Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.

Desarrollo una plataforma que capture y analice información según algoritmos de Aprendizaje automático, proveniente de parámetros operacionales y rutinas de mantenimiento de sistemas industriales de aire acondicionado. Prediciendo la aparición de fugas de gas refrigerante, mediante el análisis de de...

Full description

Autores:
Quiroga Niño, Jose Andres
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/51260
Acceso en línea:
http://hdl.handle.net/11634/51260
Palabra clave:
Predictive maintenance
Industrial refrigeration
Scrum methodology
User stories
Machine learning
Desktop application
Mantenimiento predictivo
Refrigeracion industrial
Metodología scrum
Historias de usuario
Aprendizaje automatico
Aplicación de escritorio
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_db509260060ed021dbf37e19b6f29804
oai_identifier_str oai:repository.usta.edu.co:11634/51260
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
title Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
spellingShingle Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
Predictive maintenance
Industrial refrigeration
Scrum methodology
User stories
Machine learning
Desktop application
Mantenimiento predictivo
Refrigeracion industrial
Metodología scrum
Historias de usuario
Aprendizaje automatico
Aplicación de escritorio
title_short Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
title_full Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
title_fullStr Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
title_full_unstemmed Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
title_sort Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.
dc.creator.fl_str_mv Quiroga Niño, Jose Andres
dc.contributor.advisor.none.fl_str_mv Barrera Gomez, Marien Rocio
Alfonso Diaz, Andres Leonardo
dc.contributor.author.none.fl_str_mv Quiroga Niño, Jose Andres
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomas
dc.subject.keyword.spa.fl_str_mv Predictive maintenance
Industrial refrigeration
Scrum methodology
User stories
Machine learning
Desktop application
topic Predictive maintenance
Industrial refrigeration
Scrum methodology
User stories
Machine learning
Desktop application
Mantenimiento predictivo
Refrigeracion industrial
Metodología scrum
Historias de usuario
Aprendizaje automatico
Aplicación de escritorio
dc.subject.proposal.spa.fl_str_mv Mantenimiento predictivo
Refrigeracion industrial
Metodología scrum
Historias de usuario
Aprendizaje automatico
Aplicación de escritorio
description Desarrollo una plataforma que capture y analice información según algoritmos de Aprendizaje automático, proveniente de parámetros operacionales y rutinas de mantenimiento de sistemas industriales de aire acondicionado. Prediciendo la aparición de fugas de gas refrigerante, mediante el análisis de desviaciones operacionales.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-13T14:53:40Z
dc.date.available.none.fl_str_mv 2023-07-13T14:53:40Z
dc.date.issued.none.fl_str_mv 2023-06-27
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2023). Aplicacion de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. Universidad Santo Tomas.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/51260
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2023). Aplicacion de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. Universidad Santo Tomas.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/51260
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aamir, M., & Khan, M. N. A. (2017). Incorporating quality control activities in scrum in relation to the concept of test backlog. Sadhana - Academy Proceedings in Engineering Sciences, 42(7), 1051–1061. https://doi.org/10.1007/s12046-017-0688-7
Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2022). PREDICONFORT 1.0 (No. 1). Universidad Santo Tomas.
Allison, P. (2013). What’s the best R-squared for logistic regression. Statistical Horizons, 13. https://statisticalhorizons.com/r2logistic/
Al-Tal, M., Al-Aomar, R., & Abel, J. (2021). A predictive model for an effective maintenance of hospital critical systems. Proceedings of the 33rd European Modeling & Simulation Symposium, 1–8. https://doi.org/10.46354/i3m.2021.emss.001
American Society of Heating, R. and A.-C. E. (2021). ASHRAE Handbook: Vol. Fundamentals.
ANSI/ASHRAE 55 - 2020. Thermal Environmental Conditions for Human Occupancy, ASHRAE (2020).
Bartodziej, C. J. (2017). The Concept Industry 4.0. An Empirical Analysis of Technologies and Applications in Production Logistics. Springer Gabler.
Boero, C. (2020). Mantenimiento industrial. Jorge Sarmiento Editor - Universitas. https://elibro.net/es/lc/usta/titulos/172523
Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors, 21(4), 1044. https://doi.org/10.3390/s21041044
Braun, J., Claridge, D. E., Katipaluma, S., Liu, M., & Pratt, R. G. (2001). Operation and Maintenance. In J. F. Kreider (Ed.), Handbook of heating, Ventilation, and Air Conditioning. CRC Press LLC.
Candanedo, I. S., Nieves, E. H., González, S. R., Martín, M. T. S., & Briones, A. G. (2018). Machine Learning Predictive Model for Industry 4.0. In L. Uden, B. Hadzima, & I.-H. Ting (Eds.), Knowledge Management in Organizations (pp. 501–510). Springer International Publishing.
