Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production
Health and environmental problems are presented in the world due to gases produced during the combustion of fossil fuels. This problem has focused on researching the production of renewable fuels from biomass. One type of biomass are wastes produced during culture of banana which its industry for ev...
- Autores:
-
Ayala Ruiz, Nathaly
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/37712
- Acceso en línea:
- http://hdl.handle.net/11634/37712
- Palabra clave:
- Fast pyrolysis
Exergy analysis
Exergoeconomic analysis
Termodinámica
Economía
Biomasa
Pirólisis rápida
Análisis de exergía
Análisis exergoeconomico
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_e44d479654e9b1b7447500d3ad2438f2 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/37712 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production |
title |
Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production |
spellingShingle |
Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production Fast pyrolysis Exergy analysis Exergoeconomic analysis Termodinámica Economía Biomasa Pirólisis rápida Análisis de exergía Análisis exergoeconomico |
title_short |
Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production |
title_full |
Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production |
title_fullStr |
Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production |
title_full_unstemmed |
Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production |
title_sort |
Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production |
dc.creator.fl_str_mv |
Ayala Ruiz, Nathaly |
dc.contributor.advisor.none.fl_str_mv |
Malagon Romero, Dionisio Humberto |
dc.contributor.author.none.fl_str_mv |
Ayala Ruiz, Nathaly |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0003-2890-2180 |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=es |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061 |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
Fast pyrolysis Exergy analysis Exergoeconomic analysis |
topic |
Fast pyrolysis Exergy analysis Exergoeconomic analysis Termodinámica Economía Biomasa Pirólisis rápida Análisis de exergía Análisis exergoeconomico |
dc.subject.lemb.spa.fl_str_mv |
Termodinámica Economía Biomasa |
dc.subject.proposal.spa.fl_str_mv |
Pirólisis rápida Análisis de exergía Análisis exergoeconomico |
description |
Health and environmental problems are presented in the world due to gases produced during the combustion of fossil fuels. This problem has focused on researching the production of renewable fuels from biomass. One type of biomass are wastes produced during culture of banana which its industry for every tonne of banana harvested there are, on average, four tonnes of wastes which also contaminated environment. This paper aims to evaluate the economic and exergetic viability of a banana waste pyrolysis plant in Colombia. The processes of the plant were simulated on Aspen Plus®, which solved material and energy balance. The yield of products was validated with experimental results from literature, where differences could be attributed to biomass composition and reactor type. The results obtained revealed yields of 40.20%, 24.75% and 35.07% from bio-oil, char and gas respectively. Economic and exergy data were combined for an exergy costing method to carry out the exergoeconomic analysis. The overall exergy efficiency of the plant was 61.76%. The highest exergy destruction is located in the dryer and the pyrolysis reactor, which accounts for 35.84% and 32.96% respectively. The combustion chamber has the highest exergy destruction cost (180.19 $/h) and a low value of the exergoeconomic factor (5.96 %), indicating that an improvement of the equipment is required, even though this means an increment in cost investment. The study reveals, that the analysis made demonstrates the potential of bio-oil production from banana wastes, and also the possibility to use gases products in a combined heat and power plant. In addition, the study evidence in which process it is necessary to achieve better results of efficiencies in order to improve the whole plant. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-01T12:21:37Z |
dc.date.available.none.fl_str_mv |
2021-10-01T12:21:37Z |
dc.date.issued.none.fl_str_mv |
2021-09-30 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Ayala Ruiz, N. (2021) Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production. [Trabajo de grado Pregrado Ingeniería Mecánica] Repositorio Institucional |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/37712 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Ayala Ruiz, N. (2021) Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production. [Trabajo de grado Pregrado Ingeniería Mecánica] Repositorio Institucional reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/37712 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdullah, B., Anuar, S., Muhammad, S., Shokravi, Z., & Ismail, S. (2019). Fourth generation biofuel : A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107(February), 37–50. https://doi.org/10.1016/j.rser.2019.02.018 Abdullah, N., Sulaiman, F., & Mohd, R. (2015). Pyrolytic Oil of Banana ( Musa spp .) Pseudo-stem via Fast Process. American Institute of Physics, 6. https://doi.org/10.1063/1.4915212 Ahmadi, P., & Dincer, I. (2018). 1.8 Exergoeconomics. In Ibrahim Dincer (Ed.), Comprehensive Energy Systems (pp. 340–376). https://doi.org/https://doi.org/10.1016/B978-0-12-809597-3.00107-3 Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations . Subject review. Renewable Energy Focus, 28(March), 13 Altayeb, R. K. (2015). Liquid fuel production from pyrolysis of waste tires: process simulation, exergetic analysis, and life cycle assessment. American University of Sharjah. Aspen Technology Inc. (2000). Aspen Plus User Guide Atienza-martínez, M., Ábrego, J., Mastral, J. F., Ceamanos, J., & Gea, G. (2018). Energy and exergy analyses of sewage sludge thermochemical treatment. Energy, 144, 723–735. https://doi.org/10.1016/j.energy.2017.12.007 Badger, P., Badger, S., Puettmann, M., Steele, P., & Cooper, J. (2011). Techno-Economic Analysis: Preliminary Assessment of Pyrolysis Oil Production Costs and Material Energy Balance Associated With a Transportable Fast Pyrolysis System. Bioresources, 6(1), 34–47 Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals . Part 1 : Pyrolysis systems. Energy Conversion and Management, 50(12), 3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014 Basu, P. (2010a). Biomass Gasification, Pyrolysis and Torrefaction. Academic Press. Retrieved from https://doi.org/10.1016/C2009-0-20099-7 Basu, P. (2010b). Pyrolysis. In Biomass, Gasification, Pyrolysis and Torrefaction (pp. 147–176). Elsevier Science Beheshti, S. M., & Ghassemi, H. (2015). Process simulation of biomass gasification in a bubbling fluidized bed reactor. ENERGY CONVERSION AND MANAGEMENT, 94, 345–352. https://doi.org/10.1016/j.enconman.2015.01.060 Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design and Optimization. New York: John Willey &Sons, Inc. Boateng, A. A. (2020). Thermal pyrolysis. In Pyrolysis of Biomass for fuels and Chemicals (1st ed., pp. 23–48). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818213-0.00001-1 Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479–1493. https://doi.org/10.1016/s0146-6380(99)00120-5 Bridgwater, A. V, & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73. Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero , calentamiento global y cambio climático : una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10). Carriquiry, M. A., Du, X., & Timilsina, G. R. (2011). Second generation biofuels: Economics and policies. Energy Policy, 39, 4222–4234. Castro, M. (2012). Reflexiones en torno al desarrollo de los biocombustibles en Ecuador. CEDA, 25, 6. Cerdá, E. (2012). Energía obtenida a partir de biomasa. Revista ICE, 83, 117–140. Chandramohan, V. P. (2020). Convective drying of food materials: An overview with fundamental aspect, recent developments, and summary. Heat Transfer-Asian Research., 49, 1281– 1313. https://doi.org/10.1002/htj.21662 Chernova, N. I., Kiseleva, S. V, Larina, O. M., & Sytchev, G. A. (2019). Manufacturing gaseous products by pyrolysis of microalgal biomass. International Journal of Hydrogen Energy, 45(3), 1569–1577. https://doi.org/10.1016/j.ijhydene.2019.11.022 Cortes, W. (2014). Tratamientos Aplicables a Materiales Lignocelulósicos para la Obtención de Etanol y Productos Químicos. La Revista de Tecnología, 13(1), 39–44. Czernik, S., & Bridgwater, A. V. (2004). Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels, 18(12), 590–598. Dincer, I, & Sahin, A. Z. (2004). A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer, 47(4), 645–652. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.013 Dirección de Cadenas Agricolas y Forestales. (2020). Cadena de Banano. Eduardo, C., Young, F., & Steffen, P. G. (2008). Biocombustibles como estrategia de desarrollo. Polis, 21, 11. Encinar, J. M., Beltran, F. J., & Bernalte, A. (1996). Pyrolysis of Two Agricultural Residues : Olive and Grape Bagasse. Influence of Particle Size and Temperature. Biomass and Bioenergy, 11(5), 397–409. ENEL. (2020). Tarifas de Energía Eléctrica. Retrieved from https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-diciembre-2020.pdf Farrow, A., Kathryn, M., & Lauri, M. (2020). Toxic air: The price of fossil fuels. Greenpeace Southeast Asia, 44. Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 15, 603–608. FINAGRO. (2018). Ficha de inteligencia. Gaffney, J. S., & Marley, N. A. (2009). The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyons. Atmospheric Environment, 43(1), 23–36. García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103, 249–258. https://doi.org/10.1016/j.biortech.2011.10.004 Ghosh, S., Das, S., & Chowdhury, R. (2019). Effect of pre-pyrolysis biotreatment of banana pseudo-stem ( BPS ) using synergistic microbial consortium : Role in deoxygenation and enhancement of yield of pyro-oil. Energy Conversion and Management, 195, 114–124. https://doi.org/10.1016/j.enconman.2019.04.094 Gil, M., & Arauzo, I. (2014). Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels. Fuel Processing Technology, 127, 80–87. Hammer, N. L., Boateng, A. A., Mullen, C. A., & Wheeler, M. C. (2013). Aspen Plus and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis. Journal of Environmental Management, 128, 594–601. https://doi.org/10.1016/j.jenvman.2013.06.008 Herrán, C. (2012). El cambio climático y sus consecuencias para América Latina. Revista de La Bolsa de Comercio de Rosario, 5. Hussain, M., Zhao, Z., Ren, J., Rasool, T., & Raza, S. (2019). Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass and Bioenergy, 122, 193–201. https://doi.org/10.1016/j.biombioe.2019.01.009 IDEAM. (2020). Boletín Climatológico. Colombia. Ighalo, J. O., & George, A. (2019). Thermodynamic modelling and temperature sensitivity analysis of banana ( Musa spp .) waste pyrolysis. Springer Nature Applied Sciences. https://doi.org/10.1007/s42452-019-1147-3 Innanen, J. (2013). Solids Removal in Pyrolysis. Lappeenranta University Technology. Jahirul, M., Rasul, M., Ahmed, A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis: A Technological Review. Energies, 5(12), 4952–5001. Kabenge, I., Omulo, G., Banadda, N., Seay, J., Zziwa, A., & Kiggundu, N. (2018). Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. Sustainable Development, 11(2), 14–24. https://doi.org/10.5539/jsd.v11n2p14 Klinger, J. L., Westover, T. L., Emerson, R. M., Williams, C. L., Hernandez, S., Monson, G. D., & Ryan, J. C. (2018). Effect of biomass type , heating rate , and sample size on microwave- enhanced fast pyrolysis product yields and qualities. Applied Energy, 228(February), 535–545. https://doi.org/10.1016/j.apenergy.2018.06.107 Klug, M. (2012). Pirólisis, un proceso para derretir biomasa. Revista de Química PUCP, 26, 37–40. Kohl, T., Teles, M., Melin, K., Laukkanen, T., Järvinen, M., Won, S., & Guidici, R. (2015). Exergoeconomic assessment of CHP-integrated biomass upgrading. APPLIED ENERGY, 156, 290–305. https://doi.org/10.1016/j.apenergy.2015.06.047 Kotas, T. J. (1986). Exergy method of thermal and chemical plant analysis. Chemical Engineering Research and Design, 64(3), 212–229. Kun, Z., He, D., Guan, J., & Zhang, Q. (2018). Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis. Energy, 166, 807–818. https://doi.org/10.1016/j.energy.2018.10.027 Lazzaretto, A., & Tsatsaronis, G. (2006). SPECO : A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31, 1257–1289. https://doi.org/10.1016/j.energy.2005.03.011 Lédé, J., & Authier, O. (2011). Characterization of biomass fast pyrolysis Advantages and drawbacks of different possible criteria. Biomass Conversion. Biorefinery., 133–147. https://doi.org/10.1007/s13399-011-0014-2 Leong, W., Lim, J., Lam, M., & Uemura, Y. (2018). Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renewable and Sustainable Energy Reviews, 91, 950–961. Lestinsky, P., & Palit, A. (2016). Wood pyrolysis using aspen plus simulation and industrially applicable model. Haryana, India. Lv, Q., Yue, H., Xu, Q., & Zhang, C. (2018). Quantifying the exergetic performance of bio-fuel production process including fast pyrolysis and bio-oil hydrodeoxygenation. Journal Renewable Sustainable Energy, 10(043107), 1–12. https://doi.org/10.1063/1.5031894 Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27(4), 339–352. https://doi.org/10.1016/j.biombioe.2004.03.007 Mazzeo M., M., León Agatón, L., Mejía Gutierrez, L. F., Guerrero Mendieta, L. E., & Botero López, J. D. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha del plátano en el departamento de Caldas. Revista Educación En Ingeniería, 9, 128–139. Mobolaji, B., Sai, G., & Panneerselvam, R. (2015). Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading. Fuel, 143, 361–372. https://doi.org/http://dx.doi.org/10.1016/j.fuel.2014.11.078 Montoya Arbeláes, J. I. (2014). Pirólisis rápida de biomasa. Medellín, Colombia. Moreno, M. A., Samerón, E., & Perea, A. (2019). Biomass as Renewable Energy: Worldwide Research Trends. Sustainability, 11(3), 863. Morseletto, P. (2020). Targets for a circular economy. Resourcen, Conservation and Recycling, 153, 104553. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.104553 Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96. Nikoo, M. B., & Mahinpey, N. (2008). Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy, 32, 1245–1254. https://doi.org/10.1016/j.biombioe.2008.02.020 Nor, W., Wan, R., Hisham, M. W. M., Ambar, M., & Hin, T. Y. (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 16(8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039 Omulo, G., Banadda, N., Kabenge, I., & Seay, J. (2019). Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environ, 24(2), 354–361 Organización de las Naciones Unidas Para la Aagricultura y la Alimentación. (2008). Efectos de los biocombustibles en el medio ambiente. In El estado mundial de la Agricultura y la Alimentación (pp. 63–83). Roma, Italia. Osorio, A., & Rubiano, K. (2019). Desarrollo De Una Biopelicula Partiendo De Cáscara De Banano Y Fibra Natural Como Agente De Refuerzo A Nivel Laboratorio. Fundación Universidad de América Ozbay, N., Yargic, A. S., Zerrin, R., Sahin, Y., & Yaman, E. (2019). Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15. Renewable Energy, 140, 633–646. https://doi.org/10.1016/j.renene.2019.03.071 Pearson, R., & Turner, J. (2014). Improving the use of liquid biofuels in internal combustion engines. In K. Waldron (Ed.), Advances in Biorefineries (pp. 289–440). Woodhead Publishing. Peters, J. F., Petrakopoulou, F., & Dufour, J. (2014). Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Processing Technology, 119, 245–255. https://doi.org/10.1016/j.fuproc.2013.11.007 Peters, M. S., & Timmerhouse, K. D. (2003). Plant design and economixs for chemical engineers (Fifth edit). New York: McGraw-Hill. Petrakopoulou, F., Tstsaronis, G., Morosuk, T., & Carassai, A. (2012). Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy, 41(1), 146–152. https://doi.org/https://doi.org/10.1016/j.energy.2011.05.028 Queiroz, J. A., Rodrigues, V. M. S., Matos, H. A., & Martins, F. G. (2012). Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method. Energy Conversion and Management, 64, 473–481. https://doi.org/10.1016/j.enconman.2012.03.030 Sahoo, K., Kumar, A., & Prasad, J. (2020). A comparative study on valuable products : bio ‑ oil , biochar , non ‑ condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, (1). https://doi.org/10.1007/s10163-020-01114-2 Sellin, N., Ricardo, D., Marangoni, C., & Souza, O. (2016). Oxidative fast pyrolysis of banana leaves in fl uidized bed reactor. Renewable Energy, 96, 56–64. https://doi.org/10.1016/j.renene.2016.04.032 Shokati, N., Mohammadkhani, F., Yari, M., Mahmoudi, S. M. S., & Rosen, M. A. (2014). A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles. Sustainability, 6(5), 2474–2489. https://doi.org/10.3390/su6052474 Szargut, J., Morris, D., & Steward, F. (1988). Exergy analysis of thermal, chemical and metallurgical processes. Hemisphere. Taylor, P., Niu, Y., Tan, H., Liu, Y., Wang, X., & Xu, T. (2014). The Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks Biomass The Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks Biomass. Energy Sources, 1663–1669. https://doi.org/10.1080/15567036.2010.509084 Tessini, C., Segura, C., & Berg, A. (2013). Pirólise Rápida Da Madeira Para Produção de Bio-Óleo. In F. Santos, J. Colodette, & J. H. de Queiroz (Eds.), Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais (pp. 459–482). Produção Independente. Torres, E., Rodriguez-ortiz, L. A., Zalazar, D., Echegaray, M., Rodriguez, R., Zhang, H., & Mazza, G. (2020). 4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste. Renewable Energy, 162, 296–307. https://doi.org/10.1016/j.renene.2020.07.147 Veksha, A., Giannis, A., & Chang, V. W. (2017). Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials: Effects of feedstock and temperature. Journal of Analytical and Applied Pyrolysis. https://doi.org/10.1016/j.jaap.2017.03.005 Wang, C., Chen, G., Ma, W., Zhu, X., & Wang, Y. (2012). Process Simulation on Fluidized Bed Pyrolysis of Biomass. Progress in Envitonmental Science and Engineering, 360, 2265–2269. https://doi.org/10.4028/www.scientific.net/AMR.356-360.2265 Ward, J., Rasul, M. G., & Bhuiya, M. M. K. (2014). Energy recovery from biomass by fast pyrolysis. Procedia Engineering, 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791 Westerhof, R. J. M., Brilman, D. W. F., Garcia-perez, M., Wang, Z., Oudenhoven, S. R. G., Swaaij, W. P. M. Van, & Kersten, S. R. A. (2011). Fractional Condensation of Biomass Pyrolysis Vapors. Energy & Fuels, 25(4), 1817–1829. Wright, C. T., Boardman, R. D., Yancey, N. A., & Sokhansanj, S. (2011). A Review on Biomass Classification and Composition , Co-Firing Issues and Pretreatment Methods. Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Hsu, D. D., Wright, M. M., … Hsu, D. D. (2010). Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels. Colorado, USA. Yang, Y., Wang, J., Chong, K., & Bridgwater, A. V. (2018). A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 174, 406–416. Yi-Feng, C., & Wu, Q. (2011). Production of biodiesel from algal biomass: current perspectives and future. In Biofuels. Alternative Feedstocks and Conversion Processes (pp. 399–413). Beijing, Republic of China. Zheng, H., Kaliyan, N., & Morey, R. V. (2013). Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants. Biomass and Bioenergy, 56, 197–210. https://doi.org/10.1016/j.biombioe.2013.04.032 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Mecánica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Mecánica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/37712/1/2021nathalyayala.pdf https://repository.usta.edu.co/bitstream/11634/37712/2/Carta%20Aprobacion%20Facultad.pdf https://repository.usta.edu.co/bitstream/11634/37712/3/Carta_autorizacion_autoarchivo_autor_2021.pdf https://repository.usta.edu.co/bitstream/11634/37712/4/license_rdf https://repository.usta.edu.co/bitstream/11634/37712/5/license.txt https://repository.usta.edu.co/bitstream/11634/37712/6/2021nathalyayala.pdf.jpg https://repository.usta.edu.co/bitstream/11634/37712/7/Carta%20Aprobacion%20Facultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/37712/8/Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
972acf45452a7cd921abd218b2a3232c 6bee2db5e064d22277035bbc224cc231 d178623fd650d169fcde7311be1afea7 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 2883111d4d39e895164fab01f975568f 187050ffe5a0216237ea92fdeab18747 8e8b1f7cf0250b6d129700aa71e5e56a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026378204413952 |
spelling |
Malagon Romero, Dionisio HumbertoAyala Ruiz, Nathalyhttps://orcid.org/0000-0003-2890-2180https://scholar.google.es/citations?user=b0ldFjcAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000167061Universidad Santo Tomás2021-10-01T12:21:37Z2021-10-01T12:21:37Z2021-09-30Ayala Ruiz, N. (2021) Thermo-economic evaluation of banana waste pyrolysis plant for biofuel production. [Trabajo de grado Pregrado Ingeniería Mecánica] Repositorio Institucionalhttp://hdl.handle.net/11634/37712reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coHealth and environmental problems are presented in the world due to gases produced during the combustion of fossil fuels. This problem has focused on researching the production of renewable fuels from biomass. One type of biomass are wastes produced during culture of banana which its industry for every tonne of banana harvested there are, on average, four tonnes of wastes which also contaminated environment. This paper aims to evaluate the economic and exergetic viability of a banana waste pyrolysis plant in Colombia. The processes of the plant were simulated on Aspen Plus®, which solved material and energy balance. The yield of products was validated with experimental results from literature, where differences could be attributed to biomass composition and reactor type. The results obtained revealed yields of 40.20%, 24.75% and 35.07% from bio-oil, char and gas respectively. Economic and exergy data were combined for an exergy costing method to carry out the exergoeconomic analysis. The overall exergy efficiency of the plant was 61.76%. The highest exergy destruction is located in the dryer and the pyrolysis reactor, which accounts for 35.84% and 32.96% respectively. The combustion chamber has the highest exergy destruction cost (180.19 $/h) and a low value of the exergoeconomic factor (5.96 %), indicating that an improvement of the equipment is required, even though this means an increment in cost investment. The study reveals, that the analysis made demonstrates the potential of bio-oil production from banana wastes, and also the possibility to use gases products in a combined heat and power plant. In addition, the study evidence in which process it is necessary to achieve better results of efficiencies in order to improve the whole plant.Ingeniero Mecánicohttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería MecánicaFacultad de Ingeniería MecánicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Thermo-economic evaluation of banana waste pyrolysis plant for biofuel productionFast pyrolysisExergy analysisExergoeconomic analysisTermodinámicaEconomíaBiomasaPirólisis rápidaAnálisis de exergíaAnálisis exergoeconomicoTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAbdullah, B., Anuar, S., Muhammad, S., Shokravi, Z., & Ismail, S. (2019). Fourth generation biofuel : A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107(February), 37–50. https://doi.org/10.1016/j.rser.2019.02.018Abdullah, N., Sulaiman, F., & Mohd, R. (2015). Pyrolytic Oil of Banana ( Musa spp .) Pseudo-stem via Fast Process. American Institute of Physics, 6. https://doi.org/10.1063/1.4915212Ahmadi, P., & Dincer, I. (2018). 1.8 Exergoeconomics. In Ibrahim Dincer (Ed.), Comprehensive Energy Systems (pp. 340–376). https://doi.org/https://doi.org/10.1016/B978-0-12-809597-3.00107-3Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations . Subject review. Renewable Energy Focus, 28(March), 13Altayeb, R. K. (2015). Liquid fuel production from pyrolysis of waste tires: process simulation, exergetic analysis, and life cycle assessment. American University of Sharjah.Aspen Technology Inc. (2000). Aspen Plus User GuideAtienza-martínez, M., Ábrego, J., Mastral, J. F., Ceamanos, J., & Gea, G. (2018). Energy and exergy analyses of sewage sludge thermochemical treatment. Energy, 144, 723–735. https://doi.org/10.1016/j.energy.2017.12.007Badger, P., Badger, S., Puettmann, M., Steele, P., & Cooper, J. (2011). Techno-Economic Analysis: Preliminary Assessment of Pyrolysis Oil Production Costs and Material Energy Balance Associated With a Transportable Fast Pyrolysis System. Bioresources, 6(1), 34–47Balat, M., Balat, M., Kırtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals . Part 1 : Pyrolysis systems. Energy Conversion and Management, 50(12), 3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014Basu, P. (2010a). Biomass Gasification, Pyrolysis and Torrefaction. Academic Press. Retrieved from https://doi.org/10.1016/C2009-0-20099-7Basu, P. (2010b). Pyrolysis. In Biomass, Gasification, Pyrolysis and Torrefaction (pp. 147–176). Elsevier ScienceBeheshti, S. M., & Ghassemi, H. (2015). Process simulation of biomass gasification in a bubbling fluidized bed reactor. ENERGY CONVERSION AND MANAGEMENT, 94, 345–352. https://doi.org/10.1016/j.enconman.2015.01.060Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design and Optimization. New York: John Willey &Sons, Inc.Boateng, A. A. (2020). Thermal pyrolysis. In Pyrolysis of Biomass for fuels and Chemicals (1st ed., pp. 23–48). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-818213-0.00001-1Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94.Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 30(12), 1479–1493. https://doi.org/10.1016/s0146-6380(99)00120-5Bridgwater, A. V, & Peacocke, G. V. C. (2000). Fast pyrolysis processes for biomass. Renewable and Sustainable Energy Reviews, 4(1), 1–73.Caballero, M., Lozano, S., & Ortega, B. (2007). Efecto invernadero , calentamiento global y cambio climático : una perspectiva desde las ciencias de la tierra. Revista Digital Universitaria, 8(10).Carriquiry, M. A., Du, X., & Timilsina, G. R. (2011). Second generation biofuels: Economics and policies. Energy Policy, 39, 4222–4234.Castro, M. (2012). Reflexiones en torno al desarrollo de los biocombustibles en Ecuador. CEDA, 25, 6.Cerdá, E. (2012). Energía obtenida a partir de biomasa. Revista ICE, 83, 117–140.Chandramohan, V. P. (2020). Convective drying of food materials: An overview with fundamental aspect, recent developments, and summary. Heat Transfer-Asian Research., 49, 1281– 1313. https://doi.org/10.1002/htj.21662Chernova, N. I., Kiseleva, S. V, Larina, O. M., & Sytchev, G. A. (2019). Manufacturing gaseous products by pyrolysis of microalgal biomass. International Journal of Hydrogen Energy, 45(3), 1569–1577. https://doi.org/10.1016/j.ijhydene.2019.11.022Cortes, W. (2014). Tratamientos Aplicables a Materiales Lignocelulósicos para la Obtención de Etanol y Productos Químicos. La Revista de Tecnología, 13(1), 39–44.Czernik, S., & Bridgwater, A. V. (2004). Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels, 18(12), 590–598.Dincer, I, & Sahin, A. Z. (2004). A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer, 47(4), 645–652. https://doi.org/10.1016/j.ijheatmasstransfer.2003.08.013Dirección de Cadenas Agricolas y Forestales. (2020). Cadena de Banano.Eduardo, C., Young, F., & Steffen, P. G. (2008). Biocombustibles como estrategia de desarrollo. Polis, 21, 11.Encinar, J. M., Beltran, F. J., & Bernalte, A. (1996). Pyrolysis of Two Agricultural Residues : Olive and Grape Bagasse. Influence of Particle Size and Temperature. Biomass and Bioenergy, 11(5), 397–409.ENEL. (2020). Tarifas de Energía Eléctrica. Retrieved from https://www.enel.com.co/content/dam/enel-co/español/personas/1-17-1/2020/Tarifario-diciembre-2020.pdfFarrow, A., Kathryn, M., & Lauri, M. (2020). Toxic air: The price of fossil fuels. Greenpeace Southeast Asia, 44.Fernandes, E. R. K., Marangoni, C., Souza, O., & Sellin, N. (2013). Thermochemical characterization of banana leaves as a potential energy source. Energy Conversion and Management, 15, 603–608.FINAGRO. (2018). Ficha de inteligencia.Gaffney, J. S., & Marley, N. A. (2009). The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyons. Atmospheric Environment, 43(1), 23–36.García, R., Pizarro, C., Lavín, A. G., & Bueno, J. L. (2012). Characterization of Spanish biomass wastes for energy use. Bioresource Technology, 103, 249–258. https://doi.org/10.1016/j.biortech.2011.10.004Ghosh, S., Das, S., & Chowdhury, R. (2019). Effect of pre-pyrolysis biotreatment of banana pseudo-stem ( BPS ) using synergistic microbial consortium : Role in deoxygenation and enhancement of yield of pyro-oil. Energy Conversion and Management, 195, 114–124. https://doi.org/10.1016/j.enconman.2019.04.094Gil, M., & Arauzo, I. (2014). Hammer mill operating and biomass physical conditions effects on particle size distribution of solid pulverized biofuels. Fuel Processing Technology, 127, 80–87.Hammer, N. L., Boateng, A. A., Mullen, C. A., & Wheeler, M. C. (2013). Aspen Plus and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis. Journal of Environmental Management, 128, 594–601. https://doi.org/10.1016/j.jenvman.2013.06.008Herrán, C. (2012). El cambio climático y sus consecuencias para América Latina. Revista de La Bolsa de Comercio de Rosario, 5.Hussain, M., Zhao, Z., Ren, J., Rasool, T., & Raza, S. (2019). Thermo-kinetics and gaseous product analysis of banana peel pyrolysis for its bioenergy potential. Biomass and Bioenergy, 122, 193–201. https://doi.org/10.1016/j.biombioe.2019.01.009IDEAM. (2020). Boletín Climatológico. Colombia.Ighalo, J. O., & George, A. (2019). Thermodynamic modelling and temperature sensitivity analysis of banana ( Musa spp .) waste pyrolysis. Springer Nature Applied Sciences. https://doi.org/10.1007/s42452-019-1147-3Innanen, J. (2013). Solids Removal in Pyrolysis. Lappeenranta University Technology.Jahirul, M., Rasul, M., Ahmed, A., & Ashwath, N. (2012). Biofuels Production through Biomass Pyrolysis: A Technological Review. Energies, 5(12), 4952–5001.Kabenge, I., Omulo, G., Banadda, N., Seay, J., Zziwa, A., & Kiggundu, N. (2018). Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. Sustainable Development, 11(2), 14–24. https://doi.org/10.5539/jsd.v11n2p14Klinger, J. L., Westover, T. L., Emerson, R. M., Williams, C. L., Hernandez, S., Monson, G. D., & Ryan, J. C. (2018). Effect of biomass type , heating rate , and sample size on microwave- enhanced fast pyrolysis product yields and qualities. Applied Energy, 228(February), 535–545. https://doi.org/10.1016/j.apenergy.2018.06.107Klug, M. (2012). Pirólisis, un proceso para derretir biomasa. Revista de Química PUCP, 26, 37–40.Kohl, T., Teles, M., Melin, K., Laukkanen, T., Järvinen, M., Won, S., & Guidici, R. (2015). Exergoeconomic assessment of CHP-integrated biomass upgrading. APPLIED ENERGY, 156, 290–305. https://doi.org/10.1016/j.apenergy.2015.06.047Kotas, T. J. (1986). Exergy method of thermal and chemical plant analysis. Chemical Engineering Research and Design, 64(3), 212–229.Kun, Z., He, D., Guan, J., & Zhang, Q. (2018). Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis. Energy, 166, 807–818. https://doi.org/10.1016/j.energy.2018.10.027Lazzaretto, A., & Tsatsaronis, G. (2006). SPECO : A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31, 1257–1289. https://doi.org/10.1016/j.energy.2005.03.011Lédé, J., & Authier, O. (2011). Characterization of biomass fast pyrolysis Advantages and drawbacks of different possible criteria. Biomass Conversion. Biorefinery., 133–147. https://doi.org/10.1007/s13399-011-0014-2Leong, W., Lim, J., Lam, M., & Uemura, Y. (2018). Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renewable and Sustainable Energy Reviews, 91, 950–961.Lestinsky, P., & Palit, A. (2016). Wood pyrolysis using aspen plus simulation and industrially applicable model. Haryana, India.Lv, Q., Yue, H., Xu, Q., & Zhang, C. (2018). Quantifying the exergetic performance of bio-fuel production process including fast pyrolysis and bio-oil hydrodeoxygenation. Journal Renewable Sustainable Energy, 10(043107), 1–12. https://doi.org/10.1063/1.5031894Mani, S., Tabil, L. G., & Sokhansanj, S. (2004). Grinding performance and physical properties of wheat and barley straws, corn stover and switchgrass. Biomass and Bioenergy, 27(4), 339–352. https://doi.org/10.1016/j.biombioe.2004.03.007Mazzeo M., M., León Agatón, L., Mejía Gutierrez, L. F., Guerrero Mendieta, L. E., & Botero López, J. D. (2010). Aprovechamiento industrial de residuos de cosecha y poscosecha del plátano en el departamento de Caldas. Revista Educación En Ingeniería, 9, 128–139.Mobolaji, B., Sai, G., & Panneerselvam, R. (2015). Techno-economic performance analysis of biofuel production and miniature electric power generation from biomass fast pyrolysis and bio-oil upgrading. Fuel, 143, 361–372. https://doi.org/http://dx.doi.org/10.1016/j.fuel.2014.11.078Montoya Arbeláes, J. I. (2014). Pirólisis rápida de biomasa. Medellín, Colombia.Moreno, M. A., Samerón, E., & Perea, A. (2019). Biomass as Renewable Energy: Worldwide Research Trends. Sustainability, 11(3), 863.Morseletto, P. (2020). Targets for a circular economy. Resourcen, Conservation and Recycling, 153, 104553. https://doi.org/https://doi.org/10.1016/j.resconrec.2019.104553Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96.Nikoo, M. B., & Mahinpey, N. (2008). Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS. Biomass and Bioenergy, 32, 1245–1254. https://doi.org/10.1016/j.biombioe.2008.02.020Nor, W., Wan, R., Hisham, M. W. M., Ambar, M., & Hin, T. Y. (2012). A review on bio-oil production from biomass by using pyrolysis method. Renewable and Sustainable Energy Reviews, 16(8), 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039Omulo, G., Banadda, N., Kabenge, I., & Seay, J. (2019). Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environ, 24(2), 354–361Organización de las Naciones Unidas Para la Aagricultura y la Alimentación. (2008). Efectos de los biocombustibles en el medio ambiente. In El estado mundial de la Agricultura y la Alimentación (pp. 63–83). Roma, Italia.Osorio, A., & Rubiano, K. (2019). Desarrollo De Una Biopelicula Partiendo De Cáscara De Banano Y Fibra Natural Como Agente De Refuerzo A Nivel Laboratorio. Fundación Universidad de AméricaOzbay, N., Yargic, A. S., Zerrin, R., Sahin, Y., & Yaman, E. (2019). Valorization of banana peel waste via in-situ catalytic pyrolysis using Al-Modified SBA-15. Renewable Energy, 140, 633–646. https://doi.org/10.1016/j.renene.2019.03.071Pearson, R., & Turner, J. (2014). Improving the use of liquid biofuels in internal combustion engines. In K. Waldron (Ed.), Advances in Biorefineries (pp. 289–440). Woodhead Publishing.Peters, J. F., Petrakopoulou, F., & Dufour, J. (2014). Exergetic analysis of a fast pyrolysis process for bio-oil production. Fuel Processing Technology, 119, 245–255. https://doi.org/10.1016/j.fuproc.2013.11.007Peters, M. S., & Timmerhouse, K. D. (2003). Plant design and economixs for chemical engineers (Fifth edit). New York: McGraw-Hill.Petrakopoulou, F., Tstsaronis, G., Morosuk, T., & Carassai, A. (2012). Conventional and advanced exergetic analyses applied to a combined cycle power plant. Energy, 41(1), 146–152. https://doi.org/https://doi.org/10.1016/j.energy.2011.05.028Queiroz, J. A., Rodrigues, V. M. S., Matos, H. A., & Martins, F. G. (2012). Modeling of existing cooling towers in ASPEN PLUS using an equilibrium stage method. Energy Conversion and Management, 64, 473–481. https://doi.org/10.1016/j.enconman.2012.03.030Sahoo, K., Kumar, A., & Prasad, J. (2020). A comparative study on valuable products : bio ‑ oil , biochar , non ‑ condensable gases from pyrolysis of agricultural residues. Journal of Material Cycles and Waste Management, (1). https://doi.org/10.1007/s10163-020-01114-2Sellin, N., Ricardo, D., Marangoni, C., & Souza, O. (2016). Oxidative fast pyrolysis of banana leaves in fl uidized bed reactor. Renewable Energy, 96, 56–64. https://doi.org/10.1016/j.renene.2016.04.032Shokati, N., Mohammadkhani, F., Yari, M., Mahmoudi, S. M. S., & Rosen, M. A. (2014). A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles. Sustainability, 6(5), 2474–2489. https://doi.org/10.3390/su6052474Szargut, J., Morris, D., & Steward, F. (1988). Exergy analysis of thermal, chemical and metallurgical processes. Hemisphere.Taylor, P., Niu, Y., Tan, H., Liu, Y., Wang, X., & Xu, T. (2014). The Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks Biomass The Effect of Particle Size and Heating Rate on Pyrolysis of Waste Capsicum Stalks Biomass. Energy Sources, 1663–1669. https://doi.org/10.1080/15567036.2010.509084Tessini, C., Segura, C., & Berg, A. (2013). Pirólise Rápida Da Madeira Para Produção de Bio-Óleo. In F. Santos, J. Colodette, & J. H. de Queiroz (Eds.), Bioenergia & Biorrefinaria: Cana-de-Açúcar & Espécies Florestais (pp. 459–482). Produção Independente.Torres, E., Rodriguez-ortiz, L. A., Zalazar, D., Echegaray, M., Rodriguez, R., Zhang, H., & Mazza, G. (2020). 4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste. Renewable Energy, 162, 296–307. https://doi.org/10.1016/j.renene.2020.07.147Veksha, A., Giannis, A., & Chang, V. W. (2017). Conversion of non-condensable pyrolysis gases from plastics into carbon nanomaterials: Effects of feedstock and temperature. Journal of Analytical and Applied Pyrolysis. https://doi.org/10.1016/j.jaap.2017.03.005Wang, C., Chen, G., Ma, W., Zhu, X., & Wang, Y. (2012). Process Simulation on Fluidized Bed Pyrolysis of Biomass. Progress in Envitonmental Science and Engineering, 360, 2265–2269. https://doi.org/10.4028/www.scientific.net/AMR.356-360.2265Ward, J., Rasul, M. G., & Bhuiya, M. M. K. (2014). Energy recovery from biomass by fast pyrolysis. Procedia Engineering, 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791Westerhof, R. J. M., Brilman, D. W. F., Garcia-perez, M., Wang, Z., Oudenhoven, S. R. G., Swaaij, W. P. M. Van, & Kersten, S. R. A. (2011). Fractional Condensation of Biomass Pyrolysis Vapors. Energy & Fuels, 25(4), 1817–1829.Wright, C. T., Boardman, R. D., Yancey, N. A., & Sokhansanj, S. (2011). A Review on Biomass Classification and Composition , Co-Firing Issues and Pretreatment Methods.Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Hsu, D. D., Wright, M. M., … Hsu, D. D. (2010). Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels. Colorado, USA.Yang, Y., Wang, J., Chong, K., & Bridgwater, A. V. (2018). A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant. Energy Conversion and Management, 174, 406–416.Yi-Feng, C., & Wu, Q. (2011). Production of biodiesel from algal biomass: current perspectives and future. In Biofuels. Alternative Feedstocks and Conversion Processes (pp. 399–413). Beijing, Republic of China.Zheng, H., Kaliyan, N., & Morey, R. V. (2013). Aspen Plus simulation of biomass integrated gasification combined cycle systems at corn ethanol plants. Biomass and Bioenergy, 56, 197–210. https://doi.org/10.1016/j.biombioe.2013.04.032ORIGINAL2021nathalyayala.pdf2021nathalyayala.pdfTrabajo de Gradoapplication/pdf640991https://repository.usta.edu.co/bitstream/11634/37712/1/2021nathalyayala.pdf972acf45452a7cd921abd218b2a3232cMD51open accessCarta Aprobacion Facultad.pdfCarta Aprobacion Facultad.pdfCarta Aprobación Facultadapplication/pdf284181https://repository.usta.edu.co/bitstream/11634/37712/2/Carta%20Aprobacion%20Facultad.pdf6bee2db5e064d22277035bbc224cc231MD52metadata only accessCarta_autorizacion_autoarchivo_autor_2021.pdfCarta_autorizacion_autoarchivo_autor_2021.pdfCarta autorización autoarchivo autor 2021application/pdf131427https://repository.usta.edu.co/bitstream/11634/37712/3/Carta_autorizacion_autoarchivo_autor_2021.pdfd178623fd650d169fcde7311be1afea7MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/37712/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/37712/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2021nathalyayala.pdf.jpg2021nathalyayala.pdf.jpgIM Thumbnailimage/jpeg8470https://repository.usta.edu.co/bitstream/11634/37712/6/2021nathalyayala.pdf.jpg2883111d4d39e895164fab01f975568fMD56open accessCarta Aprobacion Facultad.pdf.jpgCarta Aprobacion Facultad.pdf.jpgIM Thumbnailimage/jpeg5955https://repository.usta.edu.co/bitstream/11634/37712/7/Carta%20Aprobacion%20Facultad.pdf.jpg187050ffe5a0216237ea92fdeab18747MD57open accessCarta_autorizacion_autoarchivo_autor_2021.pdf.jpgCarta_autorizacion_autoarchivo_autor_2021.pdf.jpgIM Thumbnailimage/jpeg7694https://repository.usta.edu.co/bitstream/11634/37712/8/Carta_autorizacion_autoarchivo_autor_2021.pdf.jpg8e8b1f7cf0250b6d129700aa71e5e56aMD58open access11634/37712oai:repository.usta.edu.co:11634/377122022-12-26 03:14:56.396open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |