Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production

Health and environmental problems are presented in the world due to gases produced during the combustion of fossil fuels. This problem has focused on researching the production of renewable fuels from biomass. One type of biomass are wastes produced during culture of banana which its industry for ev...

Full description

Autores:
Ayala Ruiz, Nathaly
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/37712
Acceso en línea:
http://hdl.handle.net/11634/37712
Palabra clave:
Fast pyrolysis
Exergy analysis
Exergoeconomic analysis
Termodinámica
Economía
Biomasa
Pirólisis rápida
Análisis de exergía
Análisis exergoeconomico
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_e44d479654e9b1b7447500d3ad2438f2
oai_identifier_str oai:repository.usta.edu.co:11634/37712
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
title Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
spellingShingle Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
Fast pyrolysis
Exergy analysis
Exergoeconomic analysis
Termodinámica
Economía
Biomasa
Pirólisis rápida
Análisis de exergía
Análisis exergoeconomico
title_short Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
title_full Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
title_fullStr Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
title_full_unstemmed Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
title_sort Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
dc.creator.fl_str_mv Ayala Ruiz, Nathaly
dc.contributor.advisor.none.fl_str_mv Malagon Romero, Dionisio Humberto
dc.contributor.author.none.fl_str_mv Ayala Ruiz, Nathaly
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0003-2890-2180
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es
dc.contributor.cvlac.spa.fl_str_mv http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Fast pyrolysis
Exergy analysis
Exergoeconomic analysis
topic Fast pyrolysis
Exergy analysis
Exergoeconomic analysis
Termodinámica
Economía
Biomasa
Pirólisis rápida
Análisis de exergía
Análisis exergoeconomico
dc.subject.lemb.spa.fl_str_mv Termodinámica
Economía
Biomasa
dc.subject.proposal.spa.fl_str_mv Pirólisis rápida
Análisis de exergía
Análisis exergoeconomico
description Health and environmental problems are presented in the world due to gases produced during the combustion of fossil fuels. This problem has focused on researching the production of renewable fuels from biomass. One type of biomass are wastes produced during culture of banana which its industry for every tonne of banana harvested there are, on average, four tonnes of wastes which also contaminated environment. This paper aims to evaluate the economic and exergetic viability of a banana waste pyrolysis plant in Colombia. The processes of the plant were simulated on Aspen Plus®, which solved material and energy balance. The yield of products was validated with experimental results from literature, where differences could be attributed to biomass composition and reactor type. The results obtained revealed yields of 40.20%, 24.75% and 35.07% from bio-oil, char and gas respectively. Economic and exergy data were combined for an exergy costing method to carry out the exergoeconomic analysis. The overall exergy efficiency of the plant was 61.76%. The highest exergy destruction is located in the dryer and the pyrolysis reactor, which accounts for 35.84% and 32.96% respectively. The combustion chamber has the highest exergy destruction cost (180.19 $/h) and a low value of the exergoeconomic factor (5.96 %), indicating that an improvement of the equipment is required, even though this means an increment in cost investment. The study reveals, that the analysis made demonstrates the potential of bio-oil production from banana wastes, and also the possibility to use gases products in a combined heat and power plant. In addition, the study evidence in which process it is necessary to achieve better results of efficiencies in order to improve the whole plant.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-01T12:21:37Z
dc.date.available.none.fl_str_mv 2021-10-01T12:21:37Z
dc.date.issued.none.fl_str_mv 2021-09-30
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Ayala Ruiz, N. (2021) Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production. [Trabajo de grado Pregrado Ingeniería Mecánica] Repositorio Institucional
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/37712
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Ayala Ruiz, N. (2021) Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production. [Trabajo de grado Pregrado Ingeniería Mecánica] Repositorio Institucional
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/37712
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdullah, B., Anuar, S., Muhammad, S., Shokravi, Z., & Ismail, S. (2019). Fourth generation biofuel : A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107(February), 37–50. https://doi.org/10.1016/j.rser.2019.02.018
Abdullah, N., Sulaiman, F., & Mohd, R. (2015). Pyrolytic Oil of Banana ( Musa spp .) Pseudo-stem via Fast Process. American Institute of Physics, 6. https://doi.org/10.1063/1.4915212
Ahmadi, P., & Dincer, I. (2018). 1.8 Exergoeconomics. In Ibrahim Dincer (Ed.), Comprehensive Energy Systems (pp. 340–376). https://doi.org/https://doi.org/10.1016/B978-0-12-809597-3.00107-3
Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations . Subject review. Renewable Energy Focus, 28(March), 13
Altayeb, R. K. (2015). Liquid fuel production from pyrolysis of waste tires: process simulation, exergetic analysis, and life cycle assessment. American University of Sharjah.