Cerquitelli, T., Nikolakis, N., O’Mahony, N., Macii, E., Ippolito, M., & Makris, S. (Eds.). (2021). Predictive Maintenance in Smart Factories. Springer Singapore. https://doi.org/10.1007/978-981-16-2940-2
Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525–1534.
Danfoss A/S. (2017). Datasheet. Pressure Switch and Thermostat. In AI000086439001en-001001 (pp. 1–20).
Das, K., Jiang, J., & Rao, J. N. K. (2004). Mean squared error of empirical predictor. The Annals of Statistics, 32(2), 818–840.
del Val Román, J. L. (2016). Industria 4.0: la transformación digital de la industria. Valencia: Conferencia de Directores y Decanos de Ingeniería Informática, Informes CODDII.
Diercks, P., Gläser, D., Lünsdorf, O., Selzer, M., Flemisch, B., & Unger, J. F. (2022). Evaluation of tools for describing, reproducing and reusing scientific workflows.
Ebert, C., Abrahamsson, P., & Oza, N. (2012). Lean software development. IEEE Software, 29(05), 22–25.
Echavarria Ortiz, H. N. (2022). Aplicación de machine learning para la enseñanza – aprendizaje de competencias ciudadanas en educación media del Colegio de Boyacá. https://repository.usta.edu.co/handle/11634/47603#.Y4pGaRabz-o.mendeley
ECOPETROL S.A. (2018). Especificaciones tecnicas para el servicio de mantenimiento de sistemas de aire acondicionado de la Gerencia Refineria de Barrancabermeja de ECOPETROL S.A.
Elallaoui, M., Nafil, K., & Touahni, R. (2018). Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Techniques. Procedia Computer Science, 130, 42–49. https://doi.org/10.1016/j.procs.2018.04.010
Es-sakali, N., Cherkaoui, M., Mghazli, M. O., & Naimi, Z. (2022). Review of predictive maintenance algorithms applied to HVAC systems. Energy Reports, 8, 1003–1012. https://doi.org/10.1016/j.egyr.2022.07.130
Esteki, M., Javdani Gandomani, T., & Khosravi Farsani, H. (2020). A risk management framework for distributed scrum using PRINCE2 methodology. Bulletin of Electrical Engineering and Informatics, 9(3), 1299–1310. https://doi.org/10.11591/eei.v9i3.1905
Fernando, J. (2021, September 12). R-Squared Formula, Regression, and Interpretations. Investopedia.Com/ Corporate Finance / Financial Analysis. https://www.investopedia.com/terms/r/r-squared.asp#:~:text=R%2Dsquared%20values%20range%20from,)%20you%20are%20interested%20in).
Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression Models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100
Gonzalez Ajuech, V. L. (2017). Mantenimiento: tecnicas y aplicaciones industriales. Grupo Editorial Patria. https://elibro.net/es/lc/usta/titulos/40508
Heras del Dedo, R. de las, & Alvarez Garcia, A. (2017). Metodos agiles: Scrum, Kanban, Lean. Difusora Larousse - Anaya Multimedia. https://elibro.net/es/lc/usta/titulos/122933
Hosamo, H. H., Svennevig, P. R., Svidt, K., Han, D., & Nielsen, H. K. (2022). A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy and Buildings, 261, 111988. https://doi.org/10.1016/j.enbuild.2022.111988
Instituto de Hidrología, M. y E. A.-I. (2023). Altas Climatologico. Http://Atlas.Ideam.Gov.Co/VisorAtlasClimatologico.Html.
Jimenez Raya, F. (2015). Mantenimiento preventivo de sistemas de automatizacion industrial. ELEM0311. IC Editorial. https://elibro.net/es/lc/usta/titulos/59239
Joshi, A. V. (2020). Machine Learning and Artificial Intelligence. Springer International Publishing. https://doi.org/10.1007/978-3-030-26622-6
Ke, Y., Mulumba, T., Shen, W., & Afshari, A. (2014, May 18). Model-based predictive maintenance of chillers. ACRA 2014 - Proceedings of the 7th Asian Conference on Refrigeration and Air Conditioning.
Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0
L’Esteve, R. C. (2021). The Definitive Guide to Azure Data Engineering. Apress. https://doi.org/10.1007/978-1-4842-7182-7
Martínez, R., Parkinson, C., Caruso, M., López, D., Vargas, R., & Rojas, N. (2022). Propuesta de técnicas de validación para la calidad de datos abiertos e identificación de patrones para predicciones con Machine Learning. XXIV Workshop de Investigadores En Ciencias de La Computación (WICC 2022, Mendoza).
Microsoft. (2022). Documentación de ML.NET. https://learn.microsoft.com/es-es/dotnet/machine-learning/
Microsoft. (2022). Documentación de Visual Studio. https://learn.microsoft.com/es-es/visualstudio/
Microsoft. (2022). Documentacion SQL Server Management Studio (SSMS). https://learn.microsoft.com/es-es/sql/ssms/sql-server-management-studio-ssms
Monroy Mejia, M. de los A., & Nava Sanchezllanes, N. (2018). Metodologia de la investigacion. Grupo Editorial Exodo. https://elibro.net/es/lc/usta/titulos/172512
Oficina Asesora de Planeacion y Estudios Sectoriales. (2019). Aspectos Basicos de la Industria 4.0. Ministerio de Tecnologias de la Informacion y las Comunicaciones. Republica de Colombia.
O’hEocha, C., & Conboy, K. (2010). The Role of the User Story Agile Practice in Innovation (pp. 20–30). https://doi.org/10.1007/978-3-642-16416-3_3
Ohta, R. (2018). SELECTION OF INDUSTRIAL MAINTENANCE STRATEGY: CLASSICAL AHP AND FUZZY AHP APPLICATIONS. International Journal of the Analytic Hierarchy Process, 10(2). https://doi.org/10.13033/ijahp.v10i2.551
Panesar, A. (2021). Evaluating Machine Learning Models. In Machine Learning and AI for Healthcare (pp. 189–205). Apress. https://doi.org/10.1007/978-1-4842-6537-6_7
Panfilov, P., & Katona, A. (2018). Building Predictive Maintenance Framework for Smart Environment Application Systems (pp. 0460–0470). https://doi.org/10.2507/29th.daaam.proceedings.068
Periyasamy, K., & Chianelli, J. (2021). A project tracking tool for scrum projects with machine learning support for cost estimation. EPiC Series in Computing, 76, 86–94. https://doi.org/10.29007/6vwh
Rodal Montero, E. (2020). Industria 4.0: conceptos, tecnologias habilitadoras y retos. Difusora Larousse - Ediciones Piramide. https://elibro.net/es/lc/usta/titulos/216140
Salvaris, M., Dean, D., & Tok, W. H. (2018). Deep Learning with Azure. Apress. https://doi.org/10.1007/978-1-4842-3679-6
Sandoval, R. (2022). IoT: La conexión con la industria del mañana. Mundo HVAC&R.
Santiago, A. R., Antunes, M., Barraca, J. P., Gomes, D., & Aguiar, R. L. (2019). Predictive Maintenance System for Efficiency Improvement of Heating Equipment. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 93–98. https://doi.org/10.1109/BigDataService.2019.00019
Santos Sanchez, G. A., & Castro Barrera, M. A. (2022). Metodologia de valoracion de riesgo de equipo electrico: evaluacion basada en el conocimiento experto. https://cimga.com/
Sanzana, M. R., Maul, T., Wong, J. Y., Abdulrazic, M. O. M., & Yip, C.-C. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, 141, 104445. https://doi.org/10.1016/J.AUTCON.2022.104445
Saturno, M., Pertel, V., & Deschamps, F. (2017). Proposal of an automation solutions architecture for Industry 4.0.
Sedeño, J., Schön, E.-M., Torrecilla-Salinas, C., Thomaschewski, J., Escalona, M. J., & Mejias, M. (2017). Modelling agile requirements using context-based persona stories. WEBIST 2017 - Proceedings of the 13th International Conference on Web Information Systems and Technologies, 196–203. https://doi.org/10.5220/0006220301960203
SIEMENS. (2023). SIEMENS MindSphere. https://new.siemens.com/co/es/productos/software/mindsphere.html
Srinivasan, R., Tamzeed Islam, M., Islam, B., Wang, Z., Sookoor, T., Gnawali, O., & Nirjon, S. (2017, August 7). Preventive Maintenance of Centralized HVAC Systems: Use of Acoustic Sensors, Feature Extraction, and Unsupervised Learning. https://doi.org/10.26868/25222708.2017.715
Stanfield, C., & Skaves, D. (2013). Fundamentals of HVACR (A. Vernon R, Ed.; 2nd ed.). PEARSON.
Subih, M. A., Malik, B. H., Mazhar, I., Sabir, U., Wakeel, T., Wajid, A., Yousaf, A., Nawaz, H., & Suleman, M. (2019). Comparison of agile method and scrum method with software quality affecting factors. International Journal of Advanced Computer Science and Applications, 10(5).
Sukhodolov, Y. A. (2019). The Notion, Essence, and Peculiarities of Industry 4.0 as a Sphere of Industry. In E. G. Popkova, Y. V Ragulina, & A. V Bogoviz (Eds.), Industry 4.0: Industrial Revolution of the 21st Century (pp. 3–10). Springer International Publishing. https://doi.org/10.1007/978-3-319-94310-7_1
Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., & Ahmad, M. O. (2017). Comparing Requirements Decomposition Within the Scrum, Scrum with Kanban, XP, and Banana Development Processes (pp. 68–83). https://doi.org/10.1007/978-3-319-57633-6_5
Trivedi, S., Bhola, S., Talegaonkar, A., Gaur, P., & Sharma, S. (2019). Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), 1–6. https://doi.org/10.1109/ISAP48318.2019.9065995
Urbieta, M., Antonelli, L., Rossi, G., & do Prado Leite, J. C. S. (2020). The impact of using a domain language for an agile requirement management. Information and Software Technology, 127. https://doi.org/10.1016/j.infsof.2020.106375
Vijayaraghavan, V., & Rian Leevinson, J. (2019). Internet of Things Applications and Use Cases in the Era of Industry 4.0 (pp. 279–298). https://doi.org/10.1007/978-3-030-24892-5_12
Wautelet, Y., Gielis, D., Poelmans, S., & Heng, S. (2019). Evaluating the impact of user stories quality on the ability to understand and structure requirements. In Lecture Notes in Business Information Processing (Vol. 369). https://doi.org/10.1007/978-3-030-35151-9_1
WEG. (2023). WEG IOT Platform. https://iot.weg.net/#/portal/home
Yang, C., Chen, Q., Shen, W., & Gunay, B. (2017). Toward failure mode and effect analysis for heating, ventilation and air-conditioning. 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), 408–413. https://doi.org/10.1109/CSCWD.2017.8066729
Yang, C., Gunay, B., Shi, Z., & Shen, W. (2021). Machine Learning-Based Prognostics for Central Heating and Cooling Plant Equipment Health Monitoring. IEEE Transactions on Automation Science and Engineering, 18(1), 346–355. https://doi.org/10.1109/TASE.2020.2998586
Yang, C., Shen, W., Chen, Q., & Gunay, B. (2018). A practical solution for HVAC prognostics: Failure mode and effects analysis in building maintenance. Journal of Building Engineering, 15, 26–32. https://doi.org/10.1016/j.jobe.2017.10.013
Yang, C., Shen, W., Gunay, B., & Shi, Z. (2019). Toward machine learning-based prognostics for heating ventilation and air-conditioning systems. ASHRAE Transactions Volume 125, 106–115.
YORK International. Jhonson Controls. (2004). Installation manual. Predator. Single package air conditioners and single package electric units DM090, 120 and 150. 7-1/2 TO 12 1/2 TO (380V, 3Phase, 60 HZ). In 035-17311-003-A-0704. Jhonson Controls.
Yuliansyah, H., Qudsiah, S. N., Zahrotun, L., & Arfiani, I. (2018). Implementation of use case point as software effort estimation in Scrum Framework. IOP Conference Series: Materials Science and Engineering, 403(1). https://doi.org/10.1088/1757-899X/403/1/012085
Zhang, J., Liu, C., & Gao, R. X. (2022). Physics-guided Gaussian process for HVAC system performance prognosis. Mechanical Systems and Signal Processing, 179, 109336. https://doi.org/10.1016/j.ymssp.2022.109336
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Tunja
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Ingeniería
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/51260/5/license_rdf
https://repository.usta.edu.co/bitstream/11634/51260/1/2023quirogajose1.pdf
https://repository.usta.edu.co/bitstream/11634/51260/2/2023quirogajose2.pdf
https://repository.usta.edu.co/bitstream/11634/51260/3/Carta%20autorizaci%c3%b3n%20de%20facultad
https://repository.usta.edu.co/bitstream/11634/51260/4/Carta%20de%20derechos%20de%20autor.pdf
https://repository.usta.edu.co/bitstream/11634/51260/6/license.txt
https://repository.usta.edu.co/bitstream/11634/51260/7/2023quirogajose1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/51260/8/2023quirogajose2.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/51260/9/Carta%20autorizaci%c3%b3n%20de%20facultad.jpg
https://repository.usta.edu.co/bitstream/11634/51260/10/Carta%20de%20derechos%20de%20autor.pdf.jpg
bitstream.checksum.fl_str_mv 217700a34da79ed616c2feb68d4c5e06
57b5d1341c25d81075bd89bedf97107e
d07ed222569241000c983c94eb4cc1f6
ff04bb890ed5ca259393c705931b9d04
64630d8ffc93b715a73443d66d8be735
aedeaf396fcd827b537c73d23464fc27
1e7bb7be1fceef4c66fc06ca8fdc1d8c
7a8994cf872155413fa54007c097ed7d
e25eea64680bcf5e85eb1b81c14f2775
18f6bcc4342e9ea4c34cf9aa05fff6b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv noreply@usta.edu.co
_version_ 1782026274139537408
spelling Barrera Gomez, Marien RocioAlfonso Diaz, Andres LeonardoQuiroga Niño, Jose AndresUniversidad Santo Tomas2023-07-13T14:53:40Z2023-07-13T14:53:40Z2023-06-27Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2023). Aplicacion de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning. Universidad Santo Tomas.http://hdl.handle.net/11634/51260reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coDesarrollo una plataforma que capture y analice información según algoritmos de Aprendizaje automático, proveniente de parámetros operacionales y rutinas de mantenimiento de sistemas industriales de aire acondicionado. Prediciendo la aparición de fugas de gas refrigerante, mediante el análisis de desviaciones operacionales.Development of a platform that captures and analyzes information according to machine learning algorithms, from operational parameters and maintenance routines of industrial air conditioning systems. Predicting the occurrence of refrigerant gas leaks, by analyzing operational deviations.Magister en IngenieríaMaestríaapplication/pdfspaUniversidad Santo TomásMaestría IngenieríaFacultad de Ingeniería ElectrónicaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aplicación de escritorio para mantenimiento predictivo de equipos industriales de refrigeración a través de machine learning.Predictive maintenanceIndustrial refrigerationScrum methodologyUser storiesMachine learningDesktop applicationMantenimiento predictivoRefrigeracion industrialMetodología scrumHistorias de usuarioAprendizaje automaticoAplicación de escritorioTesis de maestríainfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/masterThesishttp://purl.org/coar/resource_type/c_bdccCRAI-USTA TunjaAamir, M., & Khan, M. N. A. (2017). Incorporating quality control activities in scrum in relation to the concept of test backlog. Sadhana - Academy Proceedings in Engineering Sciences, 42(7), 1051–1061. https://doi.org/10.1007/s12046-017-0688-7Alfonso Diaz, A. L., Barrera Gomez, M. R., & Quiroga Niño, J. A. (2022). PREDICONFORT 1.0 (No. 1). Universidad Santo Tomas.Allison, P. (2013). What’s the best R-squared for logistic regression. Statistical Horizons, 13. https://statisticalhorizons.com/r2logistic/Al-Tal, M., Al-Aomar, R., & Abel, J. (2021). A predictive model for an effective maintenance of hospital critical systems. Proceedings of the 33rd European Modeling & Simulation Symposium, 1–8. https://doi.org/10.46354/i3m.2021.emss.001American Society of Heating, R. and A.-C. E. (2021). ASHRAE Handbook: Vol. Fundamentals.ANSI/ASHRAE 55 - 2020. Thermal Environmental Conditions for Human Occupancy, ASHRAE (2020).Bartodziej, C. J. (2017). The Concept Industry 4.0. An Empirical Analysis of Technologies and Applications in Production Logistics. Springer Gabler.Boero, C. (2020). Mantenimiento industrial. Jorge Sarmiento Editor - Universitas. https://elibro.net/es/lc/usta/titulos/172523Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., & Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach. Sensors, 21(4), 1044. https://doi.org/10.3390/s21041044Braun, J., Claridge, D. E., Katipaluma, S., Liu, M., & Pratt, R. G. (2001). Operation and Maintenance. In J. F. Kreider (Ed.), Handbook of heating, Ventilation, and Air Conditioning. CRC Press LLC.Candanedo, I. S., Nieves, E. H., González, S. R., Martín, M. T. S., & Briones, A. G. (2018). Machine Learning Predictive Model for Industry 4.0. In L. Uden, B. Hadzima, & I.-H. Ting (Eds.), Knowledge Management in Organizations (pp. 501–510). Springer International Publishing.Cerquitelli, T., Nikolakis, N., O’Mahony, N., Macii, E., Ippolito, M., & Makris, S. (Eds.). (2021). Predictive Maintenance in Smart Factories. Springer Singapore. https://doi.org/10.1007/978-981-16-2940-2Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE). Geoscientific Model Development Discussions, 7(1), 1525–1534.Danfoss A/S. (2017). Datasheet. Pressure Switch and Thermostat. In AI000086439001en-001001 (pp. 1–20).Das, K., Jiang, J., & Rao, J. N. K. (2004). Mean squared error of empirical predictor. The Annals of Statistics, 32(2), 818–840.del Val Román, J. L. (2016). Industria 4.0: la transformación digital de la industria. Valencia: Conferencia de Directores y Decanos de Ingeniería Informática, Informes CODDII.Diercks, P., Gläser, D., Lünsdorf, O., Selzer, M., Flemisch, B., & Unger, J. F. (2022). Evaluation of tools for describing, reproducing and reusing scientific workflows.Ebert, C., Abrahamsson, P., & Oza, N. (2012). Lean software development. IEEE Software, 29(05), 22–25.Echavarria Ortiz, H. N. (2022). Aplicación de machine learning para la enseñanza – aprendizaje de competencias ciudadanas en educación media del Colegio de Boyacá. https://repository.usta.edu.co/handle/11634/47603#.Y4pGaRabz-o.mendeleyECOPETROL S.A. (2018). Especificaciones tecnicas para el servicio de mantenimiento de sistemas de aire acondicionado de la Gerencia Refineria de Barrancabermeja de ECOPETROL S.A.Elallaoui, M., Nafil, K., & Touahni, R. (2018). Automatic Transformation of User Stories into UML Use Case Diagrams using NLP Techniques. Procedia Computer Science, 130, 42–49. https://doi.org/10.1016/j.procs.2018.04.010Es-sakali, N., Cherkaoui, M., Mghazli, M. O., & Naimi, Z. (2022). Review of predictive maintenance algorithms applied to HVAC systems. Energy Reports, 8, 1003–1012. https://doi.org/10.1016/j.egyr.2022.07.130Esteki, M., Javdani Gandomani, T., & Khosravi Farsani, H. (2020). A risk management framework for distributed scrum using PRINCE2 methodology. Bulletin of Electrical Engineering and Informatics, 9(3), 1299–1310. https://doi.org/10.11591/eei.v9i3.1905Fernando, J. (2021, September 12). R-Squared Formula, Regression, and Interpretations. Investopedia.Com/ Corporate Finance / Financial Analysis. https://www.investopedia.com/terms/r/r-squared.asp#:~:text=R%2Dsquared%20values%20range%20from,)%20you%20are%20interested%20in).Gelman, A., Goodrich, B., Gabry, J., & Vehtari, A. (2019). R-squared for Bayesian Regression Models. The American Statistician, 73(3), 307–309. https://doi.org/10.1080/00031305.2018.1549100Gonzalez Ajuech, V. L. (2017). Mantenimiento: tecnicas y aplicaciones industriales. Grupo Editorial Patria. https://elibro.net/es/lc/usta/titulos/40508Heras del Dedo, R. de las, & Alvarez Garcia, A. (2017). Metodos agiles: Scrum, Kanban, Lean. Difusora Larousse - Anaya Multimedia. https://elibro.net/es/lc/usta/titulos/122933Hosamo, H. H., Svennevig, P. R., Svidt, K., Han, D., & Nielsen, H. K. (2022). A Digital Twin predictive maintenance framework of air handling units based on automatic fault detection and diagnostics. Energy and Buildings, 261, 111988. https://doi.org/10.1016/j.enbuild.2022.111988Instituto de Hidrología, M. y E. A.-I. (2023). Altas Climatologico. Http://Atlas.Ideam.Gov.Co/VisorAtlasClimatologico.Html.Jimenez Raya, F. (2015). Mantenimiento preventivo de sistemas de automatizacion industrial. ELEM0311. IC Editorial. https://elibro.net/es/lc/usta/titulos/59239Joshi, A. V. (2020). Machine Learning and Artificial Intelligence. Springer International Publishing. https://doi.org/10.1007/978-3-030-26622-6Ke, Y., Mulumba, T., Shen, W., & Afshari, A. (2014, May 18). Model-based predictive maintenance of chillers. ACRA 2014 - Proceedings of the 7th Asian Conference on Refrigeration and Air Conditioning.Kubat, M. (2017). An Introduction to Machine Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-63913-0L’Esteve, R. C. (2021). The Definitive Guide to Azure Data Engineering. Apress. https://doi.org/10.1007/978-1-4842-7182-7Martínez, R., Parkinson, C., Caruso, M., López, D., Vargas, R., & Rojas, N. (2022). Propuesta de técnicas de validación para la calidad de datos abiertos e identificación de patrones para predicciones con Machine Learning. XXIV Workshop de Investigadores En Ciencias de La Computación (WICC 2022, Mendoza).Microsoft. (2022). Documentación de ML.NET. https://learn.microsoft.com/es-es/dotnet/machine-learning/Microsoft. (2022). Documentación de Visual Studio. https://learn.microsoft.com/es-es/visualstudio/Microsoft. (2022). Documentacion SQL Server Management Studio (SSMS). https://learn.microsoft.com/es-es/sql/ssms/sql-server-management-studio-ssmsMonroy Mejia, M. de los A., & Nava Sanchezllanes, N. (2018). Metodologia de la investigacion. Grupo Editorial Exodo. https://elibro.net/es/lc/usta/titulos/172512Oficina Asesora de Planeacion y Estudios Sectoriales. (2019). Aspectos Basicos de la Industria 4.0. Ministerio de Tecnologias de la Informacion y las Comunicaciones. Republica de Colombia.O’hEocha, C., & Conboy, K. (2010). The Role of the User Story Agile Practice in Innovation (pp. 20–30). https://doi.org/10.1007/978-3-642-16416-3_3Ohta, R. (2018). SELECTION OF INDUSTRIAL MAINTENANCE STRATEGY: CLASSICAL AHP AND FUZZY AHP APPLICATIONS. International Journal of the Analytic Hierarchy Process, 10(2). https://doi.org/10.13033/ijahp.v10i2.551Panesar, A. (2021). Evaluating Machine Learning Models. In Machine Learning and AI for Healthcare (pp. 189–205). Apress. https://doi.org/10.1007/978-1-4842-6537-6_7Panfilov, P., & Katona, A. (2018). Building Predictive Maintenance Framework for Smart Environment Application Systems (pp. 0460–0470). https://doi.org/10.2507/29th.daaam.proceedings.068Periyasamy, K., & Chianelli, J. (2021). A project tracking tool for scrum projects with machine learning support for cost estimation. EPiC Series in Computing, 76, 86–94. https://doi.org/10.29007/6vwhRodal Montero, E. (2020). Industria 4.0: conceptos, tecnologias habilitadoras y retos. Difusora Larousse - Ediciones Piramide. https://elibro.net/es/lc/usta/titulos/216140Salvaris, M., Dean, D., & Tok, W. H. (2018). Deep Learning with Azure. Apress. https://doi.org/10.1007/978-1-4842-3679-6Sandoval, R. (2022). IoT: La conexión con la industria del mañana. Mundo HVAC&R.Santiago, A. R., Antunes, M., Barraca, J. P., Gomes, D., & Aguiar, R. L. (2019). Predictive Maintenance System for Efficiency Improvement of Heating Equipment. 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (BigDataService), 93–98. https://doi.org/10.1109/BigDataService.2019.00019Santos Sanchez, G. A., & Castro Barrera, M. A. (2022). Metodologia de valoracion de riesgo de equipo electrico: evaluacion basada en el conocimiento experto. https://cimga.com/Sanzana, M. R., Maul, T., Wong, J. Y., Abdulrazic, M. O. M., & Yip, C.-C. (2022). Application of deep learning in facility management and maintenance for heating, ventilation, and air conditioning. Automation in Construction, 141, 104445. https://doi.org/10.1016/J.AUTCON.2022.104445Saturno, M., Pertel, V., & Deschamps, F. (2017). Proposal of an automation solutions architecture for Industry 4.0.Sedeño, J., Schön, E.-M., Torrecilla-Salinas, C., Thomaschewski, J., Escalona, M. J., & Mejias, M. (2017). Modelling agile requirements using context-based persona stories. WEBIST 2017 - Proceedings of the 13th International Conference on Web Information Systems and Technologies, 196–203. https://doi.org/10.5220/0006220301960203SIEMENS. (2023). SIEMENS MindSphere. https://new.siemens.com/co/es/productos/software/mindsphere.htmlSrinivasan, R., Tamzeed Islam, M., Islam, B., Wang, Z., Sookoor, T., Gnawali, O., & Nirjon, S. (2017, August 7). Preventive Maintenance of Centralized HVAC Systems: Use of Acoustic Sensors, Feature Extraction, and Unsupervised Learning. https://doi.org/10.26868/25222708.2017.715Stanfield, C., & Skaves, D. (2013). Fundamentals of HVACR (A. Vernon R, Ed.; 2nd ed.). PEARSON.Subih, M. A., Malik, B. H., Mazhar, I., Sabir, U., Wakeel, T., Wajid, A., Yousaf, A., Nawaz, H., & Suleman, M. (2019). Comparison of agile method and scrum method with software quality affecting factors. International Journal of Advanced Computer Science and Applications, 10(5).Sukhodolov, Y. A. (2019). The Notion, Essence, and Peculiarities of Industry 4.0 as a Sphere of Industry. In E. G. Popkova, Y. V Ragulina, & A. V Bogoviz (Eds.), Industry 4.0: Industrial Revolution of the 21st Century (pp. 3–10). Springer International Publishing. https://doi.org/10.1007/978-3-319-94310-7_1Taibi, D., Lenarduzzi, V., Janes, A., Liukkunen, K., & Ahmad, M. O. (2017). Comparing Requirements Decomposition Within the Scrum, Scrum with Kanban, XP, and Banana Development Processes (pp. 68–83). https://doi.org/10.1007/978-3-319-57633-6_5Trivedi, S., Bhola, S., Talegaonkar, A., Gaur, P., & Sharma, S. (2019). Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), 1–6. https://doi.org/10.1109/ISAP48318.2019.9065995Urbieta, M., Antonelli, L., Rossi, G., & do Prado Leite, J. C. S. (2020). The impact of using a domain language for an agile requirement management. Information and Software Technology, 127. https://doi.org/10.1016/j.infsof.2020.106375Vijayaraghavan, V., & Rian Leevinson, J. (2019). Internet of Things Applications and Use Cases in the Era of Industry 4.0 (pp. 279–298). https://doi.org/10.1007/978-3-030-24892-5_12Wautelet, Y., Gielis, D., Poelmans, S., & Heng, S. (2019). Evaluating the impact of user stories quality on the ability to understand and structure requirements. In Lecture Notes in Business Information Processing (Vol. 369). https://doi.org/10.1007/978-3-030-35151-9_1WEG. (2023). WEG IOT Platform. https://iot.weg.net/#/portal/homeYang, C., Chen, Q., Shen, W., & Gunay, B. (2017). Toward failure mode and effect analysis for heating, ventilation and air-conditioning. 2017 IEEE 21st International Conference on Computer Supported Cooperative Work in Design (CSCWD), 408–413. https://doi.org/10.1109/CSCWD.2017.8066729Yang, C., Gunay, B., Shi, Z., & Shen, W. (2021). Machine Learning-Based Prognostics for Central Heating and Cooling Plant Equipment Health Monitoring. IEEE Transactions on Automation Science and Engineering, 18(1), 346–355. https://doi.org/10.1109/TASE.2020.2998586Yang, C., Shen, W., Chen, Q., & Gunay, B. (2018). A practical solution for HVAC prognostics: Failure mode and effects analysis in building maintenance. Journal of Building Engineering, 15, 26–32. https://doi.org/10.1016/j.jobe.2017.10.013Yang, C., Shen, W., Gunay, B., & Shi, Z. (2019). Toward machine learning-based prognostics for heating ventilation and air-conditioning systems. ASHRAE Transactions Volume 125, 106–115.YORK International. Jhonson Controls. (2004). Installation manual. Predator. Single package air conditioners and single package electric units DM090, 120 and 150. 7-1/2 TO 12 1/2 TO (380V, 3Phase, 60 HZ). In 035-17311-003-A-0704. Jhonson Controls.Yuliansyah, H., Qudsiah, S. N., Zahrotun, L., & Arfiani, I. (2018). Implementation of use case point as software effort estimation in Scrum Framework. IOP Conference Series: Materials Science and Engineering, 403(1). https://doi.org/10.1088/1757-899X/403/1/012085Zhang, J., Liu, C., & Gao, R. X. (2022). Physics-guided Gaussian process for HVAC system performance prognosis. Mechanical Systems and Signal Processing, 179, 109336. https://doi.org/10.1016/j.ymssp.2022.109336CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/51260/5/license_rdf217700a34da79ed616c2feb68d4c5e06MD55open accessORIGINAL2023quirogajose1.pdf2023quirogajose1.pdfDocumento principalapplication/pdf3062907https://repository.usta.edu.co/bitstream/11634/51260/1/2023quirogajose1.pdf57b5d1341c25d81075bd89bedf97107eMD51open access2023quirogajose2.pdf2023quirogajose2.pdfManual de usuario de la aplicaciónapplication/pdf413670https://repository.usta.edu.co/bitstream/11634/51260/2/2023quirogajose2.pdfd07ed222569241000c983c94eb4cc1f6MD52open accessCarta autorización de facultadCarta autorización de facultadCarta de aprobación de facultadapplication/pdf262764https://repository.usta.edu.co/bitstream/11634/51260/3/Carta%20autorizaci%c3%b3n%20de%20facultadff04bb890ed5ca259393c705931b9d04MD53metadata only accessCarta de derechos de autor.pdfCarta de derechos de autor.pdfCarta de derechos de autorapplication/pdf360405https://repository.usta.edu.co/bitstream/11634/51260/4/Carta%20de%20derechos%20de%20autor.pdf64630d8ffc93b715a73443d66d8be735MD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/51260/6/license.txtaedeaf396fcd827b537c73d23464fc27MD56open accessTHUMBNAIL2023quirogajose1.pdf.jpg2023quirogajose1.pdf.jpgIM Thumbnailimage/jpeg5562https://repository.usta.edu.co/bitstream/11634/51260/7/2023quirogajose1.pdf.jpg1e7bb7be1fceef4c66fc06ca8fdc1d8cMD57open access2023quirogajose2.pdf.jpg2023quirogajose2.pdf.jpgIM Thumbnailimage/jpeg5944https://repository.usta.edu.co/bitstream/11634/51260/8/2023quirogajose2.pdf.jpg7a8994cf872155413fa54007c097ed7dMD58open accessCarta autorización de facultad.jpgCarta autorización de facultad.jpgIM Thumbnailimage/jpeg8437https://repository.usta.edu.co/bitstream/11634/51260/9/Carta%20autorizaci%c3%b3n%20de%20facultad.jpge25eea64680bcf5e85eb1b81c14f2775MD59open accessCarta de derechos de autor.pdf.jpgCarta de derechos de autor.pdf.jpgIM Thumbnailimage/jpeg7839https://repository.usta.edu.co/bitstream/11634/51260/10/Carta%20de%20derechos%20de%20autor.pdf.jpg18f6bcc4342e9ea4c34cf9aa05fff6b9MD510open access11634/51260oai:repository.usta.edu.co:11634/512602023-07-14 03:07:59.541open accessRepositorio Universidad Santo Tomásnoreply@usta.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K