Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
Debido a las grandes emisiones de dióxido de carbono que genera la industria cementera, se ha investigado el uso de residuos agroindustriales como remplazos parciales del cemento, llamados materiales cementantes suplementarios. El propósito de este estudio es evaluar el desempeño de varios materiale...
- Autores:
-
Valdés Uribe, Juan David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/18035
- Acceso en línea:
- http://hdl.handle.net/11634/18035
- Palabra clave:
- Supplementary cementing materials
Hydration
Hydraulic activity
Pozzolanic activity
Filler effect
Ingeniería-Materiales
Hidráulica
Resistencia de materiales
Cemento
Ingeniería civil
Tesis y disertaciones académicas
Materiales cementantes suplementarios
Resistencia
Hidratación
Actividad hidráulica
Actividad puzolánica
Efecto físico
- Rights
- openAccess
- License
- Atribución-NoComercial 2.5 Colombia
id |
SANTTOMAS2_df96fee26e10cc5f685573dbf54e30d1 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/18035 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento. |
title |
Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento. |
spellingShingle |
Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento. Supplementary cementing materials Hydration Hydraulic activity Pozzolanic activity Filler effect Ingeniería-Materiales Hidráulica Resistencia de materiales Cemento Ingeniería civil Tesis y disertaciones académicas Materiales cementantes suplementarios Resistencia Hidratación Actividad hidráulica Actividad puzolánica Efecto físico |
title_short |
Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento. |
title_full |
Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento. |
title_fullStr |
Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento. |
title_full_unstemmed |
Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento. |
title_sort |
Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento. |
dc.creator.fl_str_mv |
Valdés Uribe, Juan David |
dc.contributor.advisor.spa.fl_str_mv |
Choque Jiménez, Bregy Hassler |
dc.contributor.author.spa.fl_str_mv |
Valdés Uribe, Juan David |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0003-1779-5148 |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142035 |
dc.subject.keyword.spa.fl_str_mv |
Supplementary cementing materials Hydration Hydraulic activity Pozzolanic activity Filler effect |
topic |
Supplementary cementing materials Hydration Hydraulic activity Pozzolanic activity Filler effect Ingeniería-Materiales Hidráulica Resistencia de materiales Cemento Ingeniería civil Tesis y disertaciones académicas Materiales cementantes suplementarios Resistencia Hidratación Actividad hidráulica Actividad puzolánica Efecto físico |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería-Materiales Hidráulica Resistencia de materiales Cemento Ingeniería civil Tesis y disertaciones académicas |
dc.subject.proposal.spa.fl_str_mv |
Materiales cementantes suplementarios Resistencia Hidratación Actividad hidráulica Actividad puzolánica Efecto físico |
description |
Debido a las grandes emisiones de dióxido de carbono que genera la industria cementera, se ha investigado el uso de residuos agroindustriales como remplazos parciales del cemento, llamados materiales cementantes suplementarios. El propósito de este estudio es evaluar el desempeño de varios materiales cementantes suplementarios (Cenizas volantes, ceniza de cascarilla de arroz, ceniza de lodos de alcantarilla y relaves de cobre) como remplazo parcial en pastas de cemento en varios niveles de remplazo. Se utilizó polvo de roca químicamente inerte para comparar el efecto físico. Se realizaron ensayos de análisis de distribución de partícula y termo gravimetría para caracterizar los materiales, se realizaron ensayos de resistencia a compresión en pastas de cemento para comparar el desempeño en edades tempranas y tardías, calorimetrías isotérmicas para medir la actividad hidráulica y la interacción de cemento con los