Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
Desarrollo una plataforma que capture y analice información según algoritmos de Aprendizaje automático, proveniente de parámetros operacionales y rutinas de mantenimiento de sistemas industriales de aire acondicionado. Prediciendo la aparición de fugas de gas refrigerante, mediante el análisis de de...
- Autores:
-
Quiroga Niño, Jose Andres
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/51260
- Acceso en línea:
- http://hdl.handle.net/11634/51260
- Palabra clave:
- Predictive maintenance
Industrial refrigeration
Scrum methodology
User stories
Machine learning
Desktop application
Mantenimiento predictivo
Refrigeracion industrial
Metodología scrum
Historias de usuario
Aprendizaje automatico
Aplicación de escritorio
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_db509260060ed021dbf37e19b6f29804 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/51260 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. |
title |
Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. |
spellingShingle |
Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. Predictive maintenance Industrial refrigeration Scrum methodology User stories Machine learning Desktop application Mantenimiento predictivo Refrigeracion industrial Metodología scrum Historias de usuario Aprendizaje automatico Aplicación de escritorio |
title_short |
Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. |
title_full |
Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. |
title_fullStr |
Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. |
title_full_unstemmed |
Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. |
title_sort |
Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. |
dc.creator.fl_str_mv |
Quiroga Niño, Jose Andres |
dc.contributor.advisor.none.fl_str_mv |
Barrera Gomez, Marien Rocio Alfonso Diaz, Andres Leonardo |
dc.contributor.author.none.fl_str_mv |
Quiroga Niño, Jose Andres |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomas |
dc.subject.keyword.spa.fl_str_mv |
Predictive maintenance Industrial refrigeration Scrum methodology User stories Machine learning Desktop application |
topic |
Predictive maintenance Industrial refrigeration Scrum methodology User stories Machine learning Desktop application Mantenimiento predictivo Refrigeracion industrial Metodología scrum Historias de usuario Aprendizaje automatico Aplicación de escritorio |
dc.subject.proposal.spa.fl_str_mv |
Mantenimiento predictivo Refrigeracion industrial Metodología scrum Historias de usuario Aprendizaje automatico Aplicación de escritorio |
description |
Desarrollo una plataforma que capture y analice información según algoritmos de Aprendizaje automático, proveniente de parámetros operacionales y rutinas de mantenimiento de sistemas industriales de aire acondicionado. Prediciendo la aparición de fugas de gas refrigerante, mediante el análisis de desviaciones operacionales. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-13T14:53:40Z |
dc.date.available.none.fl_str_mv |
2023-07-13T14:53:40Z |
dc.date.issued.none.fl_str_mv |
2023-06-27 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.local.spa.fl_str_mv |
Tesis de maestría |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2023). Aplicacion de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. Universidad Santo Tomas. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/51260 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2023). Aplicacion de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. Universidad Santo Tomas. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/51260 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aamir, M., & Khan, M. N. A. (2017). Incorporating quality control activities in scrum in relation to the concept of test backlog. Sadhana - Academy Proceedings in Engineering Sciences, 42(7), 1051–1061. https://doi.org/10.1007/s12046-017-0688-7 Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2022). PREDICONFORT 1.0 (No. 1). Universidad Santo Tomas. Allison, P. (2013). What’s the best R-squared for logistic regression. Statistical Horizons, 13. https://statisticalhorizons.com/r2logistic/ Al-Tal, M., Al-Aomar, R., & Abel, J. (2021). A predictive model for an effective maintenance of hospital critical systems. Proceedings of the 33rd European Modeling & Simulation Symposium, 1–8. https://doi.org/10.46354/i3m.2021.emss.001 American Society of Heating, R. and A.-C. E. (2021). ASHRAE Handbook: Vol. Fundamentals. ANSI/ASHRAE 55 - 2020. Thermal Environmental Conditions for Human Occupancy, ASHRAE (2020). Bartodziej, C. J. (2017). The Concept Industry 4.0. An Empirical Analysis of Technologies and Applications in Production Logistics. Springer Gabler. Boero, C. (2020). Mantenimiento industrial. Jorge Sarmiento Editor - Universitas. https://elibro.net/es/lc/usta/titulos/172523 Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors, 21(4), 1044. https://doi.org/10.3390/s21041044 Braun, J., Claridge, D. E., Katipaluma, S., Liu, M., & Pratt, R. G. (2001). Operation and Maintenance. In J. F. Kreider (Ed.), Handbook of heating, Ventilation, and Air Conditioning. CRC Press LLC. Candanedo, I. S., Nieves, E. H., González, S. R., Martín, M. T. S., & Briones, A. G. (2018). Machine Learning Predictive Model for Industry 4.0. In L. Uden, B. Hadzima, & I.-H. Ting (Eds.), Knowledge Management in Organizations (pp. 501–510). Springer International Publishing. Cerquitelli, T., Nikolakis, N., O’Mahony, N., Macii, E., Ippolito, M., & Makris, S. (Eds.). (2021). Predictive Maintenance in Smart Factories. Springer Singapore. https://doi.org/10.1007/978-981-16-2940-2 Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525–1534. Danfoss A/S. (2017). Datasheet. Pressure Switch and Thermostat. In AI000086439001en-001001 (pp. 1–20). Das, K., Jiang, J., & Rao, J. N. K. (2004). Mean squared error of empirical predictor. The Annals of Statistics, 32(2), 818–840. del Val Román, J. L. (2016). Industria 4.0: la transformación digital de la industria. Valencia: Conferencia de Directores y Decanos de Ingeniería Informática, Informes CODDII. Diercks, P., Gläser, D., Lünsdorf, O., Selzer, M., Flemisch, B., & Unger, J. F. (2022). Evaluation of tools for describing, reproducing and reusing scientific workflows. Ebert, C., Abrahamsson, P., & Oza, N. (2012). Lean software development. IEEE Software, 29(05), 22–25. Echavarria Ortiz, H. N. (2022). Aplicación de machine learning para la enseñanza – aprendizaje de competencias ciudadanas en educación media del Colegio de Boyacá. https://repository.usta.edu.co/handle/11634/47603#.Y4pGaRabz-o.mendeley ECOPETROL S.A. (2018). Especificaciones tecnicas para el servicio de mantenimiento de sistemas de aire acondicionado de la Gerencia Refineria de Barrancabermeja de ECOPETROL S.A. Elallaoui, M., Nafil, K., & Touahni, R. (2018). Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Techniques. Procedia Computer Science, 130, 42–49. https://doi.org/10.1016/j.procs.2018.04.010 Es-sakali, N., Cherkaoui, M., Mghazli, M. O., & Naimi, Z. (2022). Review of predictive maintenance algorithms applied to HVAC systems. Energy Reports, 8, 1003–1012. https://doi.org/10.1016/j.egyr.2022.07.130 Esteki, M., Javdani Gandomani, T., & Khosravi Farsani, H. (2020). A risk management framework for distributed scrum using PRINCE2 methodology. Bulletin of Electrical Engineering and Informatics, 9(3), 1299–1310. https://doi.org/10.11591/eei.v9i3.1905 Fernando, J. (2021, September 12). R-Squared Formula, Regression, and Interpretations. Investopedia.Com/ Corporate Finance / Financial Analysis. https://www.investopedia.com/terms/r/r-squared.asp#:~:text=R%2Dsquared%20values%20range%20from,)%20you%20are%20interested%20in). Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression Models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100 Gonzalez Ajuech, V. L. (2017). Mantenimiento: tecnicas y aplicaciones industriales. Grupo Editorial Patria. https://elibro.net/es/lc/usta/titulos/40508 Heras del Dedo, R. de las, & Alvarez Garcia, A. (2017). Metodos agiles: Scrum, Kanban, Lean. Difusora Larousse - Anaya Multimedia. https://elibro.net/es/lc/usta/titulos/122933 Hosamo, H. H., Svennevig, P. R., Svidt, K., Han, D., & Nielsen, H. K. (2022). A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy and Buildings, 261, 111988. https://doi.org/10.1016/j.enbuild.2022.111988 Instituto de Hidrología, M. y E. A.-I. (2023). Altas Climatologico. Http://Atlas.Ideam.Gov.Co/VisorAtlasClimatologico.Html. Jimenez Raya, F. (2015). Mantenimiento preventivo de sistemas de automatizacion industrial. ELEM0311. IC Editorial. https://elibro.net/es/lc/usta/titulos/59239 Joshi, A. V. (2020). Machine Learning and Artificial Intelligence. Springer International Publishing. https://doi.org/10.1007/978-3-030-26622-6 Ke, Y., Mulumba, T., Shen, W., & Afshari, A. (2014, May 18). Model-based predictive maintenance of chillers. ACRA 2014 - Proceedings of the 7th Asian Conference on Refrigeration and Air Conditioning. Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0 L’Esteve, R. C. (2021). The Definitive Guide to Azure Data Engineering. Apress. https://doi.org/10.1007/978-1-4842-7182-7 Martínez, R., Parkinson, C., Caruso, M., López, D., Vargas, R., & Rojas, N. (2022). Propuesta de técnicas de validación para la calidad de datos abiertos e identificación de patrones para predicciones con Machine Learning. XXIV Workshop de Investigadores En Ciencias de La Computación (WICC 2022, Mendoza). Microsoft. (2022). Documentación de ML.NET. https://learn.microsoft.com/es-es/dotnet/machine-learning/ Microsoft. (2022). Documentación de Visual Studio. https://learn.microsoft.com/es-es/visualstudio/ Microsoft. (2022). Documentacion SQL Server Management Studio (SSMS). https://learn.microsoft.com/es-es/sql/ssms/sql-server-management-studio-ssms Monroy Mejia, M. de los A., & Nava Sanchezllanes, N. (2018). Metodologia de la investigacion. Grupo Editorial Exodo. https://elibro.net/es/lc/usta/titulos/172512 Oficina Asesora de Planeacion y Estudios Sectoriales. (2019). Aspectos Basicos de la Industria 4.0. Ministerio de Tecnologias de la Informacion y las Comunicaciones. Republica de Colombia. O’hEocha, C., & Conboy, K. (2010). The Role of the User Story Agile Practice in Innovation (pp. 20–30). https://doi.org/10.1007/978-3-642-16416-3_3 Ohta, R. (2018). SELECTION OF INDUSTRIAL MAINTENANCE STRATEGY: CLASSICAL AHP AND FUZZY AHP APPLICATIONS. International Journal of the Analytic Hierarchy Process, 10(2). https://doi.org/10.13033/ijahp.v10i2.551 Panesar, A. (2021). Evaluating Machine Learning Models. In Machine Learning and AI for Healthcare (pp. 189–205). Apress. https://doi.org/10.1007/978-1-4842-6537-6_7 Panfilov, P., & Katona, A. (2018). Building Predictive Maintenance Framework for Smart Environment Application Systems (pp. 0460–0470). https://doi.org/10.2507/29th.daaam.proceedings.068 Periyasamy, K., & Chianelli, J. (2021). A project tracking tool for scrum projects with machine learning support for cost estimation. EPiC Series in Computing, 76, 86–94. https://doi.org/10.29007/6vwh Rodal Montero, E. (2020). Industria 4.0: conceptos, tecnologias habilitadoras y retos. Difusora Larousse - Ediciones Piramide. https://elibro.net/es/lc/usta/titulos/216140 Salvaris, M., Dean, D., & Tok, W. H. (2018). Deep Learning with Azure. Apress. https://doi.org/10.1007/978-1-4842-3679-6 Sandoval, R. (2022). IoT: La conexión con la industria del mañana. Mundo HVAC&R. Santiago, A. R., Antunes, M., Barraca, J. P., Gomes, D., & Aguiar, R. L. (2019). Predictive Maintenance System for Efficiency Improvement of Heating Equipment. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 93–98. https://doi.org/10.1109/BigDataService.2019.00019 Santos Sanchez, G. A., & Castro Barrera, M. A. (2022). Metodologia de valoracion de riesgo de equipo electrico: evaluacion basada en el conocimiento experto. https://cimga.com/ Sanzana, M. R., Maul, T., Wong, J. Y., Abdulrazic, M. O. M., & Yip, C.-C. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, 141, 104445. https://doi.org/10.1016/J.AUTCON.2022.104445 Saturno, M., Pertel, V., & Deschamps, F. (2017). Proposal of an automation solutions architecture for Industry 4.0. Sedeño, J., Schön, E.-M., Torrecilla-Salinas, C., Thomaschewski, J., Escalona, M. J., & Mejias, M. (2017). Modelling agile requirements using context-based persona stories. WEBIST 2017 - Proceedings of the 13th International Conference on Web Information Systems and Technologies, 196–203. https://doi.org/10.5220/0006220301960203 SIEMENS. (2023). SIEMENS MindSphere. https://new.siemens.com/co/es/productos/software/mindsphere.html Srinivasan, R., Tamzeed Islam, M., Islam, B., Wang, Z., Sookoor, T., Gnawali, O., & Nirjon, S. (2017, August 7). Preventive Maintenance of Centralized HVAC Systems: Use of Acoustic Sensors, Feature Extraction, and Unsupervised Learning. https://doi.org/10.26868/25222708.2017.715 Stanfield, C., & Skaves, D. (2013). Fundamentals of HVACR (A. Vernon R, Ed.; 2nd ed.). PEARSON. Subih, M. A., Malik, B. H., Mazhar, I., Sabir, U., Wakeel, T., Wajid, A., Yousaf, A., Nawaz, H., & Suleman, M. (2019). Comparison of agile method and scrum method with software quality affecting factors. International Journal of Advanced Computer Science and Applications, 10(5). Sukhodolov, Y. A. (2019). The Notion, Essence, and Peculiarities of Industry 4.0 as a Sphere of Industry. In E. G. Popkova, Y. V Ragulina, & A. V Bogoviz (Eds.), Industry 4.0: Industrial Revolution of the 21st Century (pp. 3–10). Springer International Publishing. https://doi.org/10.1007/978-3-319-94310-7_1 Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., & Ahmad, M. O. (2017). Comparing Requirements Decomposition Within the Scrum, Scrum with Kanban, XP, and Banana Development Processes (pp. 68–83). https://doi.org/10.1007/978-3-319-57633-6_5 Trivedi, S., Bhola, S., Talegaonkar, A., Gaur, P., & Sharma, S. (2019). Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), 1–6. https://doi.org/10.1109/ISAP48318.2019.9065995 Urbieta, M., Antonelli, L., Rossi, G., & do Prado Leite, J. C. S. (2020). The impact of using a domain language for an agile requirement management. Information and Software Technology, 127. https://doi.org/10.1016/j.infsof.2020.106375 Vijayaraghavan, V., & Rian Leevinson, J. (2019). Internet of Things Applications and Use Cases in the Era of Industry 4.0 (pp. 279–298). https://doi.org/10.1007/978-3-030-24892-5_12 Wautelet, Y., Gielis, D., Poelmans, S., & Heng, S. (2019). Evaluating the impact of user stories quality on the ability to understand and structure requirements. In Lecture Notes in Business Information Processing (Vol. 369). https://doi.org/10.1007/978-3-030-35151-9_1 WEG. (2023). WEG IOT Platform. https://iot.weg.net/#/portal/home Yang, C., Chen, Q., Shen, W., & Gunay, B. (2017). Toward failure mode and effect analysis for heating, ventilation and air-conditioning. 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), 408–413. https://doi.org/10.1109/CSCWD.2017.8066729 Yang, C., Gunay, B., Shi, Z., & Shen, W. (2021). Machine Learning-Based Prognostics for Central Heating and Cooling Plant Equipment Health Monitoring. IEEE Transactions on Automation Science and Engineering, 18(1), 346–355. https://doi.org/10.1109/TASE.2020.2998586 Yang, C., Shen, W., Chen, Q., & Gunay, B. (2018). A practical solution for HVAC prognostics: Failure mode and effects analysis in building maintenance. Journal of Building Engineering, 15, 26–32. https://doi.org/10.1016/j.jobe.2017.10.013 Yang, C., Shen, W., Gunay, B., & Shi, Z. (2019). Toward machine learning-based prognostics for heating ventilation and air-conditioning systems. ASHRAE Transactions Volume 125, 106–115. YORK International. Jhonson Controls. (2004). Installation manual. Predator. Single package air conditioners and single package electric units DM090, 120 and 150. 7-1/2 TO 12 1/2 TO (380V, 3Phase, 60 HZ). In 035-17311-003-A-0704. Jhonson Controls. Yuliansyah, H., Qudsiah, S. N., Zahrotun, L., & Arfiani, I. (2018). Implementation of use case point as software effort estimation in Scrum Framework. IOP Conference Series: Materials Science and Engineering, 403(1). https://doi.org/10.1088/1757-899X/403/1/012085 Zhang, J., Liu, C., & Gao, R. X. (2022). Physics-guided Gaussian process for HVAC system performance prognosis. Mechanical Systems and Signal Processing, 179, 109336. https://doi.org/10.1016/j.ymssp.2022.109336 |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Tunja |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Maestría Ingeniería |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Electrónica |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/51260/5/license_rdf https://repository.usta.edu.co/bitstream/11634/51260/1/2023quirogajose1.pdf https://repository.usta.edu.co/bitstream/11634/51260/2/2023quirogajose2.pdf https://repository.usta.edu.co/bitstream/11634/51260/3/Carta%20autorizaci%c3%b3n%20de%20facultad https://repository.usta.edu.co/bitstream/11634/51260/4/Carta%20de%20derechos%20de%20autor.pdf https://repository.usta.edu.co/bitstream/11634/51260/6/license.txt https://repository.usta.edu.co/bitstream/11634/51260/7/2023quirogajose1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/51260/8/2023quirogajose2.pdf.jpg https://repository.usta.edu.co/bitstream/11634/51260/9/Carta%20autorizaci%c3%b3n%20de%20facultad.jpg https://repository.usta.edu.co/bitstream/11634/51260/10/Carta%20de%20derechos%20de%20autor.pdf.jpg |
bitstream.checksum.fl_str_mv |
217700a34da79ed616c2feb68d4c5e06 57b5d1341c25d81075bd89bedf97107e d07ed222569241000c983c94eb4cc1f6 ff04bb890ed5ca259393c705931b9d04 64630d8ffc93b715a73443d66d8be735 aedeaf396fcd827b537c73d23464fc27 1e7bb7be1fceef4c66fc06ca8fdc1d8c 7a8994cf872155413fa54007c097ed7d e25eea64680bcf5e85eb1b81c14f2775 18f6bcc4342e9ea4c34cf9aa05fff6b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
noreply@usta.edu.co |
_version_ |
1782026274139537408 |
spelling |
Barrera Gomez, Marien RocioAlfonso Diaz, Andres LeonardoQuiroga Niño, Jose AndresUniversidad Santo Tomas2023-07-13T14:53:40Z2023-07-13T14:53:40Z2023-06-27Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2023). Aplicacion de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. Universidad Santo Tomas.http://hdl.handle.net/11634/51260reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coDesarrollo una plataforma que capture y analice información según algoritmos de Aprendizaje automático, proveniente de parámetros operacionales y rutinas de mantenimiento de sistemas industriales de aire acondicionado. Prediciendo la aparición de fugas de gas refrigerante, mediante el análisis de desviaciones operacionales.Development of a platform that captures and analyzes information according to machine learning algorithms, from operational parameters and maintenance routines of industrial air conditioning systems. Predicting the occurrence of refrigerant gas leaks, by analyzing operational deviations.Magister en IngenieríaMaestríaapplication/pdfspaUniversidad Santo TomásMaestría IngenieríaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.Predictive maintenanceIndustrial refrigerationScrum methodologyUser storiesMachine learningDesktop applicationMantenimiento predictivoRefrigeracion industrialMetodología scrumHistorias de usuarioAprendizaje automaticoAplicación de escritorioTesis de maestríainfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/masterThesishttp://purl.org/coar/resource_type/c_bdccCRAI-USTA TunjaAamir, M., & Khan, M. N. A. (2017). Incorporating quality control activities in scrum in relation to the concept of test backlog. Sadhana - Academy Proceedings in Engineering Sciences, 42(7), 1051–1061. https://doi.org/10.1007/s12046-017-0688-7Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2022). PREDICONFORT 1.0 (No. 1). Universidad Santo Tomas.Allison, P. (2013). What’s the best R-squared for logistic regression. Statistical Horizons, 13. https://statisticalhorizons.com/r2logistic/Al-Tal, M., Al-Aomar, R., & Abel, J. (2021). A predictive model for an effective maintenance of hospital critical systems. Proceedings of the 33rd European Modeling & Simulation Symposium, 1–8. https://doi.org/10.46354/i3m.2021.emss.001American Society of Heating, R. and A.-C. E. (2021). ASHRAE Handbook: Vol. Fundamentals.ANSI/ASHRAE 55 - 2020. Thermal Environmental Conditions for Human Occupancy, ASHRAE (2020).Bartodziej, C. J. (2017). The Concept Industry 4.0. An Empirical Analysis of Technologies and Applications in Production Logistics. Springer Gabler.Boero, C. (2020). Mantenimiento industrial. Jorge Sarmiento Editor - Universitas. https://elibro.net/es/lc/usta/titulos/172523Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors, 21(4), 1044. https://doi.org/10.3390/s21041044Braun, J., Claridge, D. E., Katipaluma, S., Liu, M., & Pratt, R. G. (2001). Operation and Maintenance. In J. F. Kreider (Ed.), Handbook of heating, Ventilation, and Air Conditioning. CRC Press LLC.Candanedo, I. S., Nieves, E. H., González, S. R., Martín, M. T. S., & Briones, A. G. (2018). Machine Learning Predictive Model for Industry 4.0. In L. Uden, B. Hadzima, & I.-H. Ting (Eds.), Knowledge Management in Organizations (pp. 501–510). Springer International Publishing.Cerquitelli, T., Nikolakis, N., O’Mahony, N., Macii, E., Ippolito, M., & Makris, S. (Eds.). (2021). Predictive Maintenance in Smart Factories. Springer Singapore. https://doi.org/10.1007/978-981-16-2940-2Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525–1534.Danfoss A/S. (2017). Datasheet. Pressure Switch and Thermostat. In AI000086439001en-001001 (pp. 1–20).Das, K., Jiang, J., & Rao, J. N. K. (2004). Mean squared error of empirical predictor. The Annals of Statistics, 32(2), 818–840.del Val Román, J. L. (2016). Industria 4.0: la transformación digital de la industria. Valencia: Conferencia de Directores y Decanos de Ingeniería Informática, Informes CODDII.Diercks, P., Gläser, D., Lünsdorf, O., Selzer, M., Flemisch, B., & Unger, J. F. (2022). Evaluation of tools for describing, reproducing and reusing scientific workflows.Ebert, C., Abrahamsson, P., & Oza, N. (2012). Lean software development. IEEE Software, 29(05), 22–25.Echavarria Ortiz, H. N. (2022). Aplicación de machine learning para la enseñanza – aprendizaje de competencias ciudadanas en educación media del Colegio de Boyacá. https://repository.usta.edu.co/handle/11634/47603#.Y4pGaRabz-o.mendeleyECOPETROL S.A. (2018). Especificaciones tecnicas para el servicio de mantenimiento de sistemas de aire acondicionado de la Gerencia Refineria de Barrancabermeja de ECOPETROL S.A.Elallaoui, M., Nafil, K., & Touahni, R. (2018). Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Techniques. Procedia Computer Science, 130, 42–49. https://doi.org/10.1016/j.procs.2018.04.010Es-sakali, N., Cherkaoui, M., Mghazli, M. O., & Naimi, Z. (2022). Review of predictive maintenance algorithms applied to HVAC systems. Energy Reports, 8, 1003–1012. https://doi.org/10.1016/j.egyr.2022.07.130Esteki, M., Javdani Gandomani, T., & Khosravi Farsani, H. (2020). A risk management framework for distributed scrum using PRINCE2 methodology. Bulletin of Electrical Engineering and Informatics, 9(3), 1299–1310. https://doi.org/10.11591/eei.v9i3.1905Fernando, J. (2021, September 12). R-Squared Formula, Regression, and Interpretations. Investopedia.Com/ Corporate Finance / Financial Analysis. https://www.investopedia.com/terms/r/r-squared.asp#:~:text=R%2Dsquared%20values%20range%20from,)%20you%20are%20interested%20in).Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression Models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100Gonzalez Ajuech, V. L. (2017). Mantenimiento: tecnicas y aplicaciones industriales. Grupo Editorial Patria. https://elibro.net/es/lc/usta/titulos/40508Heras del Dedo, R. de las, & Alvarez Garcia, A. (2017). Metodos agiles: Scrum, Kanban, Lean. Difusora Larousse - Anaya Multimedia. https://elibro.net/es/lc/usta/titulos/122933Hosamo, H. H., Svennevig, P. R., Svidt, K., Han, D., & Nielsen, H. K. (2022). A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy and Buildings, 261, 111988. https://doi.org/10.1016/j.enbuild.2022.111988Instituto de Hidrología, M. y E. A.-I. (2023). Altas Climatologico. Http://Atlas.Ideam.Gov.Co/VisorAtlasClimatologico.Html.Jimenez Raya, F. (2015). Mantenimiento preventivo de sistemas de automatizacion industrial. ELEM0311. IC Editorial. https://elibro.net/es/lc/usta/titulos/59239Joshi, A. V. (2020). Machine Learning and Artificial Intelligence. Springer International Publishing. https://doi.org/10.1007/978-3-030-26622-6Ke, Y., Mulumba, T., Shen, W., & Afshari, A. (2014, May 18). Model-based predictive maintenance of chillers. ACRA 2014 - Proceedings of the 7th Asian Conference on Refrigeration and Air Conditioning.Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0L’Esteve, R. C. (2021). The Definitive Guide to Azure Data Engineering. Apress. https://doi.org/10.1007/978-1-4842-7182-7Martínez, R., Parkinson, C., Caruso, M., López, D., Vargas, R., & Rojas, N. (2022). Propuesta de técnicas de validación para la calidad de datos abiertos e identificación de patrones para predicciones con Machine Learning. XXIV Workshop de Investigadores En Ciencias de La Computación (WICC 2022, Mendoza).Microsoft. (2022). Documentación de ML.NET. https://learn.microsoft.com/es-es/dotnet/machine-learning/Microsoft. (2022). Documentación de Visual Studio. https://learn.microsoft.com/es-es/visualstudio/Microsoft. (2022). Documentacion SQL Server Management Studio (SSMS). https://learn.microsoft.com/es-es/sql/ssms/sql-server-management-studio-ssmsMonroy Mejia, M. de los A., & Nava Sanchezllanes, N. (2018). Metodologia de la investigacion. Grupo Editorial Exodo. https://elibro.net/es/lc/usta/titulos/172512Oficina Asesora de Planeacion y Estudios Sectoriales. (2019). Aspectos Basicos de la Industria 4.0. Ministerio de Tecnologias de la Informacion y las Comunicaciones. Republica de Colombia.O’hEocha, C., & Conboy, K. (2010). The Role of the User Story Agile Practice in Innovation (pp. 20–30). https://doi.org/10.1007/978-3-642-16416-3_3Ohta, R. (2018). SELECTION OF INDUSTRIAL MAINTENANCE STRATEGY: CLASSICAL AHP AND FUZZY AHP APPLICATIONS. International Journal of the Analytic Hierarchy Process, 10(2). https://doi.org/10.13033/ijahp.v10i2.551Panesar, A. (2021). Evaluating Machine Learning Models. In Machine Learning and AI for Healthcare (pp. 189–205). Apress. https://doi.org/10.1007/978-1-4842-6537-6_7Panfilov, P., & Katona, A. (2018). Building Predictive Maintenance Framework for Smart Environment Application Systems (pp. 0460–0470). https://doi.org/10.2507/29th.daaam.proceedings.068Periyasamy, K., & Chianelli, J. (2021). A project tracking tool for scrum projects with machine learning support for cost estimation. EPiC Series in Computing, 76, 86–94. https://doi.org/10.29007/6vwhRodal Montero, E. (2020). Industria 4.0: conceptos, tecnologias habilitadoras y retos. Difusora Larousse - Ediciones Piramide. https://elibro.net/es/lc/usta/titulos/216140Salvaris, M., Dean, D., & Tok, W. H. (2018). Deep Learning with Azure. Apress. https://doi.org/10.1007/978-1-4842-3679-6Sandoval, R. (2022). IoT: La conexión con la industria del mañana. Mundo HVAC&R.Santiago, A. R., Antunes, M., Barraca, J. P., Gomes, D., & Aguiar, R. L. (2019). Predictive Maintenance System for Efficiency Improvement of Heating Equipment. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 93–98. https://doi.org/10.1109/BigDataService.2019.00019Santos Sanchez, G. A., & Castro Barrera, M. A. (2022). Metodologia de valoracion de riesgo de equipo electrico: evaluacion basada en el conocimiento experto. https://cimga.com/Sanzana, M. R., Maul, T., Wong, J. Y., Abdulrazic, M. O. M., & Yip, C.-C. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, 141, 104445. https://doi.org/10.1016/J.AUTCON.2022.104445Saturno, M., Pertel, V., & Deschamps, F. (2017). Proposal of an automation solutions architecture for Industry 4.0.Sedeño, J., Schön, E.-M., Torrecilla-Salinas, C., Thomaschewski, J., Escalona, M. J., & Mejias, M. (2017). Modelling agile requirements using context-based persona stories. WEBIST 2017 - Proceedings of the 13th International Conference on Web Information Systems and Technologies, 196–203. https://doi.org/10.5220/0006220301960203SIEMENS. (2023). SIEMENS MindSphere. https://new.siemens.com/co/es/productos/software/mindsphere.htmlSrinivasan, R., Tamzeed Islam, M., Islam, B., Wang, Z., Sookoor, T., Gnawali, O., & Nirjon, S. (2017, August 7). Preventive Maintenance of Centralized HVAC Systems: Use of Acoustic Sensors, Feature Extraction, and Unsupervised Learning. https://doi.org/10.26868/25222708.2017.715Stanfield, C., & Skaves, D. (2013). Fundamentals of HVACR (A. Vernon R, Ed.; 2nd ed.). PEARSON.Subih, M. A., Malik, B. H., Mazhar, I., Sabir, U., Wakeel, T., Wajid, A., Yousaf, A., Nawaz, H., & Suleman, M. (2019). Comparison of agile method and scrum method with software quality affecting factors. International Journal of Advanced Computer Science and Applications, 10(5).Sukhodolov, Y. A. (2019). The Notion, Essence, and Peculiarities of Industry 4.0 as a Sphere of Industry. In E. G. Popkova, Y. V Ragulina, & A. V Bogoviz (Eds.), Industry 4.0: Industrial Revolution of the 21st Century (pp. 3–10). Springer International Publishing. https://doi.org/10.1007/978-3-319-94310-7_1Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., & Ahmad, M. O. (2017). Comparing Requirements Decomposition Within the Scrum, Scrum with Kanban, XP, and Banana Development Processes (pp. 68–83). https://doi.org/10.1007/978-3-319-57633-6_5Trivedi, S., Bhola, S., Talegaonkar, A., Gaur, P., & Sharma, S. (2019). Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), 1–6. https://doi.org/10.1109/ISAP48318.2019.9065995Urbieta, M., Antonelli, L., Rossi, G., & do Prado Leite, J. C. S. (2020). The impact of using a domain language for an agile requirement management. Information and Software Technology, 127. https://doi.org/10.1016/j.infsof.2020.106375Vijayaraghavan, V., & Rian Leevinson, J. (2019). Internet of Things Applications and Use Cases in the Era of Industry 4.0 (pp. 279–298). https://doi.org/10.1007/978-3-030-24892-5_12Wautelet, Y., Gielis, D., Poelmans, S., & Heng, S. (2019). Evaluating the impact of user stories quality on the ability to understand and structure requirements. In Lecture Notes in Business Information Processing (Vol. 369). https://doi.org/10.1007/978-3-030-35151-9_1WEG. (2023). WEG IOT Platform. https://iot.weg.net/#/portal/homeYang, C., Chen, Q., Shen, W., & Gunay, B. (2017). Toward failure mode and effect analysis for heating, ventilation and air-conditioning. 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), 408–413. https://doi.org/10.1109/CSCWD.2017.8066729Yang, C., Gunay, B., Shi, Z., & Shen, W. (2021). Machine Learning-Based Prognostics for Central Heating and Cooling Plant Equipment Health Monitoring. IEEE Transactions on Automation Science and Engineering, 18(1), 346–355. https://doi.org/10.1109/TASE.2020.2998586Yang, C., Shen, W., Chen, Q., & Gunay, B. (2018). A practical solution for HVAC prognostics: Failure mode and effects analysis in building maintenance. Journal of Building Engineering, 15, 26–32. https://doi.org/10.1016/j.jobe.2017.10.013Yang, C., Shen, W., Gunay, B., & Shi, Z. (2019). Toward machine learning-based prognostics for heating ventilation and air-conditioning systems. ASHRAE Transactions Volume 125, 106–115.YORK International. Jhonson Controls. (2004). Installation manual. Predator. Single package air conditioners and single package electric units DM090, 120 and 150. 7-1/2 TO 12 1/2 TO (380V, 3Phase, 60 HZ). In 035-17311-003-A-0704. Jhonson Controls.Yuliansyah, H., Qudsiah, S. N., Zahrotun, L., & Arfiani, I. (2018). Implementation of use case point as software effort estimation in Scrum Framework. IOP Conference Series: Materials Science and Engineering, 403(1). https://doi.org/10.1088/1757-899X/403/1/012085Zhang, J., Liu, C., & Gao, R. X. (2022). Physics-guided Gaussian process for HVAC system performance prognosis. Mechanical Systems and Signal Processing, 179, 109336. https://doi.org/10.1016/j.ymssp.2022.109336CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/51260/5/license_rdf217700a34da79ed616c2feb68d4c5e06MD55open accessORIGINAL2023quirogajose1.pdf2023quirogajose1.pdfDocumento principalapplication/pdf3062907https://repository.usta.edu.co/bitstream/11634/51260/1/2023quirogajose1.pdf57b5d1341c25d81075bd89bedf97107eMD51open access2023quirogajose2.pdf2023quirogajose2.pdfManual de usuario de la aplicaciónapplication/pdf413670https://repository.usta.edu.co/bitstream/11634/51260/2/2023quirogajose2.pdfd07ed222569241000c983c94eb4cc1f6MD52open accessCarta autorización de facultadCarta autorización de facultadCarta de aprobación de facultadapplication/pdf262764https://repository.usta.edu.co/bitstream/11634/51260/3/Carta%20autorizaci%c3%b3n%20de%20facultadff04bb890ed5ca259393c705931b9d04MD53metadata only accessCarta de derechos de autor.pdfCarta de derechos de autor.pdfCarta de derechos de autorapplication/pdf360405https://repository.usta.edu.co/bitstream/11634/51260/4/Carta%20de%20derechos%20de%20autor.pdf64630d8ffc93b715a73443d66d8be735MD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/51260/6/license.txtaedeaf396fcd827b537c73d23464fc27MD56open accessTHUMBNAIL2023quirogajose1.pdf.jpg2023quirogajose1.pdf.jpgIM Thumbnailimage/jpeg5562https://repository.usta.edu.co/bitstream/11634/51260/7/2023quirogajose1.pdf.jpg1e7bb7be1fceef4c66fc06ca8fdc1d8cMD57open access2023quirogajose2.pdf.jpg2023quirogajose2.pdf.jpgIM Thumbnailimage/jpeg5944https://repository.usta.edu.co/bitstream/11634/51260/8/2023quirogajose2.pdf.jpg7a8994cf872155413fa54007c097ed7dMD58open accessCarta autorización de facultad.jpgCarta autorización de facultad.jpgIM Thumbnailimage/jpeg8437https://repository.usta.edu.co/bitstream/11634/51260/9/Carta%20autorizaci%c3%b3n%20de%20facultad.jpge25eea64680bcf5e85eb1b81c14f2775MD59open accessCarta de derechos de autor.pdf.jpgCarta de derechos de autor.pdf.jpgIM Thumbnailimage/jpeg7839https://repository.usta.edu.co/bitstream/11634/51260/10/Carta%20de%20derechos%20de%20autor.pdf.jpg18f6bcc4342e9ea4c34cf9aa05fff6b9MD510open access11634/51260oai:repository.usta.edu.co:11634/512602023-07-14 03:07:59.541open accessRepositorio Universidad Santo Tomásnoreply@usta.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |