Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol

El uso de los medicamentos convencionales ha traído consigo diferentes efectos secundarios en el cuerpo humano como resultado a la liberación inmediata del principio activo. Adicionalmente, la cascarilla de arroz es un desecho agrícola generado en grandes cantidades provocando problemas de contamina...

Full description

Autores:
García Niño, Laura Milena
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/34871
Acceso en línea:
http://hdl.handle.net/11634/34871
Palabra clave:
Controlled release
Letrozole
Mesoporous silica nanoparticles
Rice husk
Arroz - Abonos y fertilizantes
Residuos agrícolas
Cascarilla de arroz
Cascarilla de arroz
Letrozol
Liberación controlada
Nanopartículas de sílice mesoporosa
Rights
closedAccess
License
Acceso cerrado
id SANTTOMAS2_dac5d74d3b1895b545a1833623496e94
oai_identifier_str oai:repository.usta.edu.co:11634/34871
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol
title Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol
spellingShingle Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol
Controlled release
Letrozole
Mesoporous silica nanoparticles
Rice husk
Arroz - Abonos y fertilizantes
Residuos agrícolas
Cascarilla de arroz
Cascarilla de arroz
Letrozol
Liberación controlada
Nanopartículas de sílice mesoporosa
title_short Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol
title_full Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol
title_fullStr Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol
title_full_unstemmed Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol
title_sort Evaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozol
dc.creator.fl_str_mv García Niño, Laura Milena
dc.contributor.advisor.none.fl_str_mv Candela Soto, Angélica María
dc.contributor.author.none.fl_str_mv García Niño, Laura Milena
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Controlled release
Letrozole
Mesoporous silica nanoparticles
Rice husk
topic Controlled release
Letrozole
Mesoporous silica nanoparticles
Rice husk
Arroz - Abonos y fertilizantes
Residuos agrícolas
Cascarilla de arroz
Cascarilla de arroz
Letrozol
Liberación controlada
Nanopartículas de sílice mesoporosa
dc.subject.lemb.spa.fl_str_mv Arroz - Abonos y fertilizantes
Residuos agrícolas
Cascarilla de arroz
dc.subject.proposal.spa.fl_str_mv Cascarilla de arroz
Letrozol
Liberación controlada
Nanopartículas de sílice mesoporosa
description El uso de los medicamentos convencionales ha traído consigo diferentes efectos secundarios en el cuerpo humano como resultado a la liberación inmediata del principio activo. Adicionalmente, la cascarilla de arroz es un desecho agrícola generado en grandes cantidades provocando problemas de contaminación. Por ende, esta propuesta de investigación evaluó la cinética de liberación del letrozol empleando como material de soporte las nanopartículas de sílice mesoporosa obtenidas a partir de la cascarilla de arroz. La síntesis de las nanopartículas se realizó mediante el método Sol-gel y se caracterizó mediante FTIR y TEM. Los resultados obtenidos evidenciaron una liberación controlada con acción prolongada, ajustándose mejor al modelo cinético de primer orden debido a que el letrozol es liberado de forma proporcional al gradiente de concentración.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-13T00:14:50Z
dc.date.available.none.fl_str_mv 2021-07-13T00:14:50Z
dc.date.issued.none.fl_str_mv 2021-07-07
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv García Niño, L. M. (2021). Evaluación de nanopartículas de sílice mesoporosa de la cascarilla de arroz como sistema de liberación controlada del letrozol. [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/34871
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv García Niño, L. M. (2021). Evaluación de nanopartículas de sílice mesoporosa de la cascarilla de arroz como sistema de liberación controlada del letrozol. [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/34871
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abo-El-Enein, S. A., Eissa, M. A., Diafullah, A. A., Rizk, M. A., & Mohamed, F. M. (2009). Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash. Journal of Hazardous Materials, 172(2–3), 574–579. https://doi.org/10.1016/j.jhazmat.2009.07.036
Abu-Thabit, N. Y., & Makhlouf, A. S. H. (2018). Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. En Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume 1: Types and Triggers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101997-9.00001-1
Adam, F., Chew, T. S., & Andas, J. (2011). A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass. Journal of Sol-Gel Science and Technology, 59(3), 580–583. https://doi.org/10.1007/s10971-011-2531-7
Adira Jaafar, J., Hidayatul Nazirah Kamarudin, N., Dina Setiabudi, H., Najiha Timmiati, S., & Lee Peng, T. (2019). Mesoporous Silica Nanoparticles and Waste Derived-Siliceous Materials for Doxorubicin Adsorption and Release. Materials Today: Proceedings, 19, 1420–1425. https://doi.org/10.1016/j.matpr.2019.11.163
Akçay, H. T., & Bayrak, R. (2014). Computational studies on the anastrozole and letrozole, effective chemotherapy drugs against breast cancer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 122, 142–152. https://doi.org/10.1016/j.saa.2013.11.028
Aquib, M., Farooq, M. A., Banerjee, P., Akhtar, F., Filli, M. S., Boakye-Yiadom, K. O., Kesse, S., Raza, F., Maviah, M. B. J., Mavlyanova, R., & Wang, B. (2019). Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use. Journal of Biomedical Materials Research - Part A, 107(12), 2643–2666. https://doi.org/10.1002/jbm.a.36770
Arcos, C., Pinto, D., & Jorge, R. (2007). La cascarilla de arroz como fuente de SiO 2 Husk of rice as source of SiO 2.
Artioli, Y. (2008). Adsorption. Encyclopedia of Ecology, Five-Volume Set, 60–65. https://doi.org/10.1016/B978-008045405-4.00252-4
Bayat, M., & Nasri, S. (2019). Injectable microgel-hydrogel composites “plum pudding gels”: New system for prolonged drug delivery. En Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00001-1
Bernal Vargas, A., & Carvajal Cano, L. P. (2019). Evaluación De Un Biocomposito Elaborado Con Residuos Agroindustriales Del Cultivo De Arroz ( Cascarilla Y Tamo ) Y Su Potencial Aplicación En Viviendas De Interés Social , Paz Evaluación De Un Biocomposito Elaborado Con Residuos Agroindustriales Del Culti.