materiales cementantes suplementarios, además, se utilizó el método R3 para estimar la actividad puzolánica de los materiales. Los materiales presentaron buenos desempeños en los dos niveles de remplazo, la ceniza de lodos residuales y la ceniza de cascarilla de arroz destacaron por su contribución a la ganancia de resistencia a edades tempranas y tardías. Así mismo, la ceniza volante de clase F presentó muy buen desempeño a la edad de 90 días. Los materiales más con mejores resultados en el ensayo R3 lograron la mayor cantidad de calor añadido en las calorimetrías de interacción de cemento y materiales cementantes suplementarios. |
publishDate |
2019 |
dc.date.accessioned.spa.fl_str_mv |
2019-08-08T23:22:47Z |
dc.date.available.spa.fl_str_mv |
2019-08-08T23:22:47Z |
dc.date.issued.spa.fl_str_mv |
2019-06-19 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Valdés, J. (2019) Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento (Tesis de pregrado). Universidad Santo Tomás, Villavicencio |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/18035 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Valdés, J. (2019) Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento (Tesis de pregrado). Universidad Santo Tomás, Villavicencio reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/18035 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Astm. (2010). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annual Book of ASTM Standards, (C), 3–6. https://doi.org/10.1520/C0618 Avet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M., & Scrivener, K. (2016). Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 85, 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015 Baeza-Brotons, F., Garcés, P., Payá, J., & Saval, J. M. (2014). Portland cement systems with addition of sewage sludge ash. application in concretes for the manufacture of blocks. Journal of Cleaner Production, 82, 112–124. https://doi.org/10.1016/j.jclepro.2014.06.072 Bouzoubaâ, N, L. . (2001). Self Compacting Concrete Incorporating High-Volumes of Class F Fly Ash : Preliminary Results. Cement and Concrete Research, 31(3), 413–420. https://doi.org/10.1016/S0008-8846(00)00504-4 Celik, K., Meral, C., Gursel, P., Mehta, P., Horvath, A., & Monteiro, P. J. M. (2014). Mechanical Properties, Durability, and Life-Cycle Analysis of Self-consolidating Concrete Mixtures Made with Blended Portland Cements Containing Fly Ash and Limestone Powder. Cement and Concrete Composites, 56, 59–72. Chindaprasirt, P., Jaturapitakkul, C., & Rattanasak, U. (2009). Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate. Fuel, 88(1), 158–162. https://doi.org/10.1016/j.fuel.2008.07.024 Cyr, M., Lawrence, P., & Ringot, E. (2005). Mineral admixtures in mortars: Quantification of the physical effects of inert materials on short-term hydration. Cement and Concrete Research, 35(4), 719–730. https://doi.org/10.1016/j.cemconres.2004.05.030 Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008 Fly Ash. (2006). Dictionary of architecture and construction. (McGraw-Hill., Ed.) (4 th Ed). New York, NY: Dictionary of Architecture and Construction. Retrieved from http://ezproxy.puc.cl/login?url=https://search.credoreference.com/content/entry/mhbuilding/fly_ash/0?institutionId=5056 Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics--Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559. Jamil, M., Kaish, A. B. M. A., Raman, S. N., & Zain, M. F. M. (2013). Pozzolanic contribution of rice husk ash in cementitious system. Construction and Building Materials, 47, 588–593. https://doi.org/10.1016/j.conbuildmat.2013.05.088 Jamshidi, M., Jamshidi, A., Mehrdadi, N., & Pacheco-Torgal, F. (2012). Mechanical performance and capillary water absorption of sewage sludge ash concrete (SSAC). International Journal of Sustainable Engineering, 5(3), 228–234. https://doi.org/10.1080/19397038.2011.642020 Javali, S., Chandrashekar, A. R., Naganna, S. R., Manu, D. S., Hiremath, P., Preethi, H. G., & Vinod Kumar, N. (2017). Eco-concrete