Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.

Debido a las grandes emisiones de dióxido de carbono que genera la industria cementera, se ha investigado el uso de residuos agroindustriales como remplazos parciales del cemento, llamados materiales cementantes suplementarios. El propósito de este estudio es evaluar el desempeño de varios materiale...

Full description

Autores:
Valdés Uribe, Juan David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/18035
Acceso en línea:
http://hdl.handle.net/11634/18035
Palabra clave:
Supplementary cementing materials
Hydration
Hydraulic activity
Pozzolanic activity
Filler effect
Ingeniería-Materiales
Hidráulica
Resistencia de materiales
Cemento
Ingeniería civil
Tesis y disertaciones académicas
Materiales cementantes suplementarios
Resistencia
Hidratación
Actividad hidráulica
Actividad puzolánica
Efecto físico
Rights
openAccess
License
Atribución-NoComercial 2.5 Colombia
id SANTTOMAS2_df96fee26e10cc5f685573dbf54e30d1
oai_identifier_str oai:repository.usta.edu.co:11634/18035
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
title Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
spellingShingle Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
Supplementary cementing materials
Hydration
Hydraulic activity
Pozzolanic activity
Filler effect
Ingeniería-Materiales
Hidráulica
Resistencia de materiales
Cemento
Ingeniería civil
Tesis y disertaciones académicas
Materiales cementantes suplementarios
Resistencia
Hidratación
Actividad hidráulica
Actividad puzolánica
Efecto físico
title_short Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
title_full Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
title_fullStr Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
title_full_unstemmed Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
title_sort Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.
dc.creator.fl_str_mv Valdés Uribe, Juan David
dc.contributor.advisor.spa.fl_str_mv Choque Jiménez, Bregy Hassler
dc.contributor.author.spa.fl_str_mv Valdés Uribe, Juan David
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0003-1779-5148
dc.contributor.cvlac.spa.fl_str_mv http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142035
dc.subject.keyword.spa.fl_str_mv Supplementary cementing materials
Hydration
Hydraulic activity
Pozzolanic activity
Filler effect
topic Supplementary cementing materials
Hydration
Hydraulic activity
Pozzolanic activity
Filler effect
Ingeniería-Materiales
Hidráulica
Resistencia de materiales
Cemento
Ingeniería civil
Tesis y disertaciones académicas
Materiales cementantes suplementarios
Resistencia
Hidratación
Actividad hidráulica
Actividad puzolánica
Efecto físico
dc.subject.lemb.spa.fl_str_mv Ingeniería-Materiales
Hidráulica
Resistencia de materiales
Cemento
Ingeniería civil
Tesis y disertaciones académicas
dc.subject.proposal.spa.fl_str_mv Materiales cementantes suplementarios
Resistencia
Hidratación
Actividad hidráulica
Actividad puzolánica
Efecto físico
description Debido a las grandes emisiones de dióxido de carbono que genera la industria cementera, se ha investigado el uso de residuos agroindustriales como remplazos parciales del cemento, llamados materiales cementantes suplementarios. El propósito de este estudio es evaluar el desempeño de varios materiales cementantes suplementarios (Cenizas volantes, ceniza de cascarilla de arroz, ceniza de lodos de alcantarilla y relaves de cobre) como remplazo parcial en pastas de cemento en varios niveles de remplazo. Se utilizó polvo de roca químicamente inerte para comparar el efecto físico. Se realizaron ensayos de análisis de distribución de partícula y termo gravimetría para caracterizar los materiales, se realizaron ensayos de resistencia a compresión en pastas de cemento para comparar el desempeño en edades tempranas y tardías, calorimetrías isotérmicas para medir la actividad hidráulica y la interacción de cemento con los materiales cementantes suplementarios, además, se utilizó el método R3 para estimar la actividad puzolánica de los materiales. Los materiales presentaron buenos desempeños en los dos niveles de remplazo, la ceniza de lodos residuales y la ceniza de cascarilla de arroz destacaron por su contribución a la ganancia de resistencia a edades tempranas y tardías. Así mismo, la ceniza volante de clase F presentó muy buen desempeño a la edad de 90 días. Los materiales más con mejores resultados en el ensayo R3 lograron la mayor cantidad de calor añadido en las calorimetrías de interacción de cemento y materiales cementantes suplementarios.