Brushi, M. L. (2021). Strategies to Modify the Drug Release from Pharmaceutical Systems. ChemicalBook. (2017). Letrozole. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB9286355.htm
Chen, Y., Ai, K., Liu, J., Sun, G., Yin, Q., & Lu, L. (2015). Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials, 60, 111–120. https://doi.org/10.1016/j.biomaterials.2015.05.003
Chun, J., Mo Gu, Y., Hwang, J., Oh, K. K., & Lee, J. H. (2019). Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.08.064
Crucho, C. I. C. (2015). Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem, 10(1), 24–38. https://doi.org/10.1002/cmdc.201402290
Cullity, B. D. (1956). Elements of X-Ray Diffraction Addison-Wesley Metallurgy Series. Journal of Chemical Information and Modeling, 53, 1689–1699.
DANE. (2017). Metodología general encuesta nacional de arroz mecanizado ENAM.
Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Review kinetic modeling on drug release from controlled drug delivery systems. 67(3), 217–223.
Deeks, E. D., & Scott, L. J. (2009). Exemestane: A review of its use in postmenopausal women with breast cancer. Drugs, 69(7), 889–918. https://doi.org/10.2165/00003495-200969070-00007
Delhi, N. (2015). Pharmaceutical Summit and. 2(5).
Domínguez, P. (2005). Formas farmacéuticas de liberacion modificada y estereoisómeros ¿Nos aportan algo en la práctica clínica? Boletin de informacion Farmacoterapéutica de Navarra, 13, 1–10.
Duarte, C. (2015). El cáncer de mama , desafío mundial Breast cancer , global challenge. Revista Colombiana de Cancerología, 19(1), 1–2.
Espinoza Silva, C. V. (2015). Síntesis de nanopartículas potenciales vehículos. 1–82.
Foladori, G. (2016). Políticas Públicas En Nanotecnología En América Latina. Problemas del Desarrollo, 47(186), 59–81. https://doi.org/10.1016/j.rpd.2016.03.002
Gao, L., Sun, J., & Li, Y. (2011). Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery. Journal of Solid State Chemistry, 184(8), 1909–1914. https://doi.org/10.1016/j.jssc.2011.05.052
Gómez, N. L. (2016). Nanopartículas estímulo-respuesta para la liberación de fármacos. 45(5), 2016.
Gómez, N. L. (2017). Nanopartículas estímulo-respuesta para la liberación de fármacos.
Heng, P. W. S. (2018). Controlled release drug delivery systems. Pharmaceutical Development and Technology, 23(9), 833. https://doi.org/10.1080/10837450.2018.1534376
Hospital Severo Ochoa. (s/f). Glosario de algunos terminos farmacocinéticos y biofarmacéuticos. 1–6.
Hospital Universitario Fundación Jiménez Díaz. (2019). Letrozol. http://www.oncohealth.eu/es/area-paciente/cancer/informacion-soporte-paciente/informacion-general/tratamiento/terapia-hormonal/listado-farmacos/letrozol
Hu, B., He, M., & Chen, B. (2019). Magnetic nanoparticle sorbents. En Solid-Phase Extraction. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816906-3.00009-1
Huo, Q. (2011). Synthetic Chemistry of the Inorganic Ordered Porous Materials. En Modern Inorganic Synthetic Chemistry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-53599-3.10016-2
IDEAM, UPME, UIS, & COLCIENCIAS. (s/f). Atlas del Potencial Energético de la Biomasa Residual en Colombia.
Indurkhya, A., Patel, M., Sharma, P., Abed, S. N., Shnoudeh, A., Maheshwari, R., Deb, P. K., & Tekade, R. K. (2018). Influence of Drug Properties and Routes of Drug Administration on the Design of Controlled Release System. En Dosage Form Design Considerations: Volume I. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814423-7.00006-X
Jafari, S., Derakhshankhah, H., Alaei, L., & Fattahi, A. (2019). Biomedicine & Pharmacotherapy Mesoporous silica nanoparticles for therapeutic / diagnostic applications. Biomedicine & Pharmacotherapy, 109(October 2018), 1100–1111. https://doi.org/10.1016/j.biopha.2018.10.167
Jimenez Herrera, M. P. (2018). Cáncer de Mama y Cuello Uterino. Informe De Evento, 03, 2–15. https://www.ins.gov.co/buscador-eventos/Informesdeevento/CÁNCER DE MAMA Y CUELLO UTERINO SEMESTRE I 2018.pdf
Jong, W. H. De, & Paul, J. B. (2008). Drug delivery and nanoparticles : Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149.
Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles : Properties , applications and toxicities. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.011
Kim, B., Rutka, J., & Chan, W. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434–2443. https://doi.org/10.1056/NEJMra0912273
Kresge, C. T., Vartuli, J. C., Roth, W. J., & Leonowicz, M. E. (2004). The discovery of ExxonMobil’s M41S family of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 148, 53–72. https://doi.org/10.1016/s0167-2991(04)80193-9
Kumar., Chaubal, M., Domb, A. J., & Majeti, R. K. N. V. (2002). Controlled Release Technology. Encyclopedia of Polymer Science and Technology, 5. https://doi.org/10.1002/0471440264.pst436
Kumar, S., Malik, M. M., & Purohit, R. (2017). Synthesis Methods of Mesoporous Silica Materials. Materials Today: Proceedings, 4(2), 350–357. https://doi.org/10.1016/j.matpr.2017.01.032
Lammers, T., Aime, S., Hennink, W. I. M. E., Storm, G., & Kiessling, F. (2011). Theranostic Nanomedicine. https://doi.org/10.1021/ar200019c
Le, V. H., Thuc, C. N. H., & Thuc, H. H. (2013). Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Research Letters, 8(1), 58. https://doi.org/10.1186/1556-276x-8-58
Li, Barnes, J. C., Aleksandr, B., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590–2605. https://doi.org/10.1039/c1cs15246g
Li, J., Shen, S., Kong, F., Jiang, T., Tang, C., & Yin, C. (2018). Effects of pore size on: In vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Advances, 8(43), 24633–24640. https://doi.org/10.1039/c8ra03914c
Lin, Y.-S. (2012). Critical Considerations in Development of Mesoporous Silica Nanoparticles for Biological Applications. The Journal of Physical Chemistry Letters, 3, 364–374.
Liu, Y., Li, K., Mohideen, M., & Ramakrishna, S. (2019). Fiber membranes obtained by melt electrospinning for drug delivery. 173–195. https://doi.org/10.1016/B978-0-12-816220-0.00009-9
Lozano, C. (2020). Alternativa de usos de la cascarilla de arroz (Oriza sativa) en Colombia para el mejoramiento del sector productivo y la industria. Universidad Nacional Abierta y a Distancia - UNAD, 67. https://repository.unad.edu.co/bitstream/handle/10596/33698/cllozanor.pdf?sequence=1&isAllowed=y
Lu, Y., Sun, W., & Gu, Z. (2014). Stimuli-responsive nanomaterials for therapeutic protein delivery. Journal of Controlled Release, 194, 1–19. https://doi.org/10.1016/j.jconrel.2014.08.015
Lyddy, R. (2009). Nanotechnology. Information Resources in Toxicology, 321–328. https://doi.org/10.1016/B978-0-12-373593-5.00036-7
Manju, S., & Sreenivasan, K. (2010). Functionalised nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials: Science and Design, 267–297. https://doi.org/10.1533/9781845699802.2.267
McNeil, S. E. (2005). Nanotechnology for the biologist. Journal of Leukocyte Biology, 78(3), 585–594. https://doi.org/10.1189/jlb.0205074
Mehtani, D., Seth, A., Sharma, P., Maheshwari, N., Kapoor, D., Shrivastava, S. K., & Tekade, R. K. (2019). Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules. En Biomaterials and Bionanotechnology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814427-5.00004-4
Mhlanga, N., & Sinha, S. (2015). International Journal of Biological Macromolecules Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide / metal oxide-based hybrids. International Journal of Biological Macromolecules, 72, 1301–1307. https://doi.org/10.1016/j.ijbiomac.2014.10.038
Ministerio de Salud. (s/f). Qué es la sangre. https://www.minsal.cl/dona-sangre/que-es-la-sangre/ Ministerio de Salud y Protección Social de Colombia. (s/f). Cáncer de mama. https://www.minsalud.gov.co/salud/publica/ssr/Paginas/Cancer-de-mama.aspx
Ministerio de Salud y Protección Social, & Instituto Nacional de Cancerología. (2012). El cáncer de mama: un problema creciente en Colombia. Hechos y Acciones, 4(2), 1–2. https://www.cancer.gov.co/files/libros/archivos/95685f345e64aa9f0fece8a589b5acc3_BOLETIN HECHOS Y ACCIONES MAMA.PDF
Ministerio de Sanidad Política Social e Igualdad. (s/f). Ficha Técnica Femara 2,5 mg. https://cima.aemps.es/cima/pdfs/es/ft/61628/FT_61628.pdf
Mitran, R., Deaconu, M., Matei, C., & Berger, D. (2019). Chapter 11 - Mesoporous Silica as Carrier for Drug-Delivery Systems. 351–374. https://doi.org/https://doi.org/10.1016/B978-0-12-814033-8.00011-4
Monotta, J. J. (2017). Evaluación de la cinética de liberación de un fármaco modelo con clasificación biofermacéutica clase II, desde matrices comprimidas compuestas por materiales poliméricos aniónicos.
Musić, S., Filipović-Vinceković, N., & Sekovanić, L. (2011). Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering, 28(1), 89–94. https://doi.org/10.1590/S0104-66322011000100011
Niculescu, V. C. (2020). Mesoporous Silica Nanoparticles for Bio-Applications. Frontiers in Materials, 7(February). https://doi.org/10.3389/fmats.2020.00036
Osman, A. I., Abdelkader, A., Farrell, C., Rooney, D., & Morgan, K. (2019). Reusing, recycling and up-cycling of biomass: A review of practical and kinetic modelling approaches. Fuel Processing Technology, 192(May), 179–202. https://doi.org/10.1016/j.fuproc.2019.04.026
Páez, O. L., Navarro, A. R., Páez, C. A. J., & Herrera, L. F. R. (2016). Rice husk as an alternative in decontamination processes. Scielo, 2. https://doi.org/http://dx.doi.org/10.22507/pml.v11n2a12
Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5), 3729–3749. https://doi.org/10.1007/s10854-020-02994-8
Pareek, V., Bhargava, A., Gupta, R., Jain, N., & Panwar, J. (2017). Synthesis and Applications of Noble Metal Nanoparticles: A Review. Advanced Science, Engineering and Medicine, 9(7), 527–544. https://doi.org/10.1166/asem.2017.2027
Park, K. (2013). Facing the Truth about Nanotechnology in Drug Delivery. 9, 7442–7447.
Peñaranda, L. V., Montenegro, S. P., & Giraldo, P. A. (2018). Aprovechamiento de Residuos Agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8(2), 141–150.
Permanadewi, I., Kumoro, A. C., Wardhani, D. H., & Aryanti, N. (2019). Modelling of controlled drug release in gastrointestinal tract simulation. Journal of Physics: Conference Series, 1295(1), 0–8. https://doi.org/10.1088/1742-6596/1295/1/012063
Petrovska, B. B. (2012). Historical review of medicinal plants’ usage. Pharmacognosy Reviews, 6(11), 1–5. https://doi.org/10.4103/0973-7847.95849
Piñeros, Y. (2016). Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigación en Colombia.
Prasad, S., Kumar, V., Kirubanandam, S., & Barhoum, A. (2018). Engineered nanomaterials: nanofabrication and surface functionalization. En Emerging Applications of Nanoparticles and Architecture Nanostructures (pp. 305–340). Elsevier. https://doi.org/10.1016/B978-0-323-51254-1.00011-7
Purnawira, B., Purwaningsih, H., Ervianto, Y., Pratiwi, V. M., Susanti, D., Rochiem, R., & Purniawan, A. (2019). Synthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012018
Rafique, M., Shaikh, A. J., Rasheed, R., Tahir, M. B., Bakhat, H. F., Rafique, M. S., & Rabbani, F. (2017). A Review on Synthesis, Characterization and Applications of Copper Nanoparticles Using Green Method. Nano, 12(04), 1750043. https://doi.org/10.1142/S1793292017500436
Rodin, A. (1911). Adsorption.
Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - Opportunities & challenges. Nanoscale, 2(10), 1870–1883. https://doi.org/10.1039/c0nr00156b
Saboktakin, M. R. (2017). Synthesis and Characterization of Biodegradable Thiolated Chitosan Nanoparticles as Targeted Drug Delivery System. Journal of Nanomedicine & Nanotechnology, s4(4), 1–4. https://doi.org/10.4172/2157-7439.s4-001
Sáez, V., Hernáez, E., & López, L. (2003). Liberación controlada de fármacos. aplicaciones biomédicas. 4(2), 111–122.
Sajid, M., & Akash, H. (s/f). Drug Stability and Chemical Kinetics.
Saputra, R. (2019). Letrozol KEMEX. Journal of Chemical Information and Modeling, 53(9), 1689–1699.
SDBS. (s/f). Sodium metasilicate hidrate. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
Shi, J., Votruba, A. R., Farokhzad, O. C., & Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 10(9), 3223–3230. https://doi.org/10.1021/nl102184c
Singh, B. (2018). Rice husk ash. En Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102156-9.00013-4
Sodeifian, G., & Sajadian, S. A. (2018). Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). Journal of Supercritical Fluids, 133(August 2017), 239–252. https://doi.org/10.1016/j.supflu.2017.10.015
Spruill, W., Wade, W., Dipiro, J., Blouin, R., & Pruemer, J. (2014). Concepts in clinical pharmacokinetics. Sixth edit, 1–18.
Tang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504–1534. https://doi.org/10.1002/adma.201104763
Thompson, M. T. (2014). Review of Diode Physics and the Ideal (and Later, Nonideal) Diode. En Intuitive Analog Circuit Design. https://doi.org/10.1016/b978-0-12-405866-8.00003-6
Tibbitt, M. W., Dahlman, J. E., & Langer, R. (2016). Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 138(3), 704–717. https://doi.org/10.1021/jacs.5b09974
Tran, T. N., Pham, T. V. A., Le, M. L. P., Nguyen, T. P. T., & Tran, V. M. (2013). Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(4). https://doi.org/10.1088/2043-6262/4/4/045007
Ullattil, S. G., & Periyat, P. (2017). Sol-Gel Synthesis of Titanium Dioxide Chapter 9 Sol-Gel Synthesis of Titanium Dioxide. Advances in Sol-Gel Derived Materials and Technologies, February, 271–283. https://doi.org/10.1007/978-3-319-50144-4
Universidad de Valencia. (2013). Tema 7. Superficies sólidas: adsorción y catálisis heterogénea. Departamento de Quimica y fisica., 28. http://www.academia.edu/download/39329863/tema_7_parte_1_ads_completa.pdf
Universidad Popular del Cesar. (s/f). Liberación controlada de fármacos. 1–40.
Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous materials for drug delivery. Angewandte Chemie - International Edition, 46(40), 7548–7558. https://doi.org/10.1002/anie.200604488
Vaz, S. (s/f). Biomass and Green Chemistry.
Vazquez, N. I., Gonzalez, Z., Ferrari, B., & Castro, Y. (2017). Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 56(3), 139–145. https://doi.org/10.1016/j.bsecv.2017.03.002
Vergara‐Castañeda, H. A., Luna‐Bárcenas, G., & Pool, H. (2020). Emerging and Potential Bio‐Applications of Agro‐Industrial By‐products Through Implementation of Nanobiotechnology. Food Wastes and By‐products, 413–443. https://doi.org/10.1002/9781119534167.ch14
Weissig, V., Pettinger, T. K., & Murdock, N. (2014). Nanopharmaceuticals (part 1): products on the market. International journal of nanomedicine, 9, 4357–4373. https://doi.org/10.2147/IJN.S46900
Worathanakul, P., Payubnop, W., & Muangpet, A. (2009). Characterization for post-treatment effect of bagasse ash for silica extraction. World Academy of Science, Engineering and Technology, 56(August 2009), 360–362. https://doi.org/10.5281/zenodo.1062185
Yanes, R. E., Lu, J., & Tamanoi, F. (2012). Nanoparticle-Based Delivery of siRNA and miRNA for Cancer Therapy (Vol. 32, pp. 185–203). https://doi.org/10.1016/B978-0-12-404741-9.00009-X
Yun, Y. H., Lee, B. K., & Park, K. (2015). NU SC. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2015.10.005
dc.rights.local.spa.fl_str_mv Acceso cerrado
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Acceso cerrado
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Química Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Química Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/34871/1/2021GarciaLaura.pdf
https://repository.usta.edu.co/bitstream/11634/34871/2/2021GarciaLaura1.pdf
https://repository.usta.edu.co/bitstream/11634/34871/3/2021GarciaLaura2.pdf
https://repository.usta.edu.co/bitstream/11634/34871/4/license.txt
https://repository.usta.edu.co/bitstream/11634/34871/5/2021GarciaLaura.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/34871/6/2021GarciaLaura1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/34871/7/2021GarciaLaura2.pdf.jpg
bitstream.checksum.fl_str_mv 5cdceaece51b35954f3287bab10b8d9d
1b0e775836741349724af9a7029afc3a
40725b0bbd042174bcd99db0db391b01
aedeaf396fcd827b537c73d23464fc27
29dac9d28431be5d5ffbcaab28632905
9b21cdff6272595d8f76ac176d4cc6d2
3d28a21da2fc09de8cd4a1a5bab0ac63
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026117878644736
spelling Candela Soto, Angélica MaríaGarcía Niño, Laura MilenaUniversidad Santo Tomás2021-07-13T00:14:50Z2021-07-13T00:14:50Z2021-07-07García Niño, L. M. (2021). Evaluación de nanopartículas de sílice mesoporosa de la cascarilla de arroz como sistema de liberación controlada del letrozol. [Tesis de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia.http://hdl.handle.net/11634/34871reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl uso de los medicamentos convencionales ha traído consigo diferentes efectos secundarios en el cuerpo humano como resultado a la liberación inmediata del principio activo. Adicionalmente, la cascarilla de arroz es un desecho agrícola generado en grandes cantidades provocando problemas de contaminación. Por ende, esta propuesta de investigación evaluó la cinética de liberación del letrozol empleando como material de soporte las nanopartículas de sílice mesoporosa obtenidas a partir de la cascarilla de arroz. La síntesis de las nanopartículas se realizó mediante el método Sol-gel y se caracterizó mediante FTIR y TEM. Los resultados obtenidos evidenciaron una liberación controlada con acción prolongada, ajustándose mejor al modelo cinético de primer orden debido a que el letrozol es liberado de forma proporcional al gradiente de concentración.The use of conventional medications has brought with it different side effects in the human body as a result of the immediate release of the active substance. In addition, rice husk is an agricultural waste generated in large quantities causing pollution problems. Therefore, this research proposal assessed the release kinetics of letrozole using as support material the mesoporous silica nanoparticles obtained from the rice husk. The synthesis of the nanoparticles was performed using the Sol-gel method and characterized by FTIR and TEM. The results obtained showed a controlled release with prolonged action, better adjusting to the first order kinetic model because letrozole is released proportionally to the concentration gradient.Químico Ambientalhttp://www.ustabuca.edu.co/ustabmanga/presentacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Química AmbientalFacultad de Química AmbientalEvaluación de nanopartículas de sílice mesoporosa obtenida de la cascarilla de arroz como sistema de liberación controlada del letrozolControlled releaseLetrozoleMesoporous silica nanoparticlesRice huskArroz - Abonos y fertilizantesResiduos agrícolasCascarilla de arrozCascarilla de arrozLetrozolLiberación controladaNanopartículas de sílice mesoporosaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAcceso cerradoinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCRAI-USTA BucaramangaAbo-El-Enein, S. A., Eissa, M. A., Diafullah, A. A., Rizk, M. A., & Mohamed, F. M. (2009). Removal of some heavy metals ions from wastewater by copolymer of iron and aluminum impregnated with active silica derived from rice husk ash. Journal of Hazardous Materials, 172(2–3), 574–579. https://doi.org/10.1016/j.jhazmat.2009.07.036Abu-Thabit, N. Y., & Makhlouf, A. S. H. (2018). Historical development of drug delivery systems: From conventional macroscale to controlled, targeted, and responsive nanoscale systems. En Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Volume 1: Types and Triggers. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101997-9.00001-1Adam, F., Chew, T. S., & Andas, J. (2011). A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass. Journal of Sol-Gel Science and Technology, 59(3), 580–583. https://doi.org/10.1007/s10971-011-2531-7Adira Jaafar, J., Hidayatul Nazirah Kamarudin, N., Dina Setiabudi, H., Najiha Timmiati, S., & Lee Peng, T. (2019). Mesoporous Silica Nanoparticles and Waste Derived-Siliceous Materials for Doxorubicin Adsorption and Release. Materials Today: Proceedings, 19, 1420–1425. https://doi.org/10.1016/j.matpr.2019.11.163Akçay, H. T., & Bayrak, R. (2014). Computational studies on the anastrozole and letrozole, effective chemotherapy drugs against breast cancer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 122, 142–152. https://doi.org/10.1016/j.saa.2013.11.028Aquib, M., Farooq, M. A., Banerjee, P., Akhtar, F., Filli, M. S., Boakye-Yiadom, K. O., Kesse, S., Raza, F., Maviah, M. B. J., Mavlyanova, R., & Wang, B. (2019). Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use. Journal of Biomedical Materials Research - Part A, 107(12), 2643–2666. https://doi.org/10.1002/jbm.a.36770Arcos, C., Pinto, D., & Jorge, R. (2007). La cascarilla de arroz como fuente de SiO 2 Husk of rice as source of SiO 2.Artioli, Y. (2008). Adsorption. Encyclopedia of Ecology, Five-Volume Set, 60–65. https://doi.org/10.1016/B978-008045405-4.00252-4Bayat, M., & Nasri, S. (2019). Injectable microgel-hydrogel composites “plum pudding gels”: New system for prolonged drug delivery. En Nanomaterials for Drug Delivery and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816505-8.00001-1Bernal Vargas, A., & Carvajal Cano, L. P. (2019). Evaluación De Un Biocomposito Elaborado Con Residuos Agroindustriales Del Cultivo De Arroz ( Cascarilla Y Tamo ) Y Su Potencial Aplicación En Viviendas De Interés Social , Paz Evaluación De Un Biocomposito Elaborado Con Residuos Agroindustriales Del Culti.Brushi, M. L. (2021). Strategies to Modify the Drug Release from Pharmaceutical Systems. ChemicalBook. (2017). Letrozole. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB9286355.htmChen, Y., Ai, K., Liu, J., Sun, G., Yin, Q., & Lu, L. (2015). Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials, 60, 111–120. https://doi.org/10.1016/j.biomaterials.2015.05.003Chun, J., Mo Gu, Y., Hwang, J., Oh, K. K., & Lee, J. H. (2019). Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk. Journal of Industrial and Engineering Chemistry. https://doi.org/10.1016/j.jiec.2019.08.064Crucho, C. I. C. (2015). Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem, 10(1), 24–38. https://doi.org/10.1002/cmdc.201402290Cullity, B. D. (1956). Elements of X-Ray Diffraction Addison-Wesley Metallurgy Series. Journal of Chemical Information and Modeling, 53, 1689–1699.DANE. (2017). Metodología general encuesta nacional de arroz mecanizado ENAM.Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Review kinetic modeling on drug release from controlled drug delivery systems. 67(3), 217–223.Deeks, E. D., & Scott, L. J. (2009). Exemestane: A review of its use in postmenopausal women with breast cancer. Drugs, 69(7), 889–918. https://doi.org/10.2165/00003495-200969070-00007Delhi, N. (2015). Pharmaceutical Summit and. 2(5).Domínguez, P. (2005). Formas farmacéuticas de liberacion modificada y estereoisómeros ¿Nos aportan algo en la práctica clínica? Boletin de informacion Farmacoterapéutica de Navarra, 13, 1–10.Duarte, C. (2015). El cáncer de mama , desafío mundial Breast cancer , global challenge. Revista Colombiana de Cancerología, 19(1), 1–2.Espinoza Silva, C. V. (2015). Síntesis de nanopartículas potenciales vehículos. 1–82.Foladori, G. (2016). Políticas Públicas En Nanotecnología En América Latina. Problemas del Desarrollo, 47(186), 59–81. https://doi.org/10.1016/j.rpd.2016.03.002Gao, L., Sun, J., & Li, Y. (2011). Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery. Journal of Solid State Chemistry, 184(8), 1909–1914. https://doi.org/10.1016/j.jssc.2011.05.052Gómez, N. L. (2016). Nanopartículas estímulo-respuesta para la liberación de fármacos. 45(5), 2016.Gómez, N. L. (2017). Nanopartículas estímulo-respuesta para la liberación de fármacos.Heng, P. W. S. (2018). Controlled release drug delivery systems. Pharmaceutical Development and Technology, 23(9), 833. https://doi.org/10.1080/10837450.2018.1534376Hospital Severo Ochoa. (s/f). Glosario de algunos terminos farmacocinéticos y biofarmacéuticos. 1–6.Hospital Universitario Fundación Jiménez Díaz. (2019). Letrozol. http://www.oncohealth.eu/es/area-paciente/cancer/informacion-soporte-paciente/informacion-general/tratamiento/terapia-hormonal/listado-farmacos/letrozolHu, B., He, M., & Chen, B. (2019). Magnetic nanoparticle sorbents. En Solid-Phase Extraction. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816906-3.00009-1Huo, Q. (2011). Synthetic Chemistry of the Inorganic Ordered Porous Materials. En Modern Inorganic Synthetic Chemistry. Elsevier B.V. https://doi.org/10.1016/B978-0-444-53599-3.10016-2IDEAM, UPME, UIS, & COLCIENCIAS. (s/f). Atlas del Potencial Energético de la Biomasa Residual en Colombia.Indurkhya, A., Patel, M., Sharma, P., Abed, S. N., Shnoudeh, A., Maheshwari, R., Deb, P. K., & Tekade, R. K. (2018). Influence of Drug Properties and Routes of Drug Administration on the Design of Controlled Release System. En Dosage Form Design Considerations: Volume I. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814423-7.00006-XJafari, S., Derakhshankhah, H., Alaei, L., & Fattahi, A. (2019). Biomedicine & Pharmacotherapy Mesoporous silica nanoparticles for therapeutic / diagnostic applications. Biomedicine & Pharmacotherapy, 109(October 2018), 1100–1111. https://doi.org/10.1016/j.biopha.2018.10.167Jimenez Herrera, M. P. (2018). Cáncer de Mama y Cuello Uterino. Informe De Evento, 03, 2–15. https://www.ins.gov.co/buscador-eventos/Informesdeevento/CÁNCER DE MAMA Y CUELLO UTERINO SEMESTRE I 2018.pdfJong, W. H. De, & Paul, J. B. (2008). Drug delivery and nanoparticles : Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149.Khan, I., Saeed, K., & Khan, I. (2017). Nanoparticles : Properties , applications and toxicities. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2017.05.011Kim, B., Rutka, J., & Chan, W. (2010). Nanomedicine. New England Journal of Medicine, 363(25), 2434–2443. https://doi.org/10.1056/NEJMra0912273Kresge, C. T., Vartuli, J. C., Roth, W. J., & Leonowicz, M. E. (2004). The discovery of ExxonMobil’s M41S family of mesoporous molecular sieves. Studies in Surface Science and Catalysis, 148, 53–72. https://doi.org/10.1016/s0167-2991(04)80193-9Kumar., Chaubal, M., Domb, A. J., & Majeti, R. K. N. V. (2002). Controlled Release Technology. Encyclopedia of Polymer Science and Technology, 5. https://doi.org/10.1002/0471440264.pst436Kumar, S., Malik, M. M., & Purohit, R. (2017). Synthesis Methods of Mesoporous Silica Materials. Materials Today: Proceedings, 4(2), 350–357. https://doi.org/10.1016/j.matpr.2017.01.032Lammers, T., Aime, S., Hennink, W. I. M. E., Storm, G., & Kiessling, F. (2011). Theranostic Nanomedicine. https://doi.org/10.1021/ar200019cLe, V. H., Thuc, C. N. H., & Thuc, H. H. (2013). Synthesis of silica nanoparticles from Vietnamese rice husk by sol–gel method. Nanoscale Research Letters, 8(1), 58. https://doi.org/10.1186/1556-276x-8-58Li, Barnes, J. C., Aleksandr, B., Stoddart, J. F., & Zink, J. I. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews, 41(7), 2590–2605. https://doi.org/10.1039/c1cs15246gLi, J., Shen, S., Kong, F., Jiang, T., Tang, C., & Yin, C. (2018). Effects of pore size on: In vitro and in vivo anticancer efficacies of mesoporous silica nanoparticles. RSC Advances, 8(43), 24633–24640. https://doi.org/10.1039/c8ra03914cLin, Y.-S. (2012). Critical Considerations in Development of Mesoporous Silica Nanoparticles for Biological Applications. The Journal of Physical Chemistry Letters, 3, 364–374.Liu, Y., Li, K., Mohideen, M., & Ramakrishna, S. (2019). Fiber membranes obtained by melt electrospinning for drug delivery. 173–195. https://doi.org/10.1016/B978-0-12-816220-0.00009-9Lozano, C. (2020). Alternativa de usos de la cascarilla de arroz (Oriza sativa) en Colombia para el mejoramiento del sector productivo y la industria. Universidad Nacional Abierta y a Distancia - UNAD, 67. https://repository.unad.edu.co/bitstream/handle/10596/33698/cllozanor.pdf?sequence=1&isAllowed=yLu, Y., Sun, W., & Gu, Z. (2014). Stimuli-responsive nanomaterials for therapeutic protein delivery. Journal of Controlled Release, 194, 1–19. https://doi.org/10.1016/j.jconrel.2014.08.015Lyddy, R. (2009). Nanotechnology. Information Resources in Toxicology, 321–328. https://doi.org/10.1016/B978-0-12-373593-5.00036-7Manju, S., & Sreenivasan, K. (2010). Functionalised nanoparticles for targeted drug delivery. Biointegration of Medical Implant Materials: Science and Design, 267–297. https://doi.org/10.1533/9781845699802.2.267McNeil, S. E. (2005). Nanotechnology for the biologist. Journal of Leukocyte Biology, 78(3), 585–594. https://doi.org/10.1189/jlb.0205074Mehtani, D., Seth, A., Sharma, P., Maheshwari, N., Kapoor, D., Shrivastava, S. K., & Tekade, R. K. (2019). Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules. En Biomaterials and Bionanotechnology. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814427-5.00004-4Mhlanga, N., & Sinha, S. (2015). International Journal of Biological Macromolecules Kinetic models for the release of the anticancer drug doxorubicin from biodegradable polylactide / metal oxide-based hybrids. International Journal of Biological Macromolecules, 72, 1301–1307. https://doi.org/10.1016/j.ijbiomac.2014.10.038Ministerio de Salud. (s/f). Qué es la sangre. https://www.minsal.cl/dona-sangre/que-es-la-sangre/ Ministerio de Salud y Protección Social de Colombia. (s/f). Cáncer de mama. https://www.minsalud.gov.co/salud/publica/ssr/Paginas/Cancer-de-mama.aspxMinisterio de Salud y Protección Social, & Instituto Nacional de Cancerología. (2012). El cáncer de mama: un problema creciente en Colombia. Hechos y Acciones, 4(2), 1–2. https://www.cancer.gov.co/files/libros/archivos/95685f345e64aa9f0fece8a589b5acc3_BOLETIN HECHOS Y ACCIONES MAMA.PDFMinisterio de Sanidad Política Social e Igualdad. (s/f). Ficha Técnica Femara 2,5 mg. https://cima.aemps.es/cima/pdfs/es/ft/61628/FT_61628.pdfMitran, R., Deaconu, M., Matei, C., & Berger, D. (2019). Chapter 11 - Mesoporous Silica as Carrier for Drug-Delivery Systems. 351–374. https://doi.org/https://doi.org/10.1016/B978-0-12-814033-8.00011-4Monotta, J. J. (2017). Evaluación de la cinética de liberación de un fármaco modelo con clasificación biofermacéutica clase II, desde matrices comprimidas compuestas por materiales poliméricos aniónicos.Musić, S., Filipović-Vinceković, N., & Sekovanić, L. (2011). Precipitation of amorphous SiO2 particles and their properties. Brazilian Journal of Chemical Engineering, 28(1), 89–94. https://doi.org/10.1590/S0104-66322011000100011Niculescu, V. C. (2020). Mesoporous Silica Nanoparticles for Bio-Applications. Frontiers in Materials, 7(February). https://doi.org/10.3389/fmats.2020.00036Osman, A. I., Abdelkader, A., Farrell, C., Rooney, D., & Morgan, K. (2019). Reusing, recycling and up-cycling of biomass: A review of practical and kinetic modelling approaches. Fuel Processing Technology, 192(May), 179–202. https://doi.org/10.1016/j.fuproc.2019.04.026Páez, O. L., Navarro, A. R., Páez, C. A. J., & Herrera, L. F. R. (2016). Rice husk as an alternative in decontamination processes. Scielo, 2. https://doi.org/http://dx.doi.org/10.22507/pml.v11n2a12Parashar, M., Shukla, V. K., & Singh, R. (2020). Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics, 31(5), 3729–3749. https://doi.org/10.1007/s10854-020-02994-8Pareek, V., Bhargava, A., Gupta, R., Jain, N., & Panwar, J. (2017). Synthesis and Applications of Noble Metal Nanoparticles: A Review. Advanced Science, Engineering and Medicine, 9(7), 527–544. https://doi.org/10.1166/asem.2017.2027Park, K. (2013). Facing the Truth about Nanotechnology in Drug Delivery. 9, 7442–7447.Peñaranda, L. V., Montenegro, S. P., & Giraldo, P. A. (2018). Aprovechamiento de Residuos Agroindustriales en Colombia. Revista de Investigación Agraria y Ambiental, 8(2), 141–150.Permanadewi, I., Kumoro, A. C., Wardhani, D. H., & Aryanti, N. (2019). Modelling of controlled drug release in gastrointestinal tract simulation. Journal of Physics: Conference Series, 1295(1), 0–8. https://doi.org/10.1088/1742-6596/1295/1/012063Petrovska, B. B. (2012). Historical review of medicinal plants’ usage. Pharmacognosy Reviews, 6(11), 1–5. https://doi.org/10.4103/0973-7847.95849Piñeros, Y. (2016). Aprovechamiento de biomasa lignocelulósica, algunas experiencias de investigación en Colombia.Prasad, S., Kumar, V., Kirubanandam, S., & Barhoum, A. (2018). Engineered nanomaterials: nanofabrication and surface functionalization. En Emerging Applications of Nanoparticles and Architecture Nanostructures (pp. 305–340). Elsevier. https://doi.org/10.1016/B978-0-323-51254-1.00011-7Purnawira, B., Purwaningsih, H., Ervianto, Y., Pratiwi, V. M., Susanti, D., Rochiem, R., & Purniawan, A. (2019). Synthesis and characterization of mesoporous silica nanoparticles (MSNp) MCM 41 from natural waste rice husk. IOP Conference Series: Materials Science and Engineering, 541(1). https://doi.org/10.1088/1757-899X/541/1/012018Rafique, M., Shaikh, A. J., Rasheed, R., Tahir, M. B., Bakhat, H. F., Rafique, M. S., & Rabbani, F. (2017). A Review on Synthesis, Characterization and Applications of Copper Nanoparticles Using Green Method. Nano, 12(04), 1750043. https://doi.org/10.1142/S1793292017500436Rodin, A. (1911). Adsorption.Rosenholm, J. M., Sahlgren, C., & Lindén, M. (2010). Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles - Opportunities & challenges. Nanoscale, 2(10), 1870–1883. https://doi.org/10.1039/c0nr00156bSaboktakin, M. R. (2017). Synthesis and Characterization of Biodegradable Thiolated Chitosan Nanoparticles as Targeted Drug Delivery System. Journal of Nanomedicine & Nanotechnology, s4(4), 1–4. https://doi.org/10.4172/2157-7439.s4-001Sáez, V., Hernáez, E., & López, L. (2003). Liberación controlada de fármacos. aplicaciones biomédicas. 4(2), 111–122.Sajid, M., & Akash, H. (s/f). Drug Stability and Chemical Kinetics.Saputra, R. (2019). Letrozol KEMEX. Journal of Chemical Information and Modeling, 53(9), 1689–1699.SDBS. (s/f). Sodium metasilicate hidrate. https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgiShi, J., Votruba, A. R., Farokhzad, O. C., & Langer, R. (2010). Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Letters, 10(9), 3223–3230. https://doi.org/10.1021/nl102184cSingh, B. (2018). Rice husk ash. En Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102156-9.00013-4Sodeifian, G., & Sajadian, S. A. (2018). Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). Journal of Supercritical Fluids, 133(August 2017), 239–252. https://doi.org/10.1016/j.supflu.2017.10.015Spruill, W., Wade, W., Dipiro, J., Blouin, R., & Pruemer, J. (2014). Concepts in clinical pharmacokinetics. Sixth edit, 1–18.Tang, F., Li, L., & Chen, D. (2012). Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Advanced Materials, 24(12), 1504–1534. https://doi.org/10.1002/adma.201104763Thompson, M. T. (2014). Review of Diode Physics and the Ideal (and Later, Nonideal) Diode. En Intuitive Analog Circuit Design. https://doi.org/10.1016/b978-0-12-405866-8.00003-6Tibbitt, M. W., Dahlman, J. E., & Langer, R. (2016). Emerging Frontiers in Drug Delivery. Journal of the American Chemical Society, 138(3), 704–717. https://doi.org/10.1021/jacs.5b09974Tran, T. N., Pham, T. V. A., Le, M. L. P., Nguyen, T. P. T., & Tran, V. M. (2013). Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane. Advances in Natural Sciences: Nanoscience and Nanotechnology, 4(4). https://doi.org/10.1088/2043-6262/4/4/045007Ullattil, S. G., & Periyat, P. (2017). Sol-Gel Synthesis of Titanium Dioxide Chapter 9 Sol-Gel Synthesis of Titanium Dioxide. Advances in Sol-Gel Derived Materials and Technologies, February, 271–283. https://doi.org/10.1007/978-3-319-50144-4Universidad de Valencia. (2013). Tema 7. Superficies sólidas: adsorción y catálisis heterogénea. Departamento de Quimica y fisica., 28. http://www.academia.edu/download/39329863/tema_7_parte_1_ads_completa.pdfUniversidad Popular del Cesar. (s/f). Liberación controlada de fármacos. 1–40.Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous materials for drug delivery. Angewandte Chemie - International Edition, 46(40), 7548–7558. https://doi.org/10.1002/anie.200604488Vaz, S. (s/f). Biomass and Green Chemistry.Vazquez, N. I., Gonzalez, Z., Ferrari, B., & Castro, Y. (2017). Synthesis of mesoporous silica nanoparticles by sol-gel as nanocontainer for future drug delivery applications. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 56(3), 139–145. https://doi.org/10.1016/j.bsecv.2017.03.002Vergara‐Castañeda, H. A., Luna‐Bárcenas, G., & Pool, H. (2020). Emerging and Potential Bio‐Applications of Agro‐Industrial By‐products Through Implementation of Nanobiotechnology. Food Wastes and By‐products, 413–443. https://doi.org/10.1002/9781119534167.ch14Weissig, V., Pettinger, T. K., & Murdock, N. (2014). Nanopharmaceuticals (part 1): products on the market. International journal of nanomedicine, 9, 4357–4373. https://doi.org/10.2147/IJN.S46900Worathanakul, P., Payubnop, W., & Muangpet, A. (2009). Characterization for post-treatment effect of bagasse ash for silica extraction. World Academy of Science, Engineering and Technology, 56(August 2009), 360–362. https://doi.org/10.5281/zenodo.1062185Yanes, R. E., Lu, J., & Tamanoi, F. (2012). Nanoparticle-Based Delivery of siRNA and miRNA for Cancer Therapy (Vol. 32, pp. 185–203). https://doi.org/10.1016/B978-0-12-404741-9.00009-XYun, Y. H., Lee, B. K., & Park, K. (2015). NU SC. Journal of Controlled Release. https://doi.org/10.1016/j.jconrel.2015.10.005ORIGINAL2021GarciaLaura.pdf2021GarciaLaura.pdfTrabajo de gradoapplication/pdf2794774https://repository.usta.edu.co/bitstream/11634/34871/1/2021GarciaLaura.pdf5cdceaece51b35954f3287bab10b8d9dMD51metadata only access2021GarciaLaura1.pdf2021GarciaLaura1.pdfAprobación Facultadapplication/pdf132325https://repository.usta.edu.co/bitstream/11634/34871/2/2021GarciaLaura1.pdf1b0e775836741349724af9a7029afc3aMD52metadata only access2021GarciaLaura2.pdf2021GarciaLaura2.pdfAcuerdo de Confidencialidadapplication/pdf176792https://repository.usta.edu.co/bitstream/11634/34871/3/2021GarciaLaura2.pdf40725b0bbd042174bcd99db0db391b01MD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/34871/4/license.txtaedeaf396fcd827b537c73d23464fc27MD54open accessTHUMBNAIL2021GarciaLaura.pdf.jpg2021GarciaLaura.pdf.jpgIM Thumbnailimage/jpeg5552https://repository.usta.edu.co/bitstream/11634/34871/5/2021GarciaLaura.pdf.jpg29dac9d28431be5d5ffbcaab28632905MD55open access2021GarciaLaura1.pdf.jpg2021GarciaLaura1.pdf.jpgIM Thumbnailimage/jpeg8306https://repository.usta.edu.co/bitstream/11634/34871/6/2021GarciaLaura1.pdf.jpg9b21cdff6272595d8f76ac176d4cc6d2MD56open access2021GarciaLaura2.pdf.jpg2021GarciaLaura2.pdf.jpgIM Thumbnailimage/jpeg10566https://repository.usta.edu.co/bitstream/11634/34871/7/2021GarciaLaura2.pdf.jpg3d28a21da2fc09de8cd4a1a5bab0ac63MD57open access11634/34871oai:repository.usta.edu.co:11634/348712022-10-10 14:39:11.689metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K