & Lateef I. O. (2014). Adsorption Characteristics of Mango Leaf (Mangifera indica) Powder as Adsorbent for Malachite Green Dye Removal from Aqueous Solution. Covenant J. Physic Life Sci., 2(1), 1–13.Bhattacharya K. G. & Sharma A. (2005). Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder. Dye. Pigment., 65(1), 51–59.Bishop C. (1995). Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden and Betche) Cheel (tea tree) against tobacoo mosaic virus. J. Essent. Oil Res., 7, 641–644.Bruckner R. (2002). Advanced Organic Chemistry Reaction Mechanisms.Bulut E., Özacar M. & Ayhan I. (2008). Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mater., 154, 613–622.Bulut Y. & Aydin H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1–3), 259–267.Burt S. (2004). Essential oils: their antibacterial properties and potential applications in foods a review. Int. J. Food. Microbiol., 94, 223–253.Cai M., Guo X., Liang H. & Sun P. (2013). Microwave-assisted extraction and antioxidant activity of star anise oil from Illicium verum Hook . f. J. Food Sci. Technol., 1–7.Calabrese C., Gou Q., Maris A., Melandri S. & Caminati W. (2016). Conformational Equilibrium and Internal Dynamics of E-Anethole: A Rotational Study. J. Phys. Chem. B, 120(27), 6587–6591.Chang K. & Ahn Y. (2001). Fumigant activity of ( E ) -anethole identified in Illicium verum fruit against Blattella germanica. Pest. Manag. Sci., 58, 161–166.Chapman C. & Siebold A. (1916). Proceedings of the Society of Public Analysts and Other Analytical Chemists. On the Application of Adsorption too the Detection and Separation of Certain Dyes. Analyst, 44(520), 339–345.Charles D. (2013). Anise Star. In Antioxidant Properties of Spices, Herbs and Other Sources (p. 165). New York: Springer.Chen B., Miller M. E. & Gross R. A. (2007). Effects of porous polystyrene resin parameters on Candida antarctica lipase B adsorption, distribution, and polyester synthesis activity. Langmuir, 23(11), 6467–6474.Cornel P. & Sontheimer H. (1986). Sorption of Dissolved Organics From Aqueous Solution By Polystyrene Resin I. Resin Characterization and Sorption Equilibrium. Chem Eng Sci., 41(7), 1791–1800.Correia V. M., Stephenson T. & Judd S. J. (1994). Characterisation of textile wastewaters a review. Environ. Technol., 15(10), 917–929.Costa J. (2005). Diccionario de Química y Física. España: Díaz de Santos.Crini G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci., 30, 38–70.Crini G. (2008). Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dye. Pigment., 77, 415–426.Da browski A. (2001). Adsorption - From theory to practice. Adv. Colloid Interface Sci., 93(1–3), 135–224.Davis M. C., Guenthner A. J., Sahagun C. M., Lamison K. R., Reams J. T. & Mabry J. M. (2013). Polycyanurate networks from dehydroanethole cyclotrimers: Synthesis and characterization. Polymer, 54(26), 6902–6909.Dhakal B., Bohé L. & Crich D. (2017). Trifluoromethanesulfonate Anion as Nucleophile in Organic Chemistry. J. Org. Chem., 82(18), 9263–9269.Eckenrode H. M., Jen S., Han J., Yeh A. & Dai H. (2005). Adsorption of a Cationic Dye Molecule on Polystyrene Microspheres in Colloids : Effect of Surface Charge and Composition Probed by Second Harmonic Generation. J. Phys. Chem. B, 109, 4646–4653.Engineers N. B. of C. &. (2013). Spices & Condiments (Second). Asia Pacific Business Press Inc.Espantaleón A. G., Nieto J. A., Fernández M. & Marsal A. (2003). Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl. Clay Sci., 24(1–2), 105–110.Fernández J., Kiwi J., Lizama C., Freer J., Baeza J. & Mansilla H. D. (2002). Factorial experimental design of orange II photocatalytic discolouration. J. Photochem. Photobiol. A Chem., 151(1–3), 213–219.Fleischmann C., Lievenbrück M. & Ritter H. (2015). Polymers and Dyes: Developments and Applications. Polymers, 7, 717–746.Freire R. S., Morais S. M., Catunda F. E. A. & Pinheiro D. C. S. N. (2005). Synthesis and antioxidant, anti-inflammatory and gastroprotector activities of anethole and related compounds. Bioorganic Med. Chem., 13(13), 4353–4358.Galeotti N., Ghelardini C., Di L., Mannelli C., Mazzanti G., Baghiroli L. & Bartolini A. (2001). Local Anaesthetic Activity of (+) and (-) Menthol. Planta Med., 67, 174–176.Garcia-segura S., Centellas F., Arias C., Garrido J. A., Rodríguez R. M., Cabot P. L. & Brillas E. (2011). Electrochimica Acta Comparative decolorization of monoazo , diazo and triazo dyes by electro-Fenton process. Electrochimica Acta, 58, 303–311.Gibson H. W. & Bailey F. (1980). Chemical Modification of Polymers. 13.’ Sulfonation of Polystyrene Surfaces. Macromolecules, 13, 34–41.Gilbert E. E. (1962). The Reactions of Sulfur Trioxide, and of its adducts, with organic compounds. Chem. Rev., 62(6), 549–589.Gómez J. M., Galán J., Rodríguez A. & Walker G. M. (2014). Dye adsorption onto mesoporous materials: PH influence, kinetics and equilibrium in buffered and saline media. J. Environ. Manage., 146, 355–361.Gong R., Li M., Yang C., Sun Y. & Chen J. (2005). Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater., 121(1–3), 247–250.Gross M., Friedman J., Dudai N., Larko O., Cohen Y., Bar E., Ravid U., Putievsky E. & Lewinsohn E. (2002). Biosynthesis of estragole and t-anethole in bitter fennel (Foeniculum vulgare Mill . var . vulgare) chemotypes . Changes in SAM: phenylpropene O-methyltransferase activities during development. Plant. Sci, 163(5), 1047–1053.Gudelj I., Hrenović J., Dragičević T. L., Delaš F., Soljan V. & Gudelj H. (2011). Azo Boje, Njihov Utjecaj Na Okolis I Potencijal Biotehnoloske Strategije Za Njihovu Biorazgradnju I Detoksifikaciju. Arh Hig Rada Toksikol, 62(1), 91–101.Gupta V. K. (2009). Application of low-cost adsorbents for dye removal – A review. J. Environ. Manage., 90(8), 2313–2342.Hachem C., Bocquillon F., Zahraa O. & Bouchy M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. Dye. Pigment., 49(2), 117–125.Hameed B. H. & Tan I. A. W. (2010). Nitric acid-treated bamboo waste as low-cost adsorbent for removal of cationic dye from aqueous solution. Desalin. Water Treat., 21, 357–363.He F., Gao Y., Jin K., Wang J., Sun J. & Fang Q. (2016). Conversion of a Biorenewable Plant Oil (Anethole) to a New Fluoropolymer with Both Low Dielectric Constant and Low Water Uptake. ACS Sustain. Chem. Eng., 4(8), 4451–4456.Higashimura T., Hirokawa Y., Matsuzaki K., Kawamura T. & Uryu T. (1979). Cationic Polymerization of Anethole adn its Model Reaction: A stereochemical approah to the propagation mechanism. Polym. J, 11(11), 855–862.Higashimura T. & Hiza M. (1981). Cationic Oligomerization of Anethole: Selective Synthesis of Dimers and Trimers. J. Polym. Sci., 19, 1957–1966.Hillmyer M. A. (2012). Polymer Synthesis. Polymer Science:A Comprehensive Reference (Vol. 1). Elsevier B.V.Hirokawa Y. (1979). Cationic Polymerization of Anethole and Its Model Reaction : A Stereochemical Approach to the Propagation Mechanism. Polym. J., 11(11), 855–862.Howes M.-J. R., Kite G. C. & Simmonds M. S. J. (2009). Distinguishing chinese star anise from Japanese star anise using thermal desorption-gas chromatography-mass spectrometry. J. Agric. Food Chem., 57(13), 5783–5789.Hsueh C. C. & Chen B. Y. (2008). Exploring effects of chemical structure on azo dye decolorization characteristics by Pseudomonas luteola. J. Hazard. Mater., 154(1–3), 703–710.Hussain F., Hojjati M., Okamoto M. & Gorga R. E. (2006). Review article: Polymer-matrix nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater., 40(17), 1511–1575.Inbaraj B. S., Chien J. T., Ho