publishDate 2019
dc.date.accessioned.spa.fl_str_mv 2019-08-08T23:22:47Z
dc.date.available.spa.fl_str_mv 2019-08-08T23:22:47Z
dc.date.issued.spa.fl_str_mv 2019-06-19
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Valdés, J. (2019) Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento (Tesis de pregrado). Universidad Santo Tomás, Villavicencio
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/18035
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Valdés, J. (2019) Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento (Tesis de pregrado). Universidad Santo Tomás, Villavicencio
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/18035
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Astm. (2010). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annual Book of ASTM Standards, (C), 3–6. https://doi.org/10.1520/C0618
Avet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M., & Scrivener, K. (2016). Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 85, 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015
Baeza-Brotons, F., Garcés, P., Payá, J., & Saval, J. M. (2014). Portland cement systems with addition of sewage sludge ash. application in concretes for the manufacture of blocks. Journal of Cleaner Production, 82, 112–124. https://doi.org/10.1016/j.jclepro.2014.06.072
Bouzoubaâ, N, L. . (2001). Self Compacting Concrete Incorporating High-Volumes of Class F Fly Ash : Preliminary Results. Cement and Concrete Research, 31(3), 413–420. https://doi.org/10.1016/S0008-8846(00)00504-4
Celik, K., Meral, C., Gursel, P., Mehta, P., Horvath, A., & Monteiro, P. J. M. (2014). Mechanical Properties, Durability, and Life-Cycle Analysis of Self-consolidating Concrete Mixtures Made with Blended Portland Cements Containing Fly Ash and Limestone Powder. Cement and Concrete Composites, 56, 59–72.
Chindaprasirt, P., Jaturapitakkul, C., & Rattanasak, U. (2009). Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate. Fuel, 88(1), 158–162. https://doi.org/10.1016/j.fuel.2008.07.024
Cyr, M., Lawrence, P., & Ringot, E. (2005). Mineral admixtures in mortars: Quantification of the physical effects of inert materials on short-term hydration. Cement and Concrete Research, 35(4), 719–730. https://doi.org/10.1016/j.cemconres.2004.05.030
Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008
Fly Ash. (2006). Dictionary of architecture and construction. (McGraw-Hill., Ed.) (4 th Ed). New York, NY: Dictionary of Architecture and Construction. Retrieved from http://ezproxy.puc.cl/login?url=https://search.credoreference.com/content/entry/mhbuilding/fly_ash/0?institutionId=5056
Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics--Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559.
Jamil, M., Kaish, A. B. M. A., Raman, S. N., & Zain, M. F. M. (2013). Pozzolanic contribution of rice husk ash in cementitious system. Construction and Building Materials, 47, 588–593. https://doi.org/10.1016/j.conbuildmat.2013.05.088
Jamshidi, M., Jamshidi, A., Mehrdadi, N., & Pacheco-Torgal, F. (2012). Mechanical performance and capillary water absorption of sewage sludge ash concrete (SSAC). International Journal of Sustainable Engineering, 5(3), 228–234. https://doi.org/10.1080/19397038.2011.642020
Javali, S., Chandrashekar, A. R., Naganna, S. R., Manu, D. S., Hiremath, P., Preethi, H. G., & Vinod Kumar, N. (2017). Eco-concrete for sustainability: utilizing aluminium dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 19(9), 2291–2304. https://doi.org/10.1007/s10098-017-1419-9
Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012
Karim, M. R., Zain, M. F. M., Jamil, M., Lai, F. C., & Islam, M. N. (2011). Use of wastes in construction industries as an energy saving approach. Energy Procedia, 12, 915–919. https://doi.org/10.1016/j.egypro.2011.10.120
Kathirvel, P., Saraswathy, V., Karthik, S. P., & Sekar, a. S. S. (2013). Strength and Durability Properties of Quaternary Cement Concrete Made with Fly Ash, Rice Husk Ash and Limestone Powder. Arabian Journal for Science and Engineering, 38(3), 589–598. https://doi.org/10.1007/s13369-012-0331-1
Kizhakkumodom Venkatanarayanan, H., & Rangaraju, P. R. (2015). Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cement and Concrete Composites, 55, 348–363. https://doi.org/10.1016/j.cemconcomp.2014.09.021
Lawrence, P., Cyr, M., & Ringot, E. (2003). Mineral admixtures in mortars. Cement and Concrete Research, 33(12), 1939–1947. https://doi.org/10.1016/S0008-8846(03)00183-2
Li, X., Snellings, R., Antoni, M., Alderete, N. M., Ben Haha, M., Bishnoi, S., … Scrivener, K. L. (2018). Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux et Constructions, 51(6). https://doi.org/10.1617/s11527-018-1269-x
Lynn, C. J., Dhir, R. K., Ghataora, G. S., & West, R. P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Construction and Building Materials, 98, 767–779. https://doi.org/10.1016/j.conbuildmat.2015.08.122
Marie, E., & Berodier, J. (2015). Impact of the Supplementary Cementitious Materials on the kinetics and microstructural development of cement hydration PAR. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. https://doi.org/10.5075/epfl-thesis-6417
Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: microstructure, properties, and materials. Concrete. https://doi.org/10.1036/0071462899
Oliva, M., Vargas, F., & Lopez, M. (2019). Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. Journal of Cleaner Production, 223, 1029–1041. https://doi.org/10.1016/J.JCLEPRO.2019.03.147
Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165–1171. https://doi.org/10.1016/j.cemconres.2004.09.031
Onuaguluchi, O., & Eren, Ö. (2012). Cement mixtures containing copper tailings as an additive: durability properties. Materials Research, 15(6), 1029–1036. https://doi.org/10.1590/S1516-14392012005000129
Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0
Rodríguez de Sensale, G., & Rodríguez Viacava, I. (2018). A study on blended Portland cements containing residual rice husk ash and limestone filler. Construction and Building Materials, 166, 873–888. https://doi.org/10.1016/j.conbuildmat.2018.01.113
Salazar-carreño, D., García-cáceres, R. G., & Ortiz-rodríguez, O. O. (2015). Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material, 96, 65–75. https://doi.org/10.1016/j.conbuildmat.2015.07.178
Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production-present and future. Cement and Concrete Research, 41(7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019
Scrivener, K. L., Lothenbach, B., De Belie, N., Gruyaert, E., Skibsted, J., Snellings, R., & Vollpracht, A. (2015). TC 238-SCM: hydration and microstructure of concrete with SCMs: State of the art on methods to determine degree of reaction of SCMs. Materials and Structures/Materiaux et Constructions, 48(4), 835–862. https://doi.org/10.1617/s11527-015-0527-4
Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008
Snellings, R., & Scrivener, K. L. (2016). Rapid screening tests for supplementary cementitious materials: past and future. Materials and Structures/Materiaux et Constructions, 49(8), 3265–3279. https://doi.org/10.1617/s11527-015-0718-z
Thomas, B. S., Damare, A., & Gupta, R. C. (2013). Strength and durability characteristics of copper tailing concrete. Construction and Building Materials, 48, 894–900. https://doi.org/10.1016/j.conbuildmat.2013.07.075
Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015). Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites, 56, 106–114. https://doi.org/10.1016/j.cemconcomp.2014.11.005
U.S. Geological Survey (USGS). (2015). Mineral Commodity Summaries 2015 Mineral Commodity Summaries 2015, 1–196. https://doi.org/10.3133/70140094
Vargas, F., & Lopez, M. (2018). Development of a new supplementary cementitious material from the activation of copper tailings: Mechanical performance and analysis of factors. Journal of Cleaner Production, 182, 427–436. https://doi.org/10.1016/j.jclepro.2018.01.223
Wang, A., Zhang, C., & Sun, W. (2003). Fly ash effects: I. The morphological effect of fly ash. Cement and Concrete Research, 33(12), 2023–2029. https://doi.org/10.1016/S0008-8846(03)00217-5