for sustainability: utilizing aluminium dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 19(9), 2291–2304. https://doi.org/10.1007/s10098-017-1419-9 Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012 Karim, M. R., Zain, M. F. M., Jamil, M., Lai, F. C., & Islam, M. N. (2011). Use of wastes in construction industries as an energy saving approach. Energy Procedia, 12, 915–919. https://doi.org/10.1016/j.egypro.2011.10.120 Kathirvel, P., Saraswathy, V., Karthik, S. P., & Sekar, a. S. S. (2013). Strength and Durability Properties of Quaternary Cement Concrete Made with Fly Ash, Rice Husk Ash and Limestone Powder. Arabian Journal for Science and Engineering, 38(3), 589–598. https://doi.org/10.1007/s13369-012-0331-1 Kizhakkumodom Venkatanarayanan, H., & Rangaraju, P. R. (2015). Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cement and Concrete Composites, 55, 348–363. https://doi.org/10.1016/j.cemconcomp.2014.09.021 Lawrence, P., Cyr, M., & Ringot, E. (2003). Mineral admixtures in mortars. Cement and Concrete Research, 33(12), 1939–1947. https://doi.org/10.1016/S0008-8846(03)00183-2 Li, X., Snellings, R., Antoni, M., Alderete, N. M., Ben Haha, M., Bishnoi, S., … Scrivener, K. L. (2018). Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux et Constructions, 51(6). https://doi.org/10.1617/s11527-018-1269-x Lynn, C. J., Dhir, R. K., Ghataora, G. S., & West, R. P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Construction and Building Materials, 98, 767–779. https://doi.org/10.1016/j.conbuildmat.2015.08.122 Marie, E., & Berodier, J. (2015). Impact of the Supplementary Cementitious Materials on the kinetics and microstructural development of cement hydration PAR. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. https://doi.org/10.5075/epfl-thesis-6417 Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: microstructure, properties, and materials. Concrete. https://doi.org/10.1036/0071462899 Oliva, M., Vargas, F., & Lopez, M. (2019). Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. Journal of Cleaner Production, 223, 1029–1041. https://doi.org/10.1016/J.JCLEPRO.2019.03.147 Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165–1171. https://doi.org/10.1016/j.cemconres.2004.09.031 Onuaguluchi, O., & Eren, Ö. (2012). Cement mixtures containing copper tailings as an additive: durability properties. Materials Research, 15(6), 1029–1036. https://doi.org/10.1590/S1516-14392012005000129 Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0 Rodríguez de Sensale, G., & Rodríguez Viacava, I. (2018). A study on blended Portland cements containing residual rice husk ash and limestone filler. Construction and Building Materials, 166, 873–888. https://doi.org/10.1016/j.conbuildmat.2018.01.113 Salazar-carreño, D., García-cáceres, R. G., & Ortiz-rodríguez, O. O. (2015). Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material, 96, 65–75. https://doi.org/10.1016/j.conbuildmat.2015.07.178 Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production-present and future. Cement and Concrete Research, 41(7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019 Scrivener, K. L., Lothenbach, B., De Belie, N., Gruyaert, E., Skibsted, J., Snellings, R., & Vollpracht, A. (2015). TC 238-SCM: hydration and microstructure of concrete with SCMs: State of the art on methods to determine degree of reaction of SCMs. Materials and Structures/Materiaux et Constructions, 48(4), 835–862. https://doi.org/10.1617/s11527-015-0527-4 Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008 Snellings, R., & Scrivener, K. L. (2016). Rapid screening tests for supplementary cementitious materials: past and future. Materials and Structures/Materiaux et Constructions, 49(8), 3265–3279. https://doi.org/10.1617/s11527-015-0718-z Thomas, B. S., Damare, A., & Gupta, R. C. (2013). Strength and durability characteristics of copper tailing concrete. Construction and Building Materials, 48, 894–900. https://doi.org/10.1016/j.conbuildmat.2013.07.075 Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015). Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites, 56, 106–114. https://doi.org/10.1016/j.cemconcomp.2014.11.005 U.S. Geological Survey (USGS). (2015). Mineral Commodity Summaries 2015 Mineral Commodity Summaries 2015, 1–196. https://doi.org/10.3133/70140094 Vargas, F., & Lopez, M. (2018). Development of a new supplementary cementitious material from the activation of copper tailings: Mechanical performance and analysis of factors. Journal of Cleaner Production, 182, 427–436. https://doi.org/10.1016/j.jclepro.2018.01.223 Wang, A., Zhang, C., & Sun, W. (2003). Fly ash effects: I. The morphological effect of fly ash. Cement and Concrete Research, 33(12), 2023–2029. https://doi.org/10.1016/S0008-8846(03)00217-5 Wang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current State of Fine Mineral Tailings Treatment - A Critical Review on Theory and Practice, 58, 113–131. https://doi.org/10.1016/j.mineng.2014.01.018 Xu, J. H., Fleiter, T., Eichhammer, W., & Fan, Y. (2012). Energy consumption and CO2emissions in China’s cement industry: A perspective from LMDI decomposition analysis. Energy Policy, 50, 821–832. https://doi.org/10.1016/j.enpol.2012.08.038 Yang, K.-H., Jung, Y.-B., Cho, M.-S., & Tae, S.-H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. https://doi.org/10.1016/j.jclepro.2014.03.018 Zunino, F., & Lopez, M. (2016). Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multi-level approach. Cement and Concrete Composites, 65, 19–28. https://doi.org/10.1016/j.cemconcomp.2015.10.003 Zunino, F., & Lopez, M. (2017). A methodology for assessing the chemical and physical potential of industrially sourced rice husk ash on strength development and early-age hydration of cement paste. Construction and Building Materials, 149, 869–881. https://doi.org/10.1016/j.conbuildmat.2017.05.187 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial 2.5 Colombia http://creativecommons.org/licenses/by-nc/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Villavicencio |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Civil |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Civil |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/18035/6/license_rdf https://repository.usta.edu.co/bitstream/11634/18035/8/license.txt https://repository.usta.edu.co/bitstream/11634/18035/1/2019juanvaldes https://repository.usta.edu.co/bitstream/11634/18035/2/2019juanvaldes1 https://repository.usta.edu.co/bitstream/11634/18035/3/2019juanvaldes2 https://repository.usta.edu.co/bitstream/11634/18035/4/2019juanvaldes3 https://repository.usta.edu.co/bitstream/11634/18035/7/2019juanvaldes4 https://repository.usta.edu.co/bitstream/11634/18035/9/2019JuanVald%c3%a9s.pdf.jpg https://repository.usta.edu.co/bitstream/11634/18035/10/2019JuanVald%c3%a9s1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/18035/11/2019JuanVald%c3%a9s2.pdf.jpg https://repository.usta.edu.co/bitstream/11634/18035/12/Autorizaci%c3%b3n%20Facultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/18035/13/Derechos%20de%20Autor.pdf.jpg https://repository.usta.edu.co/bitstream/11634/18035/14/2019juanvaldes.jpg https://repository.usta.edu.co/bitstream/11634/18035/15/2019juanvaldes1.jpg https://repository.usta.edu.co/bitstream/11634/18035/16/2019juanvaldes2.jpg https://repository.usta.edu.co/bitstream/11634/18035/17/2019juanvaldes3.jpg https://repository.usta.edu.co/bitstream/11634/18035/18/2019juanvaldes4.jpg |
bitstream.checksum.fl_str_mv |
40513e59b5d1327fcca263d3c2a2e44a f6b8c5608fa6b2f649b2d63e10c5fa73 65aceda42570b2f095a099ab15756348 0d73f8d0d6a21f4307250f7a3d38b8a7 157df9924dfaeba27ef1d9b9a3a5e62a b499f4b31fe71cd5517d04ec370dad8a 961ef04147ab383b5f4a02d15de83e69 e7053c1fb2cc3d2b68d455fc41e52e70 308576b933e70a7ffcc713187800a6e4 967654ef9adfe0014173116c0bd4ca48 91bfe27e829568d33f00cc05652dcc68 7095549f227c1aa5bd6bab675fbe3641 e7053c1fb2cc3d2b68d455fc41e52e70 308576b933e70a7ffcc713187800a6e4 967654ef9adfe0014173116c0bd4ca48 91bfe27e829568d33f00cc05652dcc68 7095549f227c1aa5bd6bab675fbe3641 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026261384658944 |