G. H., Yang J. & Chen B. H. (2006). Equilibrium and kinetic studies on sorption of basic dyes by a natural biopolymer poly(γ-glutamic acid). Biochem. Eng. J., 31(3), 204–215.J W. & JR W. (n.d.). Control de la calidad del agua, Procesos Fisicoquímicos (pp. 210–211). Reverté S.A.Jeffords D., Lance P. & Dewolf W. (1977). Severe Hypertensive Reaction to Indigo Carmin. Urology, 9(2), 180–181.Ji J., Zhang G., Chen H., Wang S., Zhang G., Zhang F. & Fan X. (2011). Sulfonated graphene as water-tolerant solid acid catalyst. Chem.Sci, 2, 484–487.Joulain D. (1996). Investigating new essential oils: rationale, results and limitations. Perfum. Flavorist, 21(2), 1–10.Kanaoka S. & Aoshima S. (2012). Cationic Polymerization of Polar Monomers. Polymer Science: A Comprehensive Reference (Vol. 3).Karcher S., Kornmüller A. & Jekel M. (2001). Screening of commercial sorbents for the removal of reactive dyes. Dye. Pigment., 51, 111–125.Khan S. B., Ali F., Kamal T., Anwar Y., Asiri A. M. & Seo J. (2016). CuO embedded chitosan spheres as antibacterial adsorbent for dyes. Int. J. Biol. Macromol., 88, 113–119.Kiurski J., Adamovic S., Oros I., Krstic J. & Kovacevic I. (2012). Adsorption feasibility in the Cr(Total) ions removal from waste printing developer. Global NEST Journal, 14(1), 18–23.Koo J. H. & Pilato L. A. (2005). Polymer nanostructured materials for high temperature applications. Sampe Journal, 41(2), 7–19.Kosalec I., Pepeljnjak S. & Kustrak D. (2005). Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta. Pharm, 55(4), 377–385.Kricheldorf H., Nuyken O. & Swift G. (2005). Handbook of Polymer Synthesis (2nd ed.). New York: Marcel Dekker.Kruse T. M., Wong H. & Broadbelt L. J. (2003). Modeling the Evolution of the Full Polystyrene Molecular Weight Distribution during Polystyrene Pyrolysis. Ind. Eng. Chem, 42, 2722–2735.Krysztafkiewicz A., Binkowski S. & Jesionowski T. (2002). Adsorption of dyes on a silica surface. Appl. Surf. Sci., 199, 31–39.Kucera F. & Jancar J. (1996). Preliminary Study of Sulfonation of Polystyrene by Homogeneous and Heterogeneous Reaction. Chem. Pap., 50(4), 224–227.Kucera F. & Jancar J. (1998). Homogeneous and Heterogeneous Sulfonation of Polymers: A Reviw. Polym. Eng. Sci, 38(5), 783–792.Lee C. K., Liu S. S., Juang L. C., Wang C. C., Lin K. S. & Lyu M. Du. (2007). Application of MCM-41 for dyes removal from wastewater. J. Hazard. Mater., 147(3), 997–1005.Levine W. G. (1991). Metabolism of AZO Dyes : Implication for Detoxication and Activation. Drug Metabolism Reviews, 23, 253–309.Limousin G., Gaudet J., Charlet L., Szenknect S., Barthes V. & Krimissa M. (2007). Sorption isotherms : A review on physical bases , modeling and measurement. Appl. Geochemistry, 22, 249–275.Linstromberg W. (1979). El color en los compuestos orgánicos colorantes. In Curso Breve de Química Orgánica (pp. 475–483). España.Liu L., Gao Z. Y., Su X. P., Chen X., Jiang L. & Yao J. M. (2015). Adsorption removal of dyes from single and binary solutions using a cellulose-based bioadsorbent. ACS Sustain. Chem. Eng., 3(3), 432–442.Liu Z., Qi Y., Gui M., Feng C., Wang X. & Lei Y. (2019). Sulfonated carbon derived from the residue obtained after recovery of essential oil from the leaves of Cinnamomum longepaniculatum using Brønsted acid ionic liquid , and its use in the preparation of ellagic acid and gallic acid. RSC. Adv, 9, 5142–5150.Lucchesi M. E., Chemat F. & Smadja J. (2004). An original solvent free microwave extraction of essential oils from spices. Flavour Fragr. J., 19(2), 134–138.Manning B. W., Cerniglia C. E. & Federle T. W. (1985). Metabolism of the benzidine-based azo dye direct black 38 by human intestinal microbiota. Appl. Environ. Microbiol., 50(1), 10–15.Masel R. (1951). Principles of adsorption and reaction on solid surfaces (first). United States of America: A Wiley Interscience Publication.Matyjaszewski K. (1996). Cationic Polymerizations Mechanisms, Synthesis and Applications. New York: Marcel Dekker.Matyjaszewski K. & Lin C.-H. (1991). Cationic Polymerization of Styrenes by Activated Covalent Species. Direct H-NMR Observation of Complexes of 1 -Phenylethyl Acetates with Lewis Acids. J Polym Sci A Polym Chem., 29, 1439–1446.Möller M. (2012). Polymer Synthesis. In Polymer Science: A comprehensive Reference (primera, pp. 31–36). Krzysztof Matyjaszewski.Morrison R. T. & Boyd R. N. (n.d.). Sustitución electrófilica aromática. In Química Orgánica (5th ed., p. 500). New York: Pearson Educación.Namasivayam C. & Kavitha D. (2002). Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dye. Pigment., 54, 47–58.Namasivayam C., Muniasamy N., Gayatri K., Rani M. & Ranganathan K. (1996). Removal of dyes from aqueous solutions by cellulosic waste orange peel. Bioresour. Technol., 57(1), 37–43.Nonoyama Y., Satoh K. & Kamigaito M. (2014). Renewable β-methylstyrenes for bio-based heat-resistant styrenic copolymers: radical copolymerization enhanced by fluoroalcohol and controlled/living copolymerization by RAFT. Polymer. Chem, 5, 3182–3189.OECD. (2014). OECD Environmental Performance Reviews: Colombia 2014. OECD Environmental Performance Reviews.Ogugbue C. J. & Sawidis T. (2011). Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila Isolated from Industrial Effluent. Biotechnol . Res. Int., 1–12.Ojedokun A. T. & Bello O. (2016). Liquid Phase Adsorption Of Congo Red Dye on Functionalize Corn Cobs. J. Disper. Sci. Technol., 38(9), 1–48.Okeola F. . & Odebunmi E. . (2010). Comparison of Freundlich and Langmuir isotherms for adsorption of methylene blue by agrowaste derived activated carbon. Adv. Environ. Biol., 4(3), 329–335.Padmesh T. V. N., Vijayaraghavan K., Sekaran G. & Velan M. (2005). Batch and column studies on biosorption of acid dyes on fresh water macro alga Azolla filiculoides. J. Hazard. Mater., 125(1–3), 121–129.Palarasah Y., Skjoedt M. O., Vitved L., Andersen T. E., Skjoedt K. & Koch C. (2010). Sodium polyanethole sulfonate as an inhibitor of activation of complement function in blood culture systems. J. Clin. Microbiol., 48(3), 908–914.Palma C., Lloret L., Puen A., Tobar M. & Contreras E. (2016). Production of carbonaceous material from avocado peel for its application as alternative adsorbent for dyes removal. Chinese J. Chem. Eng., 24(4), 521–528.Pasch H. & Schrepp W. (2003). MALDI-TOF Mass Spectrometry of Synthetic. Board. Germany.Pinto Peres B., Santa María L. C. & Sena M. E. (2007). Sulfonated poly (ether imide): A versatile route to prepare functionalized polymers by homogenous sulfonation. Mater. Lett., 61, 2540–2543.Platzek T., Lang C., Grohmann G., Gi U. S. & Baltes W. (1999). Formation of a carcinogenic aromatic amine from an azo dye by human skin bacteria in vitro. Human & Experimental Toxicology, 18(9), 552–559.Porta G. Della, Taddeo R., Urso E. D. & Reverchon E. (1998). Isolation of Clove Bud and Star Anise Essential Oil by Supercritical CO2 Extraction. Lebensm.-Wiss. u.-Technol, 31, 454–460.R J. C. (2004). Ministerio de medio ambiente 3285, 6494–6515.R L. & Raj S. (2008). Bio-decolourization of textile effluent containing Reactive Black-B by effluent-adapted and non-adapted bacteria. Afr J Biotechnol, 7(18), 3309–3313.Räder H. & Schrepp W. (1998). MALDI-TOF mass spectrometry in the analysis of synthetic polymers. Acta Polymer, 49, 272–293.Ramón J. A., Amaya J. D. & Losada L. M. (2013). Degradación Fotocatalitica De Rojo Congo En Un Colector Parabolico Solar Y Dióxido De Titanio En Suspensión. Rev. Invest. Univ. Quindío, 24(1), 71–83.Raza S., Yong X., Yang B., Xu R. & Deng J. (2017). Biomass trans-Anethole-Based Hollow Polymer Particles: Preparation and Application as Sustainable Absorbent. ACS Sustain. Chem. Eng., 5(11), 10011–10018.Reddy S. (2006). Removal of direct dye from aqueous solutions with an adsorbent made from tamarind fruit shell, an agricultural solid waste. J. Sci. Ind. Res., 65(5), 443–446.Rehman M. S. U., Kim I. & Han J. I. (2012). Adsorption of methylene blue dye from aqueous solution by sugar extracted spent rice biomass. Carbohydr. Polym., 90(3), 1314–1322.Robinson T., McMullan G., Marchant R. & Nigam P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol., 77(3), 247–255.Rojo L. (2008). Derivados Poliméricos de Eugenol para Aplicaciones Biomédicas. Universidad Complutense de Madrid.Rouguerol F., Rouquerol J., Llewelly P. & Maurin G. (2014). General Definitions and Terminology. In Adsorption by powders and porous solids principles, methodology and applications (2nd ed., pp. 6–11). Marseille: Elsevier.Rubín E., Rodríguez P., Herrero R. & Sastre de Vicente M. E. (2010). Adsorption of Methylene Blue on Chemically Modified Algal Biomass: Equilibrium, Dynamic, and Surface Data. J. Chem. Eng. Data, 55(12), 5707–5714.Salleh M. A. M., Mahmoud D. K., Karim W. A. W. A. & Idris A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.Saratale R. G., Saratale G. D., Chang J. S. & Govindwar S. P. (2011). Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng., 42(1), 138–157.Satoh K. (2015). Controlled / living polymerization of renewable vinyl monomers into bio-based polymers. Polymer Journal, 1–10.Satoh K., Saitoh S. & Kamigaito M. (2007). A linear lignin analogue: Phenolic alternating copolymers from naturally occurring p-methylstyrene via aqueous-controlled cationic copolymerization. J. Am. Chem. Soc., 129(31), 9586–9587.Senthil Kumar P., Ramalingam S., Senthamarai C., Niranjanaa M., Vijayalakshmi P. & Sivanesan S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261(1–2), 52–60.Shaffer T. (1997). Kinetics of Carbocationic Polymerizations: Initiation, Propagation, and Transfer Steps. In Carbocationic Polymerization: A Rejuvenation (pp. 1–11).Shahat A. A., Ibrahim A. Y., Hendawy S. F., Omer E. A., Hammouda F. M., Abdel-Rahman F. H. & Saleh M. A. (2011). Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules, 16(2), 1366–1377.Sharma Y. C., Uma & Upadhyay S. N. (2009). Removal of a cationic dye from wastewaters by adsorption on activated carbon developed from coconut coir. Energy and Fuels, 23(6), 2983–2988.Silverstein R. M., Webster F. X. & Kiemle D. J. (n.d.). Infrared spectrometry. In Spectrometric identification or organic compounds (7th ed., pp. 106–107).Siti Maryam R. & Shaliza I. (2010). Adsorption of textile reactive dye by palm shell activated carbon: Response Surface Methodology. Int. J. Mater. Text. Eng, 4(7), 441–444.Smitha B., Sridhar S. & Khan A. A. (2003). Synthesis and characterization of proton conducting polymer membranes for fuel cells. J. Membrane Sci. Technol., 225, 63–76.Stylianou M. A., Inglezakis V. J., Moustakas K. G., Malamis S. P. & Loizidou M. D. (2007). Removal of Cu ( II ) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents. Desalination, 215, 133–142.Swamy M. K., Akhtar M. S. & Sinniah U. R. (2016). Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action : An Updated Review. Hindawi Publishing, 1–22.Tanada S., Kabayama M., Kawasaki N., Sakiyama T., Nakamura T., Araki M. & Tamura T. (2003). Removal of phosphate by aluminum oxide hydroxide. J. Colloid Interface Sci., 257, 135–140.Theivarasu C., Mylsamy S. & Sivakumar N. (2011). Cocoa Shell as Adsorbent for the Removal of Methylene Blue from Aqueous Solution : Kinetic and Equilibrium Study. Univers. j. Environ. Res., 1, 70–78.Thornton Morrison R. & Neilson Boyd R. (1998). Química Orgánica (5th ed.). Pearson Educación.Tuan D. Q. & Ilangantileke S. G. (1997). Liquid CO2 extraction of essential oil from star anise fruits (Illicium verum H.). J. Food Eng., 31(1), 47–57.Vaishali J. & Pullela S. (2005). Rapid and easy identification of Illicium verum Hook. f. and its adulterant Illicium anisatum Linn. by fluorescent microscopy and gas chromatography. J. AOAC Int., 88(3), 703–706.Van Den Hul H. J. & Lyklema J. (1968). Determination of Specific Surface Areas of Dispersed Materials. Comparison of the Negative Adsorption Method with Some Other Methods. J. Am. Chem. Soc., 90(12), 3010–3015.Verma A. K., Dash R. R. & Bhunia P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage., 93(1), 154–168.Villegas E. (2012). Caracterización de polímeros aplicando el método termogravimétrico. Métodos y Mater., 2, 25–32.Wang C., LI J., Wang L., Sun X. & Huang J. (2009). Adsorption of Dye from Wastewater by Zeolites Synthesized from Fly Ash: Kinetic and Equilibrium Studies. Chinese J. Chem. Eng. Technol., 17(3), 513–521.Wang W., Huang G., An C., Xin X., Zhang Y. & Liu X. (2017). Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies. Appl. Surf. Sci., 405(31), 119–128.Weglarz-Tomczak E. & Gorecki L. (2012). Azo dyes - Biological activity and synthetic strategy. Chemik, 66(12), 1298–1307.Weiss R., Sen A., Willis C. & Pottick L. (1991). Block copolymer ionomers : 1. Synthesis and physical properties of sulphonated poly(styrene-ethylene/butylene-styrene). Polymer, 32(10), 1867–1874.Yong X. & Deng J. (2016). Biomass trans-anethole-based heat-resistant copolymer microspheres: Preparation and thermostability. Mater. Today Commun., 9, 60–66.Yuan Y., Yong X., Zhang H. & Deng J. (2016). Biobased Microspheres Consisting of Poly(trans-anethole-co-maleic anhydride) Prepared by Precipitation Polymerization and Adsorption Performance. ACS Sustain. Chem. Eng., 4(3), 1446–1453.Zaharia C., Suteu D., Muresan A. & Popescu A. (2009). Textile Wastewater Treatment by Homogeneous Oxidation with Hydrogen Peroxide. Environ. Eng. Manag. J., 8(6), 1359–1369.Zhou K., Zhang Q., Wang B., Liu J., Wen P., Gui Z. & Hu Y. (2014). The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites. J. Clean. Prod., 1–9.ORIGINAL2019SantosCamila.pdf2019SantosCamila.pdfTrabajo de gradoapplication/pdf2559888https://repository.usta.edu.co/bitstream/11634/16694/5/2019SantosCamila.pdf47392d7497666109854567edb26d75faMD55metadata only access2019SantosCamila1.pdf2019SantosCamila1.pdfAprobación facultadapplication/pdf243699https://repository.usta.edu.co/bitstream/11634/16694/2/2019SantosCamila1.pdf62a3e068b685d8611c90c48a55a1d563MD52metadata only access2019SantosCamila2.pdf2019SantosCamila2.pdfAcuerdo de confidencialidadapplication/pdf702982https://repository.usta.edu.co/bitstream/11634/16694/3/2019SantosCamila2.pdf8bf3f049a412d494b96e44ef3c5dd1e2MD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/16694/6/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD56open accessTHUMBNAIL2019SantosCamila1.pdf.jpg2019SantosCamila1.pdf.jpgIM Thumbnailimage/jpeg8184https://repository.usta.edu.co/bitstream/11634/16694/7/2019SantosCamila1.pdf.jpg9102cafe7517962fac8e4bf3d6a2599dMD57open access2019SantosCamila2.pdf.jpg2019SantosCamila2.pdf.jpgIM Thumbnailimage/jpeg8188https://repository.usta.edu.co/bitstream/11634/16694/8/2019SantosCamila2.pdf.jpgc0b7b2cd589f684eff58def43e556f0fMD58open access2019SantosCamila.pdf.jpg2019SantosCamila.pdf.jpgIM Thumbnailimage/jpeg5115https://repository.usta.edu.co/bitstream/11634/16694/9/2019SantosCamila.pdf.jpg89cbd205b1d8d7eb21823b1df7bf7bc0MD59open access11634/16694oai:repository.usta.edu.co:11634/166942022-10-10 16:05:15.197metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K