Wang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current State of Fine Mineral Tailings Treatment - A Critical Review on Theory and Practice, 58, 113–131. https://doi.org/10.1016/j.mineng.2014.01.018
Xu, J. H., Fleiter, T., Eichhammer, W., & Fan, Y. (2012). Energy consumption and CO2emissions in China’s cement industry: A perspective from LMDI decomposition analysis. Energy Policy, 50, 821–832. https://doi.org/10.1016/j.enpol.2012.08.038
Yang, K.-H., Jung, Y.-B., Cho, M.-S., & Tae, S.-H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. https://doi.org/10.1016/j.jclepro.2014.03.018
Zunino, F., & Lopez, M. (2016). Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multi-level approach. Cement and Concrete Composites, 65, 19–28. https://doi.org/10.1016/j.cemconcomp.2015.10.003
Zunino, F., & Lopez, M. (2017). A methodology for assessing the chemical and physical potential of industrially sourced rice husk ash on strength development and early-age hydration of cement paste. Construction and Building Materials, 149, 869–881. https://doi.org/10.1016/j.conbuildmat.2017.05.187
dc.rights.*.fl_str_mv Atribución-NoComercial 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial 2.5 Colombia
http://creativecommons.org/licenses/by-nc/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Villavicencio
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Civil
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/18035/6/license_rdf
https://repository.usta.edu.co/bitstream/11634/18035/8/license.txt
https://repository.usta.edu.co/bitstream/11634/18035/1/2019juanvaldes
https://repository.usta.edu.co/bitstream/11634/18035/2/2019juanvaldes1
https://repository.usta.edu.co/bitstream/11634/18035/3/2019juanvaldes2
https://repository.usta.edu.co/bitstream/11634/18035/4/2019juanvaldes3
https://repository.usta.edu.co/bitstream/11634/18035/7/2019juanvaldes4
https://repository.usta.edu.co/bitstream/11634/18035/9/2019JuanVald%c3%a9s.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/18035/10/2019JuanVald%c3%a9s1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/18035/11/2019JuanVald%c3%a9s2.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/18035/12/Autorizaci%c3%b3n%20Facultad.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/18035/13/Derechos%20de%20Autor.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/18035/14/2019juanvaldes.jpg
https://repository.usta.edu.co/bitstream/11634/18035/15/2019juanvaldes1.jpg
https://repository.usta.edu.co/bitstream/11634/18035/16/2019juanvaldes2.jpg
https://repository.usta.edu.co/bitstream/11634/18035/17/2019juanvaldes3.jpg
https://repository.usta.edu.co/bitstream/11634/18035/18/2019juanvaldes4.jpg
bitstream.checksum.fl_str_mv 40513e59b5d1327fcca263d3c2a2e44a
f6b8c5608fa6b2f649b2d63e10c5fa73
65aceda42570b2f095a099ab15756348
0d73f8d0d6a21f4307250f7a3d38b8a7
157df9924dfaeba27ef1d9b9a3a5e62a
b499f4b31fe71cd5517d04ec370dad8a
961ef04147ab383b5f4a02d15de83e69
e7053c1fb2cc3d2b68d455fc41e52e70
308576b933e70a7ffcc713187800a6e4
967654ef9adfe0014173116c0bd4ca48
91bfe27e829568d33f00cc05652dcc68
7095549f227c1aa5bd6bab675fbe3641
e7053c1fb2cc3d2b68d455fc41e52e70
308576b933e70a7ffcc713187800a6e4
967654ef9adfe0014173116c0bd4ca48
91bfe27e829568d33f00cc05652dcc68
7095549f227c1aa5bd6bab675fbe3641
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026261384658944
spelling Choque Jiménez, Bregy HasslerValdés Uribe, Juan Davidhttps://orcid.org/0000-0003-1779-5148http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00001420352019-08-08T23:22:47Z2019-08-08T23:22:47Z2019-06-19Valdés, J. (2019) Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento (Tesis de pregrado). Universidad Santo Tomás, Villavicenciohttp://hdl.handle.net/11634/18035reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coDebido a las grandes emisiones de dióxido de carbono que genera la industria cementera, se ha investigado el uso de residuos agroindustriales como remplazos parciales del cemento, llamados materiales cementantes suplementarios. El propósito de este estudio es evaluar el desempeño de varios materiales cementantes suplementarios (Cenizas volantes, ceniza de cascarilla de arroz, ceniza de lodos de alcantarilla y relaves de cobre) como remplazo parcial en pastas de cemento en varios niveles de remplazo. Se utilizó polvo de roca químicamente inerte para comparar el efecto físico. Se realizaron ensayos de análisis de distribución de partícula y termo gravimetría para caracterizar los materiales, se realizaron ensayos de resistencia a compresión en pastas de cemento para comparar el desempeño en edades tempranas y tardías, calorimetrías isotérmicas para medir la actividad hidráulica y la interacción de cemento con los materiales cementantes suplementarios, además, se utilizó el método R3 para estimar la actividad puzolánica de los materiales. Los materiales presentaron buenos desempeños en los dos niveles de remplazo, la ceniza de lodos residuales y la ceniza de cascarilla de arroz destacaron por su contribución a la ganancia de resistencia a edades tempranas y tardías. Así mismo, la ceniza volante de clase F presentó muy buen desempeño a la edad de 90 días. Los materiales más con mejores resultados en el ensayo R3 lograron la mayor cantidad de calor añadido en las calorimetrías de interacción de cemento y materiales cementantes suplementarios.Due to the large CO2 emissions generated by the cement industry, the use of agro industrial wastes as partial replacements of cement called supplementary cementing materials has been investigated. The aim of this study is to evaluate the performance of a wide range of supplementary cementing materials (fly ash, rice husk ash, sewage sludge ash and copper tailings) as partial replacement in cement pastes at various replacement levels. Chemically inert rock dust was used to compare the physical effect. Tests of particle zise distribution and thermogravimetry were carried out to characterize the materials, compression tests were performed on cement pastes to compare the performance at early and late ages, isothermal calorimetries were carried out to measure the hydraulic activity and interaction between cement and supplementary cementing materials, the R3 method was used to estimate the pozzolanic activity of the materials. The materials presented good performances at the two replacement levels, sewage sludge ash and rice husk ash showed prominent results for their contribution to the gain of resistance at both early and late ages. Likewise, Class F fly ash presented very good performance at the age of 90 days. The materials with the best results in the R3 procedure achieved the highest amount of added heat in the interaction calorimetries of cement and supplementary cementing materials.Ingeniero Civilhttp://www.ustavillavicencio.edu.co/home/index.php/unidades/extension-y-proyeccion/investigacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería CivilFacultad de Ingeniería CivilAtribución-NoComercial 2.5 Colombiahttp://creativecommons.org/licenses/by-nc/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Desempeño de materiales cementantes suplementarios en resistencia a compresión e hidratación en pastas de cemento.Supplementary cementing materialsHydrationHydraulic activityPozzolanic activityFiller effectIngeniería-MaterialesHidráulicaResistencia de materialesCementoIngeniería civilTesis y disertaciones académicasMateriales cementantes suplementariosResistenciaHidrataciónActividad hidráulicaActividad puzolánicaEfecto físicoTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA VillavicencioAstm. (2010). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. Annual Book of ASTM Standards, (C), 3–6. https://doi.org/10.1520/C0618Avet, F., Snellings, R., Alujas Diaz, A., Ben Haha, M., & Scrivener, K. (2016). Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cement and Concrete Research, 85, 1–11. https://doi.org/10.1016/j.cemconres.2016.02.015Baeza-Brotons, F., Garcés, P., Payá, J., & Saval, J. M. (2014). Portland cement systems with addition of sewage sludge ash. application in concretes for the manufacture of blocks. Journal of Cleaner Production, 82, 112–124. https://doi.org/10.1016/j.jclepro.2014.06.072Bouzoubaâ, N, L. . (2001). Self Compacting Concrete Incorporating High-Volumes of Class F Fly Ash : Preliminary Results. Cement and Concrete Research, 31(3), 413–420. https://doi.org/10.1016/S0008-8846(00)00504-4Celik, K., Meral, C., Gursel, P., Mehta, P., Horvath, A., & Monteiro, P. J. M. (2014). Mechanical Properties, Durability, and Life-Cycle Analysis of Self-consolidating Concrete Mixtures Made with Blended Portland Cements Containing Fly Ash and Limestone Powder. Cement and Concrete Composites, 56, 59–72.Chindaprasirt, P., Jaturapitakkul, C., & Rattanasak, U. (2009). Influence of fineness of rice husk ash and additives on the properties of lightweight aggregate. Fuel, 88(1), 158–162. https://doi.org/10.1016/j.fuel.2008.07.024Cyr, M., Lawrence, P., & Ringot, E. (2005). Mineral admixtures in mortars: Quantification of the physical effects of inert materials on short-term hydration. Cement and Concrete Research, 35(4), 719–730. https://doi.org/10.1016/j.cemconres.2004.05.030Damtoft, J. S., Lukasik, J., Herfort, D., Sorrentino, D., & Gartner, E. M. (2008). Sustainable development and climate change initiatives. Cement and Concrete Research, 38(2), 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008Fly Ash. (2006). Dictionary of architecture and construction. (McGraw-Hill., Ed.) (4 th Ed). New York, NY: Dictionary of Architecture and Construction. Retrieved from http://ezproxy.puc.cl/login?url=https://search.credoreference.com/content/entry/mhbuilding/fly_ash/0?institutionId=5056Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics--Towards promoting high volume utilization in developing sustainable concrete. Journal of Cleaner Production, 147, 546–559.Jamil, M., Kaish, A. B. M. A., Raman, S. N., & Zain, M. F. M. (2013). Pozzolanic contribution of rice husk ash in cementitious system. Construction and Building Materials, 47, 588–593. https://doi.org/10.1016/j.conbuildmat.2013.05.088Jamshidi, M., Jamshidi, A., Mehrdadi, N., & Pacheco-Torgal, F. (2012). Mechanical performance and capillary water absorption of sewage sludge ash concrete (SSAC). International Journal of Sustainable Engineering, 5(3), 228–234. https://doi.org/10.1080/19397038.2011.642020Javali, S., Chandrashekar, A. R., Naganna, S. R., Manu, D. S., Hiremath, P., Preethi, H. G., & Vinod Kumar, N. (2017). Eco-concrete for sustainability: utilizing aluminium dross and iron slag as partial replacement materials. Clean Technologies and Environmental Policy, 19(9), 2291–2304. https://doi.org/10.1007/s10098-017-1419-9Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41(12), 1232–1243. https://doi.org/10.1016/j.cemconres.2010.11.012Karim, M. R., Zain, M. F. M., Jamil, M., Lai, F. C., & Islam, M. N. (2011). Use of wastes in construction industries as an energy saving approach. Energy Procedia, 12, 915–919. https://doi.org/10.1016/j.egypro.2011.10.120Kathirvel, P., Saraswathy, V., Karthik, S. P., & Sekar, a. S. S. (2013). Strength and Durability Properties of Quaternary Cement Concrete Made with Fly Ash, Rice Husk Ash and Limestone Powder. Arabian Journal for Science and Engineering, 38(3), 589–598. https://doi.org/10.1007/s13369-012-0331-1Kizhakkumodom Venkatanarayanan, H., & Rangaraju, P. R. (2015). Effect of grinding of low-carbon rice husk ash on the microstructure and performance properties of blended cement concrete. Cement and Concrete Composites, 55, 348–363. https://doi.org/10.1016/j.cemconcomp.2014.09.021Lawrence, P., Cyr, M., & Ringot, E. (2003). Mineral admixtures in mortars. Cement and Concrete Research, 33(12), 1939–1947. https://doi.org/10.1016/S0008-8846(03)00183-2Li, X., Snellings, R., Antoni, M., Alderete, N. M., Ben Haha, M., Bishnoi, S., … Scrivener, K. L. (2018). Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Materials and Structures/Materiaux et Constructions, 51(6). https://doi.org/10.1617/s11527-018-1269-xLynn, C. J., Dhir, R. K., Ghataora, G. S., & West, R. P. (2015). Sewage sludge ash characteristics and potential for use in concrete. Construction and Building Materials, 98, 767–779. https://doi.org/10.1016/j.conbuildmat.2015.08.122Marie, E., & Berodier, J. (2015). Impact of the Supplementary Cementitious Materials on the kinetics and microstructural development of cement hydration PAR. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE. https://doi.org/10.5075/epfl-thesis-6417Mehta, P. K., & Monteiro, P. J. M. (2006). Concrete: microstructure, properties, and materials. Concrete. https://doi.org/10.1036/0071462899Oliva, M., Vargas, F., & Lopez, M. (2019). Designing the incineration process for improving the cementitious performance of sewage sludge ash in Portland and blended cement systems. Journal of Cleaner Production, 223, 1029–1041. https://doi.org/10.1016/J.JCLEPRO.2019.03.147Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165–1171. https://doi.org/10.1016/j.cemconres.2004.09.031Onuaguluchi, O., & Eren, Ö. (2012). Cement mixtures containing copper tailings as an additive: durability properties. Materials Research, 15(6), 1029–1036. https://doi.org/10.1590/S1516-14392012005000129Pal, S. C., Mukherjee, A., & Pathak, S. R. (2003). Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research, 33(9), 1481–1486. https://doi.org/10.1016/S0008-8846(03)00062-0Rodríguez de Sensale, G., & Rodríguez Viacava, I. (2018). A study on blended Portland cements containing residual rice husk ash and limestone filler. Construction and Building Materials, 166, 873–888. https://doi.org/10.1016/j.conbuildmat.2018.01.113Salazar-carreño, D., García-cáceres, R. G., & Ortiz-rodríguez, O. O. (2015). Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material, 96, 65–75. https://doi.org/10.1016/j.conbuildmat.2015.07.178Schneider, M., Romer, M., Tschudin, M., & Bolio, H. (2011). Sustainable cement production-present and future. Cement and Concrete Research, 41(7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019Scrivener, K. L., Lothenbach, B., De Belie, N., Gruyaert, E., Skibsted, J., Snellings, R., & Vollpracht, A. (2015). TC 238-SCM: hydration and microstructure of concrete with SCMs: State of the art on methods to determine degree of reaction of SCMs. Materials and Structures/Materiaux et Constructions, 48(4), 835–862. https://doi.org/10.1617/s11527-015-0527-4Shi, C., Meyer, C., & Behnood, A. (2008). Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 52(10), 1115–1120. https://doi.org/10.1016/j.resconrec.2008.06.008Snellings, R., & Scrivener, K. L. (2016). Rapid screening tests for supplementary cementitious materials: past and future. Materials and Structures/Materiaux et Constructions, 49(8), 3265–3279. https://doi.org/10.1617/s11527-015-0718-zThomas, B. S., Damare, A., & Gupta, R. C. (2013). Strength and durability characteristics of copper tailing concrete. Construction and Building Materials, 48, 894–900. https://doi.org/10.1016/j.conbuildmat.2013.07.075Trauchessec, R., Mechling, J. M., Lecomte, A., Roux, A., & Le Rolland, B. (2015). Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cement and Concrete Composites, 56, 106–114. https://doi.org/10.1016/j.cemconcomp.2014.11.005U.S. Geological Survey (USGS). (2015). Mineral Commodity Summaries 2015 Mineral Commodity Summaries 2015, 1–196. https://doi.org/10.3133/70140094Vargas, F., & Lopez, M. (2018). Development of a new supplementary cementitious material from the activation of copper tailings: Mechanical performance and analysis of factors. Journal of Cleaner Production, 182, 427–436. https://doi.org/10.1016/j.jclepro.2018.01.223Wang, A., Zhang, C., & Sun, W. (2003). Fly ash effects: I. The morphological effect of fly ash. Cement and Concrete Research, 33(12), 2023–2029. https://doi.org/10.1016/S0008-8846(03)00217-5Wang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current State of Fine Mineral Tailings Treatment - A Critical Review on Theory and Practice, 58, 113–131. https://doi.org/10.1016/j.mineng.2014.01.018Xu, J. H., Fleiter, T., Eichhammer, W., & Fan, Y. (2012). Energy consumption and CO2emissions in China’s cement industry: A perspective from LMDI decomposition analysis. Energy Policy, 50, 821–832. https://doi.org/10.1016/j.enpol.2012.08.038Yang, K.-H., Jung, Y.-B., Cho, M.-S., & Tae, S.-H. (2015). Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. Journal of Cleaner Production, 103, 774–783. https://doi.org/10.1016/j.jclepro.2014.03.018Zunino, F., & Lopez, M. (2016). Decoupling the physical and chemical effects of supplementary cementitious materials on strength and permeability: A multi-level approach. Cement and Concrete Composites, 65, 19–28. https://doi.org/10.1016/j.cemconcomp.2015.10.003Zunino, F., & Lopez, M. (2017). A methodology for assessing the chemical and physical potential of industrially sourced rice husk ash on strength development and early-age hydration of cement paste. Construction and Building Materials, 149, 869–881. https://doi.org/10.1016/j.conbuildmat.2017.05.187CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://repository.usta.edu.co/bitstream/11634/18035/6/license_rdf40513e59b5d1327fcca263d3c2a2e44aMD56open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/18035/8/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD58open accessORIGINAL2019juanvaldes2019juanvaldesTrabajo de gradoapplication/pdf3050475https://repository.usta.edu.co/bitstream/11634/18035/1/2019juanvaldes65aceda42570b2f095a099ab15756348MD51open access2019juanvaldes12019juanvaldes1Anexo Aapplication/pdf266917https://repository.usta.edu.co/bitstream/11634/18035/2/2019juanvaldes10d73f8d0d6a21f4307250f7a3d38b8a7MD52open access2019juanvaldes22019juanvaldes2Anexo Bapplication/pdf448113https://repository.usta.edu.co/bitstream/11634/18035/3/2019juanvaldes2157df9924dfaeba27ef1d9b9a3a5e62aMD53open access2019juanvaldes32019juanvaldes3Autorización Facultadapplication/pdf239208https://repository.usta.edu.co/bitstream/11634/18035/4/2019juanvaldes3b499f4b31fe71cd5517d04ec370dad8aMD54metadata only access2019juanvaldes42019juanvaldes4Derechos de Autorapplication/pdf266915https://repository.usta.edu.co/bitstream/11634/18035/7/2019juanvaldes4961ef04147ab383b5f4a02d15de83e69MD57metadata only accessTHUMBNAIL2019JuanValdés.pdf.jpg2019JuanValdés.pdf.jpgIM Thumbnailimage/jpeg6654https://repository.usta.edu.co/bitstream/11634/18035/9/2019JuanVald%c3%a9s.pdf.jpge7053c1fb2cc3d2b68d455fc41e52e70MD59open access2019JuanValdés1.pdf.jpg2019JuanValdés1.pdf.jpgIM Thumbnailimage/jpeg8296https://repository.usta.edu.co/bitstream/11634/18035/10/2019JuanVald%c3%a9s1.pdf.jpg308576b933e70a7ffcc713187800a6e4MD510open access2019JuanValdés2.pdf.jpg2019JuanValdés2.pdf.jpgIM Thumbnailimage/jpeg8617https://repository.usta.edu.co/bitstream/11634/18035/11/2019JuanVald%c3%a9s2.pdf.jpg967654ef9adfe0014173116c0bd4ca48MD511open accessAutorización Facultad.pdf.jpgAutorización Facultad.pdf.jpgIM Thumbnailimage/jpeg7134https://repository.usta.edu.co/bitstream/11634/18035/12/Autorizaci%c3%b3n%20Facultad.pdf.jpg91bfe27e829568d33f00cc05652dcc68MD512metadata only accessDerechos de Autor.pdf.jpgDerechos de Autor.pdf.jpgIM Thumbnailimage/jpeg8119https://repository.usta.edu.co/bitstream/11634/18035/13/Derechos%20de%20Autor.pdf.jpg7095549f227c1aa5bd6bab675fbe3641MD513metadata only access2019juanvaldes.jpg2019juanvaldes.jpgIM Thumbnailimage/jpeg6654https://repository.usta.edu.co/bitstream/11634/18035/14/2019juanvaldes.jpge7053c1fb2cc3d2b68d455fc41e52e70MD514open access2019juanvaldes1.jpg2019juanvaldes1.jpgIM Thumbnailimage/jpeg8296https://repository.usta.edu.co/bitstream/11634/18035/15/2019juanvaldes1.jpg308576b933e70a7ffcc713187800a6e4MD515open access2019juanvaldes2.jpg2019juanvaldes2.jpgIM Thumbnailimage/jpeg8617https://repository.usta.edu.co/bitstream/11634/18035/16/2019juanvaldes2.jpg967654ef9adfe0014173116c0bd4ca48MD516open access2019juanvaldes3.jpg2019juanvaldes3.jpgIM Thumbnailimage/jpeg7134https://repository.usta.edu.co/bitstream/11634/18035/17/2019juanvaldes3.jpg91bfe27e829568d33f00cc05652dcc68MD517open access2019juanvaldes4.jpg2019juanvaldes4.jpgIM Thumbnailimage/jpeg8119https://repository.usta.edu.co/bitstream/11634/18035/18/2019juanvaldes4.jpg7095549f227c1aa5bd6bab675fbe3641MD518open access11634/18035oai:repository.usta.edu.co:11634/180352022-10-10 16:26:45.583open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K