Aspen Technology Inc. (2000). Aspen Plus User Guide
Atienza-martínez, M., Ábrego, J., Mastral, J. F., Ceamanos, J., & Gea, G. (2018). Energy and exergy analyses of sewage sludge thermochemical treatment. Energy, 144, 723–735. https://doi.org/10.1016/j.energy.2017.12.007
Badger, P., Badger, S., Puettmann, M., Steele, P., & Cooper, J. (2011). Techno-Economic Analysis: Preliminary Assessment of Pyrolysis Oil Production Costs and Material Energy Balance Associated With a Transportable Fast Pyrolysis System. Bioresources, 6(1), 34–47
Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals . Part 1 : Pyrolysis systems. Energy Conversion and Management, 50(12), 3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014
Basu, P. (2010a). Biomass Gasification, Pyrolysis and Torrefaction. Academic Press. Retrieved from https://doi.org/10.1016/C2009-0-20099-7
Basu, P. (2010b). Pyrolysis. In Biomass, Gasification, Pyrolysis and Torrefaction (pp. 147–176). Elsevier Science
Beheshti, S. M., & Ghassemi, H. (2015). Process simulation of biomass gasification in a bubbling fluidized bed reactor. ENERGY CONVERSION AND MANAGEMENT, 94, 345–352. https://doi.org/10.1016/j.enconman.2015.01.060
Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design and Optimization. New York: John Willey &Sons, Inc.
Boateng, A. A. (2020). Thermal pyrolysis. In Pyrolysis of Biomass for fuels and Chemicals (1st ed., pp. 23–48). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818213-0.00001-1
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.
Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479–1493. https://doi.org/10.1016/s0146-6380(99)00120-5
Bridgwater, A. V, & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73.
Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero , calentamiento global y cambio climático : una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10).
Carriquiry, M. A., Du, X., & Timilsina, G. R. (2011). Second generation biofuels: Economics and policies. Energy Policy, 39, 4222–4234.
Castro, M. (2012). Reflexiones en torno al desarrollo de los biocombustibles en Ecuador. CEDA, 25, 6.
Cerdá, E. (2012). Energía obtenida a partir de biomasa. Revista ICE, 83, 117–140.
Chandramohan, V. P. (2020). Convective drying of food materials: An overview with fundamental aspect, recent developments, and summary. Heat Transfer-Asian Research., 49, 1281– 1313. https://doi.org/10.1002/htj.21662
Chernova, N. I., Kiseleva, S. V, Larina, O. M., & Sytchev, G. A. (2019). Manufacturing gaseous products by pyrolysis of microalgal biomass. International Journal of Hydrogen Energy, 45(3), 1569–1577. https://doi.org/10.1016/j.ijhydene.2019.11.022
Cortes, W. (2014). Tratamientos Aplicables a Materiales Lignocelulósicos para la Obtención de Etanol y Productos Químicos. La Revista de Tecnología, 13(1), 39–44.
Czernik, S., & Bridgwater, A. V. (2004). Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels, 18(12), 590–598.
Dincer, I, & Sahin, A. Z. (2004). A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer, 47(4), 645–652. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.013
Dirección de Cadenas Agricolas y Forestales. (2020). Cadena de Banano.
Eduardo, C., Young, F., & Steffen, P. G. (2008). Biocombustibles como estrategia de desarrollo. Polis, 21, 11.
Encinar, J. M., Beltran, F. J., & Bernalte, A. (1996). Pyrolysis of Two Agricultural Residues : Olive and Grape Bagasse. Influence of Particle Size and Temperature. Biomass and Bioenergy, 11(5), 397–409.
ENEL. (2020). Tarifas de Energía Eléctrica. Retrieved from https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-diciembre-2020.pdf
Farrow, A., Kathryn, M., & Lauri, M. (2020). Toxic air: The price of fossil fuels. Greenpeace Southeast Asia, 44.
Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 15, 603–608.
FINAGRO. (2018). Ficha de inteligencia.
Gaffney, J. S., & Marley, N. A. (2009). The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyons. Atmospheric Environment, 43(1), 23–36.
García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103, 249–258. https://doi.org/10.1016/j.biortech.2011.10.004
Ghosh, S., Das, S., & Chowdhury, R. (2019). Effect of pre-pyrolysis biotreatment of banana pseudo-stem ( BPS ) using synergistic microbial consortium : Role in deoxygenation and enhancement of yield of pyro-oil. Energy Conversion and Management, 195, 114–124. https://doi.org/10.1016/j.enconman.2019.04.094
Gil, M., & Arauzo, I. (2014). Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels. Fuel Processing Technology, 127, 80–87.
Hammer, N. L., Boateng, A. A., Mullen, C. A., & Wheeler, M. C. (2013). Aspen Plus and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis. Journal of Environmental Management, 128, 594–601. https://doi.org/10.1016/j.jenvman.2013.06.008
Herrán, C. (2012). El cambio climático y sus consecuencias para América Latina. Revista de La Bolsa de Comercio de Rosario, 5.
Hussain, M., Zhao, Z., Ren, J., Rasool, T., & Raza, S. (2019). Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass and Bioenergy, 122, 193–201. https://doi.org/10.1016/j.biombioe.2019.01.009
IDEAM. (2020). Boletín Climatológico. Colombia.
Ighalo, J. O., & George, A. (2019). Thermodynamic modelling and temperature sensitivity analysis of banana ( Musa spp .) waste pyrolysis. Springer Nature Applied Sciences. https://doi.org/10.1007/s42452-019-1147-3
Innanen, J. (2013). Solids Removal in Pyrolysis. Lappeenranta University Technology.
Jahirul, M., Rasul, M., Ahmed, A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis: A Technological Review. Energies, 5(12), 4952–5001.
Kabenge, I., Omulo, G., Banadda, N., Seay, J., Zziwa, A., & Kiggundu, N. (2018). Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. Sustainable Development, 11(2), 14–24. https://doi.org/10.5539/jsd.v11n2p14
Klinger, J. L., Westover, T. L., Emerson, R. M., Williams, C. L., Hernandez, S., Monson, G. D., & Ryan, J. C. (2018). Effect of biomass type , heating rate , and sample size on microwave- enhanced fast pyrolysis product yields and qualities. Applied Energy, 228(February), 535–545. https://doi.org/10.1016/j.apenergy.2018.06.107
Klug, M. (2012). Pirólisis, un proceso para derretir biomasa. Revista de Química PUCP, 26, 37–40.
Kohl, T., Teles, M., Melin, K., Laukkanen, T., Järvinen, M., Won, S., & Guidici, R. (2015). Exergoeconomic assessment of CHP-integrated biomass upgrading. APPLIED ENERGY, 156, 290–305. https://doi.org/10.1016/j.apenergy.2015.06.047
Kotas, T. J. (1986). Exergy method of thermal and chemical plant analysis. Chemical Engineering Research and Design, 64(3), 212–229.
Kun, Z., He, D., Guan, J., & Zhang, Q. (2018). Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis. Energy, 166, 807–818. https://doi.org/10.1016/j.energy.2018.10.027
Lazzaretto, A., & Tsatsaronis, G. (2006). SPECO : A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31, 1257–1289. https://doi.org/10.1016/j.energy.2005.03.011
Lédé, J., & Authier, O. (2011). Characterization of biomass fast pyrolysis Advantages and drawbacks of different possible criteria. Biomass Conversion. Biorefinery., 133–147. https://doi.org/10.1007/s13399-011-0014-2
Leong, W., Lim, J., Lam, M., & Uemura, Y. (2018). Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renewable and Sustainable Energy Reviews, 91, 950–961.
Lestinsky, P., & Palit, A. (2016). Wood pyrolysis using aspen plus simulation and industrially applicable model. Haryana, India.
Lv, Q., Yue, H., Xu, Q., & Zhang, C. (2018). Quantifying the exergetic performance of bio-fuel production process including fast pyrolysis and bio-oil hydrodeoxygenation. Journal Renewable Sustainable Energy, 10(043107), 1–12. https://doi.org/10.1063/1.5031894
Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27(4), 339–352. https://doi.org/10.1016/j.biombioe.2004.03.007
Mazzeo M., M., León Agatón, L., Mejía Gutierrez, L. F., Guerrero Mendieta, L. E., & Botero López, J. D. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha del plátano en el departamento de Caldas. Revista Educación En Ingeniería, 9, 128–139.
Mobolaji, B., Sai, G., & Panneerselvam, R. (2015). Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading. Fuel, 143, 361–372. https://doi.org/http://dx.doi.org/10.1016/j.fuel.2014.11.078
Montoya Arbeláes, J. I. (2014). Pirólisis rápida de biomasa. Medellín, Colombia.
Moreno, M. A., Samerón, E., & Perea, A. (2019). Biomass as Renewable Energy: Worldwide Research Trends. Sustainability, 11(3), 863.
Morseletto, P. (2020). Targets for a circular economy. Resourcen, Conservation and Recycling, 153, 104553. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.104553
Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96.
Nikoo, M. B., & Mahinpey, N. (2008). Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy, 32, 1245–1254. https://doi.org/10.1016/j.biombioe.2008.02.020
Nor, W., Wan, R., Hisham, M. W. M., Ambar, M., & Hin, T. Y. (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 16(8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039
Omulo, G., Banadda, N., Kabenge, I., & Seay, J. (2019). Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environ, 24(2), 354–361
Organización de las Naciones Unidas Para la Aagricultura y la Alimentación. (2008). Efectos de los biocombustibles en el medio ambiente. In El estado mundial de la Agricultura y la Alimentación (pp. 63–83). Roma, Italia.
Osorio, A., & Rubiano, K. (2019). Desarrollo De Una Biopelicula Partiendo De Cáscara De Banano Y Fibra Natural Como Agente De Refuerzo A Nivel Laboratorio. Fundación Universidad de América
Ozbay, N., Yargic, A. S., Zerrin, R., Sahin, Y., & Yaman, E. (2019). Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15. Renewable Energy, 140, 633–646. https://doi.org/10.1016/j.renene.2019.03.071
Pearson, R., & Turner, J. (2014). Improving the use of liquid biofuels in internal combustion engines. In K. Waldron (Ed.), Advances in Biorefineries (pp. 289–440). Woodhead Publishing.
Peters, J. F., Petrakopoulou, F., & Dufour, J. (2014). Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Processing Technology, 119, 245–255. https://doi.org/10.1016/j.fuproc.2013.11.007
Peters, M. S., & Timmerhouse, K. D. (2003). Plant design and economixs for chemical engineers (Fifth edit). New York: McGraw-Hill.
Petrakopoulou, F., Tstsaronis, G., Morosuk, T., & Carassai, A. (2012). Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy, 41(1), 146–152. https://doi.org/https://doi.org/10.1016/j.energy.2011.05.028
Queiroz, J. A., Rodrigues, V. M. S., Matos, H. A., & Martins, F. G. (2012). Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method. Energy Conversion and Management, 64, 473–481. https://doi.org/10.1016/j.enconman.2012.03.030
Sahoo, K., Kumar, A., & Prasad, J. (2020). A comparative study on valuable products : bio ‑ oil , biochar , non ‑ condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, (1). https://doi.org/10.1007/s10163-020-01114-2
Sellin, N., Ricardo, D., Marangoni, C., & Souza, O. (2016). Oxidative fast pyrolysis of banana leaves in fl uidized bed reactor. Renewable Energy, 96, 56–64. https://doi.org/10.1016/j.renene.2016.04.032
Shokati, N., Mohammadkhani, F., Yari, M., Mahmoudi, S. M. S., & Rosen, M. A. (2014). A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles. Sustainability, 6(5), 2474–2489. https://doi.org/10.3390/su6052474
Szargut, J., Morris, D., & Steward, F. (1988). Exergy analysis of thermal, chemical and metallurgical processes. Hemisphere.
Taylor, P., Niu, Y., Tan, H., Liu, Y., Wang, X., & Xu, T. (2014). The Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks Biomass The Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks Biomass. Energy Sources, 1663–1669. https://doi.org/10.1080/15567036.2010.509084
Tessini, C., Segura, C., & Berg, A. (2013). Pirólise Rápida Da Madeira Para Produção de Bio-Óleo. In F. Santos, J. Colodette, & J. H. de Queiroz (Eds.), Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais (pp. 459–482). Produção Independente.
Torres, E., Rodriguez-ortiz, L. A., Zalazar, D., Echegaray, M., Rodriguez, R., Zhang, H., & Mazza, G. (2020). 4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste. Renewable Energy, 162, 296–307. https://doi.org/10.1016/j.renene.2020.07.147
Veksha, A., Giannis, A., & Chang, V. W. (2017). Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials: Effects of feedstock and temperature. Journal of Analytical and Applied Pyrolysis. https://doi.org/10.1016/j.jaap.2017.03.005
Wang, C., Chen, G., Ma, W., Zhu, X., & Wang, Y. (2012). Process Simulation on Fluidized Bed Pyrolysis of Biomass. Progress in Envitonmental Science and Engineering, 360, 2265–2269. https://doi.org/10.4028/www.scientific.net/AMR.356-360.2265
Ward, J., Rasul, M. G., & Bhuiya, M. M. K. (2014). Energy recovery from biomass by fast pyrolysis. Procedia Engineering, 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791
Westerhof, R. J. M., Brilman, D. W. F., Garcia-perez, M., Wang, Z., Oudenhoven, S. R. G., Swaaij, W. P. M. Van, & Kersten, S. R. A. (2011). Fractional Condensation of Biomass Pyrolysis Vapors. Energy & Fuels, 25(4), 1817–1829.
Wright, C. T., Boardman, R. D., Yancey, N. A., & Sokhansanj, S. (2011). A Review on Biomass Classification and Composition , Co-Firing Issues and Pretreatment Methods.
Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Hsu, D. D., Wright, M. M., … Hsu, D. D. (2010). Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels. Colorado, USA.
Yang, Y., Wang, J., Chong, K., & Bridgwater, A. V. (2018). A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 174, 406–416.
Yi-Feng, C., & Wu, Q. (2011). Production of biodiesel from algal biomass: current perspectives and future. In Biofuels. Alternative Feedstocks and Conversion Processes (pp. 399–413). Beijing, Republic of China.
Zheng, H., Kaliyan, N., & Morey, R. V. (2013). Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants. Biomass and Bioenergy, 56, 197–210. https://doi.org/10.1016/j.biombioe.2013.04.032
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Mecánica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/37712/1/2021nathalyayala.pdf
https://repository.usta.edu.co/bitstream/11634/37712/2/Carta%20Aprobacion%20Facultad.pdf
https://repository.usta.edu.co/bitstream/11634/37712/3/Carta_autorizacion_autoarchivo_autor_2021.pdf
https://repository.usta.edu.co/bitstream/11634/37712/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/37712/5/license.txt
https://repository.usta.edu.co/bitstream/11634/37712/6/2021nathalyayala.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/37712/7/Carta%20Aprobacion%20Facultad.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/37712/8/Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg
bitstream.checksum.fl_str_mv 972acf45452a7cd921abd218b2a3232c
6bee2db5e064d22277035bbc224cc231
d178623fd650d169fcde7311be1afea7
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
2883111d4d39e895164fab01f975568f
187050ffe5a0216237ea92fdeab18747
8e8b1f7cf0250b6d129700aa71e5e56a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026378204413952
spelling Malagon Romero, Dionisio HumbertoAyala Ruiz, Nathalyhttps://orcid.org/0000-0003-2890-2180https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061Universidad Santo Tomás2021-10-01T12:21:37Z2021-10-01T12:21:37Z2021-09-30Ayala Ruiz, N. (2021) Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production. [Trabajo de grado Pregrado Ingeniería Mecánica] Repositorio Institucionalhttp://hdl.handle.net/11634/37712reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coHealth and environmental problems are presented in the world due to gases produced during the combustion of fossil fuels. This problem has focused on researching the production of renewable fuels from biomass. One type of biomass are wastes produced during culture of banana which its industry for every tonne of banana harvested there are, on average, four tonnes of wastes which also contaminated environment. This paper aims to evaluate the economic and exergetic viability of a banana waste pyrolysis plant in Colombia. The processes of the plant were simulated on Aspen Plus®, which solved material and energy balance. The yield of products was validated with experimental results from literature, where differences could be attributed to biomass composition and reactor type. The results obtained revealed yields of 40.20%, 24.75% and 35.07% from bio-oil, char and gas respectively. Economic and exergy data were combined for an exergy costing method to carry out the exergoeconomic analysis. The overall exergy efficiency of the plant was 61.76%. The highest exergy destruction is located in the dryer and the pyrolysis reactor, which accounts for 35.84% and 32.96% respectively. The combustion chamber has the highest exergy destruction cost (180.19 $/h) and a low value of the exergoeconomic factor (5.96 %), indicating that an improvement of the equipment is required, even though this means an increment in cost investment. The study reveals, that the analysis made demonstrates the potential of bio-oil production from banana wastes, and also the possibility to use gases products in a combined heat and power plant. In addition, the study evidence in which process it is necessary to achieve better results of efficiencies in order to improve the whole plant.Ingeniero Mecánicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería MecánicaFacultad de Ingeniería MecánicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Thermo-economic evaluation of banana waste pyrolysis plant for biofuel productionFast pyrolysisExergy analysisExergoeconomic analysisTermodinámicaEconomíaBiomasaPirólisis rápidaAnálisis de exergíaAnálisis exergoeconomicoTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAbdullah, B., Anuar, S., Muhammad, S., Shokravi, Z., & Ismail, S. (2019). Fourth generation biofuel : A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107(February), 37–50. https://doi.org/10.1016/j.rser.2019.02.018Abdullah, N., Sulaiman, F., & Mohd, R. (2015). Pyrolytic Oil of Banana ( Musa spp .) Pseudo-stem via Fast Process. American Institute of Physics, 6. https://doi.org/10.1063/1.4915212Ahmadi, P., & Dincer, I. (2018). 1.8 Exergoeconomics. In Ibrahim Dincer (Ed.), Comprehensive Energy Systems (pp. 340–376). https://doi.org/https://doi.org/10.1016/B978-0-12-809597-3.00107-3Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations . Subject review. Renewable Energy Focus, 28(March), 13Altayeb, R. K. (2015). Liquid fuel production from pyrolysis of waste tires: process simulation, exergetic analysis, and life cycle assessment. American University of Sharjah.Aspen Technology Inc. (2000). Aspen Plus User GuideAtienza-martínez, M., Ábrego, J., Mastral, J. F., Ceamanos, J., & Gea, G. (2018). Energy and exergy analyses of sewage sludge thermochemical treatment. Energy, 144, 723–735. https://doi.org/10.1016/j.energy.2017.12.007Badger, P., Badger, S., Puettmann, M., Steele, P., & Cooper, J. (2011). Techno-Economic Analysis: Preliminary Assessment of Pyrolysis Oil Production Costs and Material Energy Balance Associated With a Transportable Fast Pyrolysis System. Bioresources, 6(1), 34–47Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals . Part 1 : Pyrolysis systems. Energy Conversion and Management, 50(12), 3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014Basu, P. (2010a). Biomass Gasification, Pyrolysis and Torrefaction. Academic Press. Retrieved from https://doi.org/10.1016/C2009-0-20099-7Basu, P. (2010b). Pyrolysis. In Biomass, Gasification, Pyrolysis and Torrefaction (pp. 147–176). Elsevier ScienceBeheshti, S. M., & Ghassemi, H. (2015). Process simulation of biomass gasification in a bubbling fluidized bed reactor. ENERGY CONVERSION AND MANAGEMENT, 94, 345–352. https://doi.org/10.1016/j.enconman.2015.01.060Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design and Optimization. New York: John Willey &Sons, Inc.Boateng, A. A. (2020). Thermal pyrolysis. In Pyrolysis of Biomass for fuels and Chemicals (1st ed., pp. 23–48). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818213-0.00001-1Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479–1493. https://doi.org/10.1016/s0146-6380(99)00120-5Bridgwater, A. V, & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73.Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero , calentamiento global y cambio climático : una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10).Carriquiry, M. A., Du, X., & Timilsina, G. R. (2011). Second generation biofuels: Economics and policies. Energy Policy, 39, 4222–4234.Castro, M. (2012). Reflexiones en torno al desarrollo de los biocombustibles en Ecuador. CEDA, 25, 6.Cerdá, E. (2012). Energía obtenida a partir de biomasa. Revista ICE, 83, 117–140.Chandramohan, V. P. (2020). Convective drying of food materials: An overview with fundamental aspect, recent developments, and summary. Heat Transfer-Asian Research., 49, 1281– 1313. https://doi.org/10.1002/htj.21662Chernova, N. I., Kiseleva, S. V, Larina, O. M., & Sytchev, G. A. (2019). Manufacturing gaseous products by pyrolysis of microalgal biomass. International Journal of Hydrogen Energy, 45(3), 1569–1577. https://doi.org/10.1016/j.ijhydene.2019.11.022Cortes, W. (2014). Tratamientos Aplicables a Materiales Lignocelulósicos para la Obtención de Etanol y Productos Químicos. La Revista de Tecnología, 13(1), 39–44.Czernik, S., & Bridgwater, A. V. (2004). Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels, 18(12), 590–598.Dincer, I, & Sahin, A. Z. (2004). A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer, 47(4), 645–652. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.013Dirección de Cadenas Agricolas y Forestales. (2020). Cadena de Banano.Eduardo, C., Young, F., & Steffen, P. G. (2008). Biocombustibles como estrategia de desarrollo. Polis, 21, 11.Encinar, J. M., Beltran, F. J., & Bernalte, A. (1996). Pyrolysis of Two Agricultural Residues : Olive and Grape Bagasse. Influence of Particle Size and Temperature. Biomass and Bioenergy, 11(5), 397–409.ENEL. (2020). Tarifas de Energía Eléctrica. Retrieved from https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-diciembre-2020.pdfFarrow, A., Kathryn, M., & Lauri, M. (2020). Toxic air: The price of fossil fuels. Greenpeace Southeast Asia, 44.Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 15, 603–608.FINAGRO. (2018). Ficha de inteligencia.Gaffney, J. S., & Marley, N. A. (2009). The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyons. Atmospheric Environment, 43(1), 23–36.García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103, 249–258. https://doi.org/10.1016/j.biortech.2011.10.004Ghosh, S., Das, S., & Chowdhury, R. (2019). Effect of pre-pyrolysis biotreatment of banana pseudo-stem ( BPS ) using synergistic microbial consortium : Role in deoxygenation and enhancement of yield of pyro-oil. Energy Conversion and Management, 195, 114–124. https://doi.org/10.1016/j.enconman.2019.04.094Gil, M., & Arauzo, I. (2014). Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels. Fuel Processing Technology, 127, 80–87.Hammer, N. L., Boateng, A. A., Mullen, C. A., & Wheeler, M. C. (2013). Aspen Plus and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis. Journal of Environmental Management, 128, 594–601. https://doi.org/10.1016/j.jenvman.2013.06.008Herrán, C. (2012). El cambio climático y sus consecuencias para América Latina. Revista de La Bolsa de Comercio de Rosario, 5.Hussain, M., Zhao, Z., Ren, J., Rasool, T., & Raza, S. (2019). Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass and Bioenergy, 122, 193–201. https://doi.org/10.1016/j.biombioe.2019.01.009IDEAM. (2020). Boletín Climatológico. Colombia.Ighalo, J. O., & George, A. (2019). Thermodynamic modelling and temperature sensitivity analysis of banana ( Musa spp .) waste pyrolysis. Springer Nature Applied Sciences. https://doi.org/10.1007/s42452-019-1147-3Innanen, J. (2013). Solids Removal in Pyrolysis. Lappeenranta University Technology.Jahirul, M., Rasul, M., Ahmed, A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis: A Technological Review. Energies, 5(12), 4952–5001.Kabenge, I., Omulo, G., Banadda, N., Seay, J., Zziwa, A., & Kiggundu, N. (2018). Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. Sustainable Development, 11(2), 14–24. https://doi.org/10.5539/jsd.v11n2p14Klinger, J. L., Westover, T. L., Emerson, R. M., Williams, C. L., Hernandez, S., Monson, G. D., & Ryan, J. C. (2018). Effect of biomass type , heating rate , and sample size on microwave- enhanced fast pyrolysis product yields and qualities. Applied Energy, 228(February), 535–545. https://doi.org/10.1016/j.apenergy.2018.06.107Klug, M. (2012). Pirólisis, un proceso para derretir biomasa. Revista de Química PUCP, 26, 37–40.Kohl, T., Teles, M., Melin, K., Laukkanen, T., Järvinen, M., Won, S., & Guidici, R. (2015). Exergoeconomic assessment of CHP-integrated biomass upgrading. APPLIED ENERGY, 156, 290–305. https://doi.org/10.1016/j.apenergy.2015.06.047Kotas, T. J. (1986). Exergy method of thermal and chemical plant analysis. Chemical Engineering Research and Design, 64(3), 212–229.Kun, Z., He, D., Guan, J., & Zhang, Q. (2018). Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis. Energy, 166, 807–818. https://doi.org/10.1016/j.energy.2018.10.027Lazzaretto, A., & Tsatsaronis, G. (2006). SPECO : A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31, 1257–1289. https://doi.org/10.1016/j.energy.2005.03.011Lédé, J., & Authier, O. (2011). Characterization of biomass fast pyrolysis Advantages and drawbacks of different possible criteria. Biomass Conversion. Biorefinery., 133–147. https://doi.org/10.1007/s13399-011-0014-2Leong, W., Lim, J., Lam, M., & Uemura, Y. (2018). Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renewable and Sustainable Energy Reviews, 91, 950–961.Lestinsky, P., & Palit, A. (2016). Wood pyrolysis using aspen plus simulation and industrially applicable model. Haryana, India.Lv, Q., Yue, H., Xu, Q., & Zhang, C. (2018). Quantifying the exergetic performance of bio-fuel production process including fast pyrolysis and bio-oil hydrodeoxygenation. Journal Renewable Sustainable Energy, 10(043107), 1–12. https://doi.org/10.1063/1.5031894Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27(4), 339–352. https://doi.org/10.1016/j.biombioe.2004.03.007Mazzeo M., M., León Agatón, L., Mejía Gutierrez, L. F., Guerrero Mendieta, L. E., & Botero López, J. D. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha del plátano en el departamento de Caldas. Revista Educación En Ingeniería, 9, 128–139.Mobolaji, B., Sai, G., & Panneerselvam, R. (2015). Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading. Fuel, 143, 361–372. https://doi.org/http://dx.doi.org/10.1016/j.fuel.2014.11.078Montoya Arbeláes, J. I. (2014). Pirólisis rápida de biomasa. Medellín, Colombia.Moreno, M. A., Samerón, E., & Perea, A. (2019). Biomass as Renewable Energy: Worldwide Research Trends. Sustainability, 11(3), 863.Morseletto, P. (2020). Targets for a circular economy. Resourcen, Conservation and Recycling, 153, 104553. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.104553Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96.Nikoo, M. B., & Mahinpey, N. (2008). Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy, 32, 1245–1254. https://doi.org/10.1016/j.biombioe.2008.02.020Nor, W., Wan, R., Hisham, M. W. M., Ambar, M., & Hin, T. Y. (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 16(8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039Omulo, G., Banadda, N., Kabenge, I., & Seay, J. (2019). Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environ, 24(2), 354–361Organización de las Naciones Unidas Para la Aagricultura y la Alimentación. (2008). Efectos de los biocombustibles en el medio ambiente. In El estado mundial de la Agricultura y la Alimentación (pp. 63–83). Roma, Italia.Osorio, A., & Rubiano, K. (2019). Desarrollo De Una Biopelicula Partiendo De Cáscara De Banano Y Fibra Natural Como Agente De Refuerzo A Nivel Laboratorio. Fundación Universidad de AméricaOzbay, N., Yargic, A. S., Zerrin, R., Sahin, Y., & Yaman, E. (2019). Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15. Renewable Energy, 140, 633–646. https://doi.org/10.1016/j.renene.2019.03.071Pearson, R., & Turner, J. (2014). Improving the use of liquid biofuels in internal combustion engines. In K. Waldron (Ed.), Advances in Biorefineries (pp. 289–440). Woodhead Publishing.Peters, J. F., Petrakopoulou, F., & Dufour, J. (2014). Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Processing Technology, 119, 245–255. https://doi.org/10.1016/j.fuproc.2013.11.007Peters, M. S., & Timmerhouse, K. D. (2003). Plant design and economixs for chemical engineers (Fifth edit). New York: McGraw-Hill.Petrakopoulou, F., Tstsaronis, G., Morosuk, T., & Carassai, A. (2012). Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy, 41(1), 146–152. https://doi.org/https://doi.org/10.1016/j.energy.2011.05.028Queiroz, J. A., Rodrigues, V. M. S., Matos, H. A., & Martins, F. G. (2012). Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method. Energy Conversion and Management, 64, 473–481. https://doi.org/10.1016/j.enconman.2012.03.030Sahoo, K., Kumar, A., & Prasad, J. (2020). A comparative study on valuable products : bio ‑ oil , biochar , non ‑ condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, (1). https://doi.org/10.1007/s10163-020-01114-2Sellin, N., Ricardo, D., Marangoni, C., & Souza, O. (2016). Oxidative fast pyrolysis of banana leaves in fl uidized bed reactor. Renewable Energy, 96, 56–64. https://doi.org/10.1016/j.renene.2016.04.032Shokati, N., Mohammadkhani, F., Yari, M., Mahmoudi, S. M. S., & Rosen, M. A. (2014). A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles. Sustainability, 6(5), 2474–2489. https://doi.org/10.3390/su6052474Szargut, J., Morris, D., & Steward, F. (1988). Exergy analysis of thermal, chemical and metallurgical processes. Hemisphere.Taylor, P., Niu, Y., Tan, H., Liu, Y., Wang, X., & Xu, T. (2014). The Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks Biomass The Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks Biomass. Energy Sources, 1663–1669. https://doi.org/10.1080/15567036.2010.509084Tessini, C., Segura, C., & Berg, A. (2013). Pirólise Rápida Da Madeira Para Produção de Bio-Óleo. In F. Santos, J. Colodette, & J. H. de Queiroz (Eds.), Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais (pp. 459–482). Produção Independente.Torres, E., Rodriguez-ortiz, L. A., Zalazar, D., Echegaray, M., Rodriguez, R., Zhang, H., & Mazza, G. (2020). 4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste. Renewable Energy, 162, 296–307. https://doi.org/10.1016/j.renene.2020.07.147Veksha, A., Giannis, A., & Chang, V. W. (2017). Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials: Effects of feedstock and temperature. Journal of Analytical and Applied Pyrolysis. https://doi.org/10.1016/j.jaap.2017.03.005Wang, C., Chen, G., Ma, W., Zhu, X., & Wang, Y. (2012). Process Simulation on Fluidized Bed Pyrolysis of Biomass. Progress in Envitonmental Science and Engineering, 360, 2265–2269. https://doi.org/10.4028/www.scientific.net/AMR.356-360.2265Ward, J., Rasul, M. G., & Bhuiya, M. M. K. (2014). Energy recovery from biomass by fast pyrolysis. Procedia Engineering, 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791Westerhof, R. J. M., Brilman, D. W. F., Garcia-perez, M., Wang, Z., Oudenhoven, S. R. G., Swaaij, W. P. M. Van, & Kersten, S. R. A. (2011). Fractional Condensation of Biomass Pyrolysis Vapors. Energy & Fuels, 25(4), 1817–1829.Wright, C. T., Boardman, R. D., Yancey, N. A., & Sokhansanj, S. (2011). A Review on Biomass Classification and Composition , Co-Firing Issues and Pretreatment Methods.Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Hsu, D. D., Wright, M. M., … Hsu, D. D. (2010). Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels. Colorado, USA.Yang, Y., Wang, J., Chong, K., & Bridgwater, A. V. (2018). A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 174, 406–416.Yi-Feng, C., & Wu, Q. (2011). Production of biodiesel from algal biomass: current perspectives and future. In Biofuels. Alternative Feedstocks and Conversion Processes (pp. 399–413). Beijing, Republic of China.Zheng, H., Kaliyan, N., & Morey, R. V. (2013). Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants. Biomass and Bioenergy, 56, 197–210. https://doi.org/10.1016/j.biombioe.2013.04.032ORIGINAL2021nathalyayala.pdf2021nathalyayala.pdfTrabajo de Gradoapplication/pdf640991https://repository.usta.edu.co/bitstream/11634/37712/1/2021nathalyayala.pdf972acf45452a7cd921abd218b2a3232cMD51open accessCarta Aprobacion Facultad.pdfCarta Aprobacion Facultad.pdfCarta Aprobación Facultadapplication/pdf284181https://repository.usta.edu.co/bitstream/11634/37712/2/Carta%20Aprobacion%20Facultad.pdf6bee2db5e064d22277035bbc224cc231MD52metadata only accessCarta_autorizacion_autoarchivo_autor_2021.pdfCarta_autorizacion_autoarchivo_autor_2021.pdfCarta autorización autoarchivo autor 2021application/pdf131427https://repository.usta.edu.co/bitstream/11634/37712/3/Carta_autorizacion_autoarchivo_autor_2021.pdfd178623fd650d169fcde7311be1afea7MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/37712/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/37712/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2021nathalyayala.pdf.jpg2021nathalyayala.pdf.jpgIM Thumbnailimage/jpeg8470https://repository.usta.edu.co/bitstream/11634/37712/6/2021nathalyayala.pdf.jpg2883111d4d39e895164fab01f975568fMD56open accessCarta Aprobacion Facultad.pdf.jpgCarta Aprobacion Facultad.pdf.jpgIM Thumbnailimage/jpeg5955https://repository.usta.edu.co/bitstream/11634/37712/7/Carta%20Aprobacion%20Facultad.pdf.jpg187050ffe5a0216237ea92fdeab18747MD57open accessCarta_autorizacion_autoarchivo_autor_2021.pdf.jpgCarta_autorizacion_autoarchivo_autor_2021.pdf.jpgIM Thumbnailimage/jpeg7694https://repository.usta.edu.co/bitstream/11634/37712/8/Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg8e8b1f7cf0250b6d129700aa71e5e56aMD58open access11634/37712oai:repository.usta.edu.co:11634/377122022-12-26 03:14:56.396open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K