spelling |
Choque Jiménez, Bregy HasslerValdés Uribe, Juan Davidhttps://orcid.org/0000-0003-1779-5148http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00001420352019-08-08T23:22:47Z2019-08-08T23:22:47Z2019-06-19Valdés, J. (2019) Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento (Tesis de pregrado). Universidad Santo Tomás, Villavicenciohttp://hdl.handle.net/11634/18035reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coDebido a las grandes emisiones de dióxido de carbono que genera la industria cementera, se ha investigado el uso de residuos agroindustriales como remplazos parciales del cemento, llamados materiales cementantes suplementarios. El propósito de este estudio es evaluar el desempeño de varios materiales cementantes suplementarios (Cenizas volantes, ceniza de cascarilla de arroz, ceniza de lodos de alcantarilla y relaves de cobre) como remplazo parcial en pastas de cemento en varios niveles de remplazo. Se utilizó polvo de roca químicamente inerte para comparar el efecto físico. Se realizaron ensayos de análisis de distribución de partícula y termo gravimetría para caracterizar los materiales, se realizaron ensayos de resistencia a compresión en pastas de cemento para comparar el desempeño en edades tempranas y tardías, calorimetrías isotérmicas para medir la actividad hidráulica y la interacción de cemento con los materiales cementantes suplementarios, además, se utilizó el método R3 para estimar la actividad puzolánica de los materiales. Los materiales presentaron buenos desempeños en los dos niveles de remplazo, la ceniza de lodos residuales y la ceniza de cascarilla de arroz destacaron por su contribución a la ganancia de resistencia a edades tempranas y tardías. Así mismo, la ceniza volante de clase F presentó muy buen desempeño a la edad de 90 días. Los materiales más con mejores resultados en el ensayo R3 lograron la mayor cantidad de calor añadido en las calorimetrías de interacción de cemento y materiales cementantes suplementarios.Due to the large CO2 emissions generated by the cement industry, the use of agro industrial wastes as partial replacements of cement called supplementary cementing materials has been investigated. The aim of this study is to evaluate the performance of a wide range of supplementary cementing materials (fly ash, rice husk ash, sewage sludge ash and copper tailings) as partial replacement in cement pastes at various replacement levels. Chemically inert rock dust was used to compare the physical effect. Tests of particle zise distribution and thermogravimetry were carried out to characterize the materials, compression tests were performed on cement pastes to compare the performance at early and late ages, isothermal calorimetries were carried out to measure the hydraulic activity and interaction between cement and supplementary cementing materials, the R3 method was used to estimate the pozzolanic activity of the materials. The materials presented good performances at the two replacement levels, sewage sludge ash and rice husk ash showed prominent results for their contribution to the gain of resistance at both early and late ages. Likewise, Class F fly ash presented very good performance at the age of 90 days. The materials with the best results in the R3 procedure achieved the highest amount of added heat in the interaction calorimetries of cement and supplementary cementing materials.Ingeniero Civilhttp://www.ustavillavicencio.edu.co/home/index.php/unidades/extension-y-proyeccion/investigacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería CivilFacultad de Ingeniería CivilAtribución-NoComercial 2.5 Colombiahttp://creativecommons.org/licenses/by-nc/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.Supplementary cementing materialsHydrationHydraulic activityPozzolanic activityFiller effectIngeniería-MaterialesHidráulicaResistencia de materialesCementoIngeniería civilTesis y disertaciones académicasMateriales cementantes suplementariosResistenciaHidrataciónActividad hidráulicaActividad puzolánicaEfecto físicoTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA VillavicencioAstm. (2010). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annual Book of ASTM Standards, (C), 3–6. https://doi.org/10.1520/C0618Avet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M., & Scrivener, K. (2016). Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 85, 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015Baeza-Brotons, F., Garcés, P., Payá, J., & Saval, J. M. (2014). Portland cement systems with addition of sewage sludge ash. application in concretes for the manufacture of blocks. Journal of Cleaner Production, 82, 112–124. https://doi.org/10.1016/j.jclepro.2014.06.072Bouzoubaâ, N, L. . (2001). Self Compacting Concrete Incorporating High-Volumes of Class F Fly Ash : Preliminary Results. Cement and Concrete Research, 31(3), 413–420. https://doi.org/10.1016/S0008-8846(00)00504-4Celik, K., Meral, C., Gursel, P., Mehta, P., Horvath, A., & Monteiro, P. J. M. (2014). Mechanical Properties, Durability, and Life-Cycle Analysis of Self-consolidating Concrete Mixtures Made with Blended Portland Cements Containing Fly Ash and Limestone Powder. Cement and Concrete Composites, 56, 59–72.Chindaprasirt, P., Jaturapitakkul, C., & Rattanasak, U. (2009). Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate. Fuel, 88(1), 158–162. https://doi.org/10.1016/j.fuel.2008.07.024Cyr, M., Lawrence, P., & Ringot, E. (2005). Mineral admixtures in mortars: Quantification of the physical effects of inert materials on short-term hydration. Cement and Concrete Research, 35(4), 719–730. https://doi.org/10.1016/j.cemconres.2004.05.030Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008Fly Ash. (2006). Dictionary of architecture and construction. (McGraw-Hill., Ed.) (4 th Ed). New York, NY: Dictionary of Architecture and Construction. Retrieved from http://ezproxy.puc.cl/login?url=https://search.credoreference.com/content/entry/mhbuilding/fly_ash/0?institutionId=5056Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics--Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559.Jamil, M., Kaish, A. B. M. A., Raman, S. N., & Zain, M. F. M. (2013). Pozzolanic contribution of rice husk ash in cementitious system. Construction and Building Materials, 47, 588–593. https://doi.org/10.1016/j.conbuildmat.2013.05.088Jamshidi, M., Jamshidi, A., Mehrdadi, N., & Pacheco-Torgal, F. (2012). Mechanical performance and capillary water absorption of sewage sludge ash concrete (SSAC). International Journal of Sustainable Engineering, 5(3), 228–234. https://doi.org/10.1080/19397038.2011.642020Javali, S., Chandrashekar, A. R., Naganna, S. R., Manu, D. S., Hiremath, P., Preethi, H. G., & Vinod Kumar, N. (2017). Eco-concrete for sustainability: utilizing aluminium dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 19(9), 2291–2304. https://doi.org/10.1007/s10098-017-1419-9Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012Karim, M. R., Zain, M. F. M., Jamil, M., Lai, F. C., & Islam, M. N. (2011). Use of wastes in construction industries as an energy saving approach. Energy Procedia, 12, 915–919. https://doi.org/10.1016/j.egypro.2011.10.120Kathirvel, P., Saraswathy, V., Karthik, S. P., & Sekar, a. S. S. (2013). Strength and Durability Properties of Quaternary Cement Concrete Made with Fly Ash, Rice Husk Ash and Limestone Powder. Arabian Journal for Science and Engineering, 38(3), 589–598. https://doi.org/10.1007/s13369-012-0331-1Kizhakkumodom Venkatanarayanan, H., & Rangaraju, P. R. (2015). Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cement and Concrete Composites, 55, 348–363. https://doi.org/10.1016/j.cemconcomp.2014.09.021Lawrence, P., Cyr, M., & Ringot, E. (2003). Mineral admixtures in mortars. Cement and Concrete Research, 33(12), 1939–1947. https://doi.org/10.1016/S0008-8846(03)00183-2Li, X., Snellings, R., Antoni, M., Alderete, N. M., Ben Haha, M., Bishnoi, S., … Scrivener, K. L. (2018). Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux et Constructions, 51(6). https://doi.org/10.1617/s11527-018-1269-xLynn, C. J., Dhir, R. K., Ghataora, G. S., & West, R. P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Construction and Building Materials, 98, 767–779. https://doi.org/10.1016/j.conbuildmat.2015.08.122Marie, E., & Berodier, J. (2015). Impact of the Supplementary Cementitious Materials on the kinetics and microstructural development of cement hydration PAR. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. https://doi.org/10.5075/epfl-thesis-6417Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: microstructure, properties, and materials. Concrete. https://doi.org/10.1036/0071462899Oliva, M., Vargas, F., & Lopez, M. (2019). Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. Journal of Cleaner Production, 223, 1029–1041. https://doi.org/10.1016/J.JCLEPRO.2019.03.147Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165–1171. https://doi.org/10.1016/j.cemconres.2004.09.031Onuaguluchi, O., & Eren, Ö. (2012). Cement mixtures containing copper tailings as an additive: durability properties. Materials Research, 15(6), 1029–1036. https://doi.org/10.1590/S1516-14392012005000129Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0Rodríguez de Sensale, G., & Rodríguez Viacava, I. (2018). A study on blended Portland cements containing residual rice husk ash and limestone filler. Construction and Building Materials, 166, 873–888. https://doi.org/10.1016/j.conbuildmat.2018.01.113Salazar-carreño, D., García-cáceres, R. G., & Ortiz-rodríguez, O. O. (2015). Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material, 96, 65–75. https://doi.org/10.1016/j.conbuildmat.2015.07.178Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production-present and future. Cement and Concrete Research, 41(7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019Scrivener, K. L., Lothenbach, B., De Belie, N., Gruyaert, E., Skibsted, J., Snellings, R., & Vollpracht, A. (2015). TC 238-SCM: hydration and microstructure of concrete with SCMs: State of the art on methods to determine degree of reaction of SCMs. Materials and Structures/Materiaux et Constructions, 48(4), 835–862. https://doi.org/10.1617/s11527-015-0527-4Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008Snellings, R., & Scrivener, K. L. (2016). Rapid screening tests for supplementary cementitious materials: past and future. Materials and Structures/Materiaux et Constructions, 49(8), 3265–3279. https://doi.org/10.1617/s11527-015-0718-zThomas, B. S., Damare, A., & Gupta, R. C. (2013). Strength and durability characteristics of copper tailing concrete. Construction and Building Materials, 48, 894–900. https://doi.org/10.1016/j.conbuildmat.2013.07.075Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015). Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites, 56, 106–114. https://doi.org/10.1016/j.cemconcomp.2014.11.005U.S. Geological Survey (USGS). (2015). Mineral Commodity Summaries 2015 Mineral Commodity Summaries 2015, 1–196. https://doi.org/10.3133/70140094Vargas, F., & Lopez, M. (2018). Development of a new supplementary cementitious material from the activation of copper tailings: Mechanical performance and analysis of factors. Journal of Cleaner Production, 182, 427–436. https://doi.org/10.1016/j.jclepro.2018.01.223Wang, A., Zhang, C., & Sun, W. (2003). Fly ash effects: I. The morphological effect of fly ash. Cement and Concrete Research, 33(12), 2023–2029. https://doi.org/10.1016/S0008-8846(03)00217-5Wang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current State of Fine Mineral Tailings Treatment - A Critical Review on Theory and Practice, 58, 113–131. https://doi.org/10.1016/j.mineng.2014.01.018Xu, J. H., Fleiter, T., Eichhammer, W., & Fan, Y. (2012). Energy consumption and CO2emissions in China’s cement industry: A perspective from LMDI decomposition analysis. Energy Policy, 50, 821–832. https://doi.org/10.1016/j.enpol.2012.08.038Yang, K.-H., Jung, Y.-B., Cho, M.-S., & Tae, S.-H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. https://doi.org/10.1016/j.jclepro.2014.03.018Zunino, F., & Lopez, M. (2016). Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multi-level approach. Cement and Concrete Composites, 65, 19–28. https://doi.org/10.1016/j.cemconcomp.2015.10.003Zunino, F., & Lopez, M. (2017). A methodology for assessing the chemical and physical potential of industrially sourced rice husk ash on strength development and early-age hydration of cement paste. Construction and Building Materials, 149, 869–881. https://doi.org/10.1016/j.conbuildmat.2017.05.187CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://repository.usta.edu.co/bitstream/11634/18035/6/license_rdf40513e59b5d1327fcca263d3c2a2e44aMD56open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/18035/8/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD58open accessORIGINAL2019juanvaldes2019juanvaldesTrabajo de gradoapplication/pdf3050475https://repository.usta.edu.co/bitstream/11634/18035/1/2019juanvaldes65aceda42570b2f095a099ab15756348MD51open access2019juanvaldes12019juanvaldes1Anexo Aapplication/pdf266917https://repository.usta.edu.co/bitstream/11634/18035/2/2019juanvaldes10d73f8d0d6a21f4307250f7a3d38b8a7MD52open access2019juanvaldes22019juanvaldes2Anexo Bapplication/pdf448113https://repository.usta.edu.co/bitstream/11634/18035/3/2019juanvaldes2157df9924dfaeba27ef1d9b9a3a5e62aMD53open access2019juanvaldes32019juanvaldes3Autorización Facultadapplication/pdf239208https://repository.usta.edu.co/bitstream/11634/18035/4/2019juanvaldes3b499f4b31fe71cd5517d04ec370dad8aMD54metadata only access2019juanvaldes42019juanvaldes4Derechos de Autorapplication/pdf266915https://repository.usta.edu.co/bitstream/11634/18035/7/2019juanvaldes4961ef04147ab383b5f4a02d15de83e69MD57metadata only accessTHUMBNAIL2019JuanValdés.pdf.jpg2019JuanValdés.pdf.jpgIM Thumbnailimage/jpeg6654https://repository.usta.edu.co/bitstream/11634/18035/9/2019JuanVald%c3%a9s.pdf.jpge7053c1fb2cc3d2b68d455fc41e52e70MD59open access2019JuanValdés1.pdf.jpg2019JuanValdés1.pdf.jpgIM Thumbnailimage/jpeg8296https://repository.usta.edu.co/bitstream/11634/18035/10/2019JuanVald%c3%a9s1.pdf.jpg308576b933e70a7ffcc713187800a6e4MD510open access2019JuanValdés2.pdf.jpg2019JuanValdés2.pdf.jpgIM Thumbnailimage/jpeg8617https://repository.usta.edu.co/bitstream/11634/18035/11/2019JuanVald%c3%a9s2.pdf.jpg967654ef9adfe0014173116c0bd4ca48MD511open accessAutorización Facultad.pdf.jpgAutorización Facultad.pdf.jpgIM Thumbnailimage/jpeg7134https://repository.usta.edu.co/bitstream/11634/18035/12/Autorizaci%c3%b3n%20Facultad.pdf.jpg91bfe27e829568d33f00cc05652dcc68MD512metadata only accessDerechos de Autor.pdf.jpgDerechos de Autor.pdf.jpgIM Thumbnailimage/jpeg8119https://repository.usta.edu.co/bitstream/11634/18035/13/Derechos%20de%20Autor.pdf.jpg7095549f227c1aa5bd6bab675fbe3641MD513metadata only access2019juanvaldes.jpg2019juanvaldes.jpgIM Thumbnailimage/jpeg6654https://repository.usta.edu.co/bitstream/11634/18035/14/2019juanvaldes.jpge7053c1fb2cc3d2b68d455fc41e52e70MD514open access2019juanvaldes1.jpg2019juanvaldes1.jpgIM Thumbnailimage/jpeg8296https://repository.usta.edu.co/bitstream/11634/18035/15/2019juanvaldes1.jpg308576b933e70a7ffcc713187800a6e4MD515open access2019juanvaldes2.jpg2019juanvaldes2.jpgIM Thumbnailimage/jpeg8617https://repository.usta.edu.co/bitstream/11634/18035/16/2019juanvaldes2.jpg967654ef9adfe0014173116c0bd4ca48MD516open access2019juanvaldes3.jpg2019juanvaldes3.jpgIM Thumbnailimage/jpeg7134https://repository.usta.edu.co/bitstream/11634/18035/17/2019juanvaldes3.jpg91bfe27e829568d33f00cc05652dcc68MD517open access2019juanvaldes4.jpg2019juanvaldes4.jpgIM Thumbnailimage/jpeg8119https://repository.usta.edu.co/bitstream/11634/18035/18/2019juanvaldes4.jpg7095549f227c1aa5bd6bab675fbe3641MD518open access11634/18035oai:repository.usta.edu.co:11634/180352022-10-10 16:26:45.583open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |