Producción de energía a partir de la biomasa: una revisión sistemática

En las últimas tres décadas la eficiencia energética ha tenido gran desarrollo a nivel mundial, debido al trabajo constante de los países en sustituir combustibles fósiles para generación de energía eléctrica, el cual mitiga el impacto en los recursos naturales coadyuvando a prevenir los gases de ef...

Full description

Autores:
Trujillo Lara, Ruby Vanessa
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/28586
Acceso en línea:
http://hdl.handle.net/11634/28586
Palabra clave:
Waste
Solid
Urban
Smart city
Social innovation
Energy
Biomass
Technology
Take care of the environment
Tecnologías Limpias
Cuidad del medio ambiente
Innovación social
Desecho
Sólido
Urbano
Ciudad inteligente
Energía
Biomasa
Tecnología
Rights
openAccess
License
Abierto (Texto Completo)
id SANTTOMAS2_d0545964aadb37a40e27b59dd6799573
oai_identifier_str oai:repository.usta.edu.co:11634/28586
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Producción de energía a partir de la biomasa: una revisión sistemática
title Producción de energía a partir de la biomasa: una revisión sistemática
spellingShingle Producción de energía a partir de la biomasa: una revisión sistemática
Waste
Solid
Urban
Smart city
Social innovation
Energy
Biomass
Technology
Take care of the environment
Tecnologías Limpias
Cuidad del medio ambiente
Innovación social
Desecho
Sólido
Urbano
Ciudad inteligente
Energía
Biomasa
Tecnología
title_short Producción de energía a partir de la biomasa: una revisión sistemática
title_full Producción de energía a partir de la biomasa: una revisión sistemática
title_fullStr Producción de energía a partir de la biomasa: una revisión sistemática
title_full_unstemmed Producción de energía a partir de la biomasa: una revisión sistemática
title_sort Producción de energía a partir de la biomasa: una revisión sistemática
dc.creator.fl_str_mv Trujillo Lara, Ruby Vanessa
dc.contributor.advisor.spa.fl_str_mv Becerra Quiroz, Ana Paola
dc.contributor.author.spa.fl_str_mv Trujillo Lara, Ruby Vanessa
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-0238-1586
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=Eq5InnAAAAAJ&hl=es
dc.contributor.cvlac.spa.fl_str_mv http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000004523
dc.subject.keyword.spa.fl_str_mv Waste
Solid
Urban
Smart city
Social innovation
Energy
Biomass
Technology
Take care of the environment
topic Waste
Solid
Urban
Smart city
Social innovation
Energy
Biomass
Technology
Take care of the environment
Tecnologías Limpias
Cuidad del medio ambiente
Innovación social
Desecho
Sólido
Urbano
Ciudad inteligente
Energía
Biomasa
Tecnología
dc.subject.lemb.spa.fl_str_mv Tecnologías Limpias
Cuidad del medio ambiente
Innovación social
dc.subject.proposal.spa.fl_str_mv Desecho
Sólido
Urbano
Ciudad inteligente
Energía
Biomasa
Tecnología
description En las últimas tres décadas la eficiencia energética ha tenido gran desarrollo a nivel mundial, debido al trabajo constante de los países en sustituir combustibles fósiles para generación de energía eléctrica, el cual mitiga el impacto en los recursos naturales coadyuvando a prevenir los gases de efecto invernadero (GEI). La biomasa se considera de gran importancia como combustible primario en la generación de energía eléctrica, debido a que los productos derivados de un ecosistema por medio de la fotosíntesis, su buen manejo y aprovechamiento, son aptos para la transformación en un combustible eficiente y limpio, considerado con mayor eficacia entre su clasificación en biomasa natural, residual y los cultivos energéticos, tomando una transformación según el ideal de energía a producir. Este trabajo evalúa la evidencia científica existente sobre biomasa en la producción de energía, la optimización de recursos renovables, tecnologías convencionales para la economía y los impactos ambientales generados; el cual se inició por medio de la búsqueda de documentos en bases de datos electrónicas Scopus, Science Direct, Web of Science, relacionados con biomasa y energías renovables que han sido publicados en inglés, portugués, alemán y español, que fueron incluidos durante la revisión. Palabras clave: Desecho, sólido, urbano, ciudad inteligente, innovación social, energía, biomasa tecnología.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-07-28T22:38:20Z
dc.date.available.spa.fl_str_mv 2020-07-28T22:38:20Z
dc.date.issued.spa.fl_str_mv 2020-05-29
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Trujilo, R. (2020). Producción de Energía a partir de la Biomasa: una Revisión Sistemática [Trabajo de grado de pregrado de Ingeniería Ambiental] Universidad Santo Tomás. Bogotá, Colombia.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/28586
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Trujilo, R. (2020). Producción de Energía a partir de la Biomasa: una Revisión Sistemática [Trabajo de grado de pregrado de Ingeniería Ambiental] Universidad Santo Tomás. Bogotá, Colombia.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/28586
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abomohra, A. E. F., Eladel, H., El-Esawi, M., Wang, S., Wang, Q., He, Z., … Hanelt, D. (2018). Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresource Technology, 249, 992–999. https://doi.org/10.1016/j.biortech.2017.10.102
Acha, S., Mariaud, A., Shah, N., & Markides, C. N. (2018). Optimal design and operation of distributed low-carbon energy technologies in commercial buildings. Energy, 142, 578–591. https://doi.org/10.1016/j.energy.2017.10.066
Awasthi, M. K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R. P., Yan, B., … Taherzadeh, M. J. (2020). Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109876
Bhoi, P. R., Huhnke, R. L., Kumar, A., Indrawan, N., & Thapa, S. (2018). Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy, 163, 513–518. https://doi.org/10.1016/j.energy.2018.08.151
Cárdenas-Ferrer, Teresa Margarita, Santos Herrero, Ronaldo Francisco, Contreras Moya, Ana Margarita, Rosa Domínguez, Elena, Domínguez Nuñez, J. (2019). propuesta metodologica para la gestion de RSU en villa clara, 39(2), 464–484.
Castells, Xavier Elías; Cadavid, C. (2005). Clasificación de la biomasa, en Tratamiento y valorización energética de residuos. Ediciones Díaz de Santos, 118.
Choi, C. H., Eun, J., Cao, J., Lee, S., & Zhao, F. (2018). Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium. Energy, 147, 950–964. https://doi.org/10.1016/j.energy.2018.01.063
Co-digestion, S., Grown, W., Bohutskyi, P., Phan, D., Kopachevsky, A. M., Chow, S., … Betenbaugh, M. J. (2018). Synergistic Co-Digestion of Wastewater Grown Algae-Bacteria Polyculture Biomass Affiliations : Biological Sciences Division , Pacific Northwest National Laboratory , 3300 Stevens Dr ., Department of Environmental Health and Engineering , Johns Hopkins Uni.
Delpech, B., Milani, M., Montorsi, L., Boscardin, D., Chauhan, A., Almahmoud, S., … Jouhara, H. (2018). Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry. Energy, 158, 656–665. https://doi.org/10.1016/j.energy.2018.06.041
Feng, J., Hse, C., Yang, Z., Wang, K., Jiang, J., & Xu, J. (2017). Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass. Bioresource Technology, 244(July), 496–508. https://doi.org/10.1016/j.biortech.2017.07.182
Florentino, M., & Lucy, M. (2020). Acta Scientiarum Análise da sustentabilidade de cooperativas de materiais recicláveis selecionadas : alternativas para o tratamento de resíduos sólidos urbanos, 42, 1–13. https://doi.org/10.4025/actascihumansoc.v42i1.51002
Genus, A., & Iskandarova, M. (2020). Transforming the energy system? Technology and organisational legitimacy and the institutionalisation of community renewable energy. Renewable and Sustainable Energy Reviews, 125. https://doi.org/10.1016/j.rser.2020.109795
Gerber Van Doren, L., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource Technology (Vol. 225). https://doi.org/10.1016/j.biortech.2016.11.030
González Velasco, J. (2012). Energías Renovables (Primera). Editorial Reverté. S.A., 2012.
Hahn, H., Hau, D., Dick, C., & Puchta, M. (2017). Techno-economic assessment of a subsea energy storage technology for power balancing services. Energy, 133, 121–127. https://doi.org/10.1016/j.energy.2017.05.116
Indrawan, N., Thapa, S., Bhoi, P. R., Huhnke, R. L., & Kumar, A. (2018). Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance. Energy, 162, 764–775. https://doi.org/10.1016/j.energy.2018.07.169
Internacional Energy Agency. (2011). World Energy
Islam, M. S., Akhter, R., & Rahman, M. A. (2018). A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural off-grid areas or not? Energy, 145, 338–355. https://doi.org/10.1016/j.energy.2017.12.125
Jia, J., Shu, L., Zang, G., Xu, L., Abudula, A., & Ge, K. (2018). Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system. Energy, 149, 750–761. https://doi.org/10.1016/j.energy.2018.02.057
Jing, R., Kuriyan, K., Kong, Q., Zhang, Z., Shah, N., Li, N., & Zhao, Y. (2019). Exploring the impact space of different technologies using a portfolio constraint based approach for multi-objective optimization of integrated urban energy systems. Renewable and Sustainable Energy Reviews, 113(February).
Keinath, C. M., & Garimella, S. (2017). An energy and cost comparison of residential water heating technologies. Energy, 128, 626–633. https://doi.org/10.1016/j.energy.2017.03.055
Lee, S. K., & Mogi, G. (2018). Relative efficiency of energy technologies in the Korean mid-term strategic energy technology development plan. Renewable and Sustainable Energy Reviews, 91(May 2016), 472–482. https://doi.org/10.1016/j.rser.2018.03.031
Li, W., Dang, Q., Brown, R. C., Laird, D., & Wright, M. M. (2017). The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy. Bioresource Technology, 241, 959–968. https://doi.org/10.1016/j.biortech.2017.06.049
Lin, L., Yu, Z., & Li, Y. (2017). Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part II: Microbial diversity and succession. Bioresource Technology, 241, 1027–1035. https://doi.org/10.1016/j.biortech.2017.06.011
Mateo, W., Lei, H., Villota, E., Qian, M., Zhao, Y., Huo, E., … Huang, Z. (2020). Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresource Technology, 297. https://doi.org/10.1016/j.biortech.2019.122411 Materazzi, M., & Holt, A. (2019). Experimental analysis and preliminary
Materazzi, M., & Holt, A. (2019). Experimental analysis and preliminary assessment of an integrated thermochemical process for production of low-molecular weight biofuels from municipal solid waste (MSW). Renewable Energy, 143, 663–678. https://doi.org/10.1016/j.renene.2019.05.027
Montiel bohórquez, N. D., & Pérez, J. F. (2019). Generación de Energía a partir de Residuos Sólidos Urbanos . Estrategias Termodinámicas para Optimizar el Desempeño de Centrales Térmicas Energy Generation from Municipal Solid Waste . Thermodynamic Strategies to Optimize the Performance of Thermal Power. Informacion Tecnológica, 30(1), 273–284. Retrieved from http://dx.doi.org/10.4067/S0718-07642019000100273
Moset, V., Fontaine, D., & Møller, H. B. (2017). Co-digestion of cattle manure and grass harvested with different technologies. Effect on methane yield, digestate composition and energy balance. Energy, 141, 451–460. https://doi.org/10.1016/j.energy.2017.08.068
Oliveira, E. A. F. de, Gonçalves, J. F., Homem, I. C. A., Januário, T. L. da S., & Sabiá, R. J. (2018). Gerenciamento dos resíduos sólidos urbanos: um estudo de caso no município de Crato (CE). Nature and Conservation, 11(2), 31–40. https://doi.org/10.6008/cbpc2318-2881.2018.002.0004
Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143. https://doi.org/10.1016/j.biortech.2017.02.095
Ren, H., Tuo, J., Addy, M. M., Zhang, R., Lu, Q., Anderson, E., … Ruan, R. (2017). Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresource Technology, 245, 1130–1138. https://doi.org/10.1016/j.biortech.2017.09.040
Rybak, W., Moroń, W., & Ferens, W. (2019). Dust ignition characteristics of different coal ranks, biomass and solid waste. Fuel, 237(March 2018), 606–618. https://doi.org/10.1016/j.fuel.2018.10.022
Shahnazari, M., Bahri, P. A., Parlevliet, D., Minakshi, M., & Moheimani, N. R. (2017). Sustainable conversion of light to algal biomass and electricity: A net energy return analysis. Energy, 131, 218–229. https://doi.org/10.1016/j.energy.2017.04.162
Shang, Y., Wu, M., Zhou, J., Zhang, X., Zhong, Y., An, J., & Qian, G. (2019). Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. Journal of Hazardous Materials, 367, 316–324. https://doi.org/10.1016/j.jhazmat.2018.12.065
Sharvini, S. R., Noor, Z. Z., Chong, C. S., Stringer, L. C., & Glew, D. (2020). Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies. Energy, 191(xxxx). https://doi.org/10.1016/j.energy.2019.116513
Sitorus, F., & Brito-Parada, P. R. (2020). A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109891
Surendra, K. C., Ogoshi, R., Zaleski, H. M., Hashimoto, A. G., & Khanal, S. K. (2018). High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition. Bioresource Technology, 251, 218–229. https://doi.org/10.1016/j.biortech.2017.12.044
Trieb, F., & Moser, M. (2018). Accepted Manuscript. https://doi.org/10.1016/j.energy.2018.04.027.This
Xu, D., Chai, M., Dong, Z., & Yu, X. (2018). for Lignocellulosic Biomass Pyrolysis Biomass Energy Engineering Research Center , Key Laboratory of Urban Agriculture CAS Key Laboratory of Renewable Energy , Guangzhou Institute of Energy.
Xue, J., & Goldfarb, J. L. (2018). Enhanced devolatilization during torrefaction of blended biomass streams results in additive heating values and synergistic oxidation behavior of solid fuels. Energy, 152, 1–12. https://doi.org/10.1016/j.energy.2018.03.037
Yılmaz Balaman, Ş., Wright, D. G., Scott, J., & Matopoulos, A. (2018). Network design and technology management for waste to energy production: An integrated optimization framework under the principles of circular economy. Energy, 143, 911–933. https://doi.org/10.1016/j.energy.2017.11.058
Zhao, Y., Noori, M., & Tatari, O. (2017). Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy, 120, 608–618. https://doi.org/10.1016/j.energy.2016.11.112
Zheng, Y., Jenkins, B. M., Kornbluth, K., Kendall, A., & Træholt, C. (2018). Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage. Energy, 155, 620–629. https://doi.org/10.1016/j.energy.2018.05.036
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado de Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/28586/10/2020rubytrujillo.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/28586/11/Carta_aprobacion_facultad_autoarchivo%20-%20Ruby%20Vanessa%20Trujillo%20Lara%20-%20julio%2022.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/28586/12/Carta_autorizacion_autoarchivo.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/28586/9/license.txt
https://repository.usta.edu.co/bitstream/11634/28586/7/2020rubytrujillo.pdf
https://repository.usta.edu.co/bitstream/11634/28586/3/Carta_aprobacion_facultad_autoarchivo%20-%20Ruby%20Vanessa%20Trujillo%20Lara%20-%20julio%2022.pdf
https://repository.usta.edu.co/bitstream/11634/28586/8/Carta_autorizacion_autoarchivo.pdf
bitstream.checksum.fl_str_mv 95a219f9ba13783d2dd3f84dae26ff68
a54cbbb6261b557610b509d26a7744e1
b7839f94dbc7972d2ac79a00a22f5e71
aedeaf396fcd827b537c73d23464fc27
ceb51f3c78961a96ae6f1eb03d8731e3
acb2d9a13756912d57414252f9f667e1
829340a710f93d62d6335fe1b08cfd95
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026194799034368
spelling Becerra Quiroz, Ana PaolaTrujillo Lara, Ruby Vanessahttps://orcid.org/0000-0002-0238-1586https://scholar.google.es/citations?user=Eq5InnAAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00000045232020-07-28T22:38:20Z2020-07-28T22:38:20Z2020-05-29Trujilo, R. (2020). Producción de Energía a partir de la Biomasa: una Revisión Sistemática [Trabajo de grado de pregrado de Ingeniería Ambiental] Universidad Santo Tomás. Bogotá, Colombia.http://hdl.handle.net/11634/28586reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn las últimas tres décadas la eficiencia energética ha tenido gran desarrollo a nivel mundial, debido al trabajo constante de los países en sustituir combustibles fósiles para generación de energía eléctrica, el cual mitiga el impacto en los recursos naturales coadyuvando a prevenir los gases de efecto invernadero (GEI). La biomasa se considera de gran importancia como combustible primario en la generación de energía eléctrica, debido a que los productos derivados de un ecosistema por medio de la fotosíntesis, su buen manejo y aprovechamiento, son aptos para la transformación en un combustible eficiente y limpio, considerado con mayor eficacia entre su clasificación en biomasa natural, residual y los cultivos energéticos, tomando una transformación según el ideal de energía a producir. Este trabajo evalúa la evidencia científica existente sobre biomasa en la producción de energía, la optimización de recursos renovables, tecnologías convencionales para la economía y los impactos ambientales generados; el cual se inició por medio de la búsqueda de documentos en bases de datos electrónicas Scopus, Science Direct, Web of Science, relacionados con biomasa y energías renovables que han sido publicados en inglés, portugués, alemán y español, que fueron incluidos durante la revisión. Palabras clave: Desecho, sólido, urbano, ciudad inteligente, innovación social, energía, biomasa tecnología.In the last three decades, energy efficiency has had great development worldwide, due to the constant work of countries in substituting fossil fuels for electric power generation, which mitigates the impact on natural resources, helping to prevent greenhouse gases (GHG). Biomass is considered of great importance as a primary fuel in the generation of electrical energy, because the products derived from an ecosystem through photosynthesis, its good management and use, are suitable for transformation into an efficient and clean fuel, considered most effectively between its classification in natural, residual biomass and energy crops, taking a transformation according to the ideal energy to be produced. This work evaluates the existing scientific evidence on biomass in energy production, the optimization of renewable resources, conventional technologies for the economy and the environmental impacts generated; which was started by searching documents in electronic databases Scopus, Science Direct, Web of Science, related to biomass and renewable energy that have been published in English, Portuguese, German and Spanish, which were included during the review. . Key words: Waste, solid, urban, smart city, social innovation, energy, biomass technology.Ingeniero Ambientalhttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalProducción de energía a partir de la biomasa: una revisión sistemáticaWasteSolidUrbanSmart citySocial innovationEnergyBiomassTechnologyTake care of the environmentTecnologías LimpiasCuidad del medio ambienteInnovación socialDesechoSólidoUrbanoCiudad inteligenteEnergíaBiomasaTecnologíaTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAbierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CRAI-USTA BogotáAbomohra, A. E. F., Eladel, H., El-Esawi, M., Wang, S., Wang, Q., He, Z., … Hanelt, D. (2018). Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresource Technology, 249, 992–999. https://doi.org/10.1016/j.biortech.2017.10.102Acha, S., Mariaud, A., Shah, N., & Markides, C. N. (2018). Optimal design and operation of distributed low-carbon energy technologies in commercial buildings. Energy, 142, 578–591. https://doi.org/10.1016/j.energy.2017.10.066Awasthi, M. K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R. P., Yan, B., … Taherzadeh, M. J. (2020). Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109876Bhoi, P. R., Huhnke, R. L., Kumar, A., Indrawan, N., & Thapa, S. (2018). Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy, 163, 513–518. https://doi.org/10.1016/j.energy.2018.08.151Cárdenas-Ferrer, Teresa Margarita, Santos Herrero, Ronaldo Francisco, Contreras Moya, Ana Margarita, Rosa Domínguez, Elena, Domínguez Nuñez, J. (2019). propuesta metodologica para la gestion de RSU en villa clara, 39(2), 464–484.Castells, Xavier Elías; Cadavid, C. (2005). Clasificación de la biomasa, en Tratamiento y valorización energética de residuos. Ediciones Díaz de Santos, 118.Choi, C. H., Eun, J., Cao, J., Lee, S., & Zhao, F. (2018). Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium. Energy, 147, 950–964. https://doi.org/10.1016/j.energy.2018.01.063Co-digestion, S., Grown, W., Bohutskyi, P., Phan, D., Kopachevsky, A. M., Chow, S., … Betenbaugh, M. J. (2018). Synergistic Co-Digestion of Wastewater Grown Algae-Bacteria Polyculture Biomass Affiliations : Biological Sciences Division , Pacific Northwest National Laboratory , 3300 Stevens Dr ., Department of Environmental Health and Engineering , Johns Hopkins Uni.Delpech, B., Milani, M., Montorsi, L., Boscardin, D., Chauhan, A., Almahmoud, S., … Jouhara, H. (2018). Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry. Energy, 158, 656–665. https://doi.org/10.1016/j.energy.2018.06.041Feng, J., Hse, C., Yang, Z., Wang, K., Jiang, J., & Xu, J. (2017). Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass. Bioresource Technology, 244(July), 496–508. https://doi.org/10.1016/j.biortech.2017.07.182Florentino, M., & Lucy, M. (2020). Acta Scientiarum Análise da sustentabilidade de cooperativas de materiais recicláveis selecionadas : alternativas para o tratamento de resíduos sólidos urbanos, 42, 1–13. https://doi.org/10.4025/actascihumansoc.v42i1.51002Genus, A., & Iskandarova, M. (2020). Transforming the energy system? Technology and organisational legitimacy and the institutionalisation of community renewable energy. Renewable and Sustainable Energy Reviews, 125. https://doi.org/10.1016/j.rser.2020.109795Gerber Van Doren, L., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource Technology (Vol. 225). https://doi.org/10.1016/j.biortech.2016.11.030González Velasco, J. (2012). Energías Renovables (Primera). Editorial Reverté. S.A., 2012.Hahn, H., Hau, D., Dick, C., & Puchta, M. (2017). Techno-economic assessment of a subsea energy storage technology for power balancing services. Energy, 133, 121–127. https://doi.org/10.1016/j.energy.2017.05.116Indrawan, N., Thapa, S., Bhoi, P. R., Huhnke, R. L., & Kumar, A. (2018). Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance. Energy, 162, 764–775. https://doi.org/10.1016/j.energy.2018.07.169Internacional Energy Agency. (2011). World EnergyIslam, M. S., Akhter, R., & Rahman, M. A. (2018). A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural off-grid areas or not? Energy, 145, 338–355. https://doi.org/10.1016/j.energy.2017.12.125Jia, J., Shu, L., Zang, G., Xu, L., Abudula, A., & Ge, K. (2018). Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system. Energy, 149, 750–761. https://doi.org/10.1016/j.energy.2018.02.057Jing, R., Kuriyan, K., Kong, Q., Zhang, Z., Shah, N., Li, N., & Zhao, Y. (2019). Exploring the impact space of different technologies using a portfolio constraint based approach for multi-objective optimization of integrated urban energy systems. Renewable and Sustainable Energy Reviews, 113(February).Keinath, C. M., & Garimella, S. (2017). An energy and cost comparison of residential water heating technologies. Energy, 128, 626–633. https://doi.org/10.1016/j.energy.2017.03.055Lee, S. K., & Mogi, G. (2018). Relative efficiency of energy technologies in the Korean mid-term strategic energy technology development plan. Renewable and Sustainable Energy Reviews, 91(May 2016), 472–482. https://doi.org/10.1016/j.rser.2018.03.031Li, W., Dang, Q., Brown, R. C., Laird, D., & Wright, M. M. (2017). The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy. Bioresource Technology, 241, 959–968. https://doi.org/10.1016/j.biortech.2017.06.049Lin, L., Yu, Z., & Li, Y. (2017). Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part II: Microbial diversity and succession. Bioresource Technology, 241, 1027–1035. https://doi.org/10.1016/j.biortech.2017.06.011Mateo, W., Lei, H., Villota, E., Qian, M., Zhao, Y., Huo, E., … Huang, Z. (2020). Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresource Technology, 297. https://doi.org/10.1016/j.biortech.2019.122411 Materazzi, M., & Holt, A. (2019). Experimental analysis and preliminaryMaterazzi, M., & Holt, A. (2019). Experimental analysis and preliminary assessment of an integrated thermochemical process for production of low-molecular weight biofuels from municipal solid waste (MSW). Renewable Energy, 143, 663–678. https://doi.org/10.1016/j.renene.2019.05.027Montiel bohórquez, N. D., & Pérez, J. F. (2019). Generación de Energía a partir de Residuos Sólidos Urbanos . Estrategias Termodinámicas para Optimizar el Desempeño de Centrales Térmicas Energy Generation from Municipal Solid Waste . Thermodynamic Strategies to Optimize the Performance of Thermal Power. Informacion Tecnológica, 30(1), 273–284. Retrieved from http://dx.doi.org/10.4067/S0718-07642019000100273Moset, V., Fontaine, D., & Møller, H. B. (2017). Co-digestion of cattle manure and grass harvested with different technologies. Effect on methane yield, digestate composition and energy balance. Energy, 141, 451–460. https://doi.org/10.1016/j.energy.2017.08.068Oliveira, E. A. F. de, Gonçalves, J. F., Homem, I. C. A., Januário, T. L. da S., & Sabiá, R. J. (2018). Gerenciamento dos resíduos sólidos urbanos: um estudo de caso no município de Crato (CE). Nature and Conservation, 11(2), 31–40. https://doi.org/10.6008/cbpc2318-2881.2018.002.0004Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143. https://doi.org/10.1016/j.biortech.2017.02.095Ren, H., Tuo, J., Addy, M. M., Zhang, R., Lu, Q., Anderson, E., … Ruan, R. (2017). Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresource Technology, 245, 1130–1138. https://doi.org/10.1016/j.biortech.2017.09.040Rybak, W., Moroń, W., & Ferens, W. (2019). Dust ignition characteristics of different coal ranks, biomass and solid waste. Fuel, 237(March 2018), 606–618. https://doi.org/10.1016/j.fuel.2018.10.022Shahnazari, M., Bahri, P. A., Parlevliet, D., Minakshi, M., & Moheimani, N. R. (2017). Sustainable conversion of light to algal biomass and electricity: A net energy return analysis. Energy, 131, 218–229. https://doi.org/10.1016/j.energy.2017.04.162Shang, Y., Wu, M., Zhou, J., Zhang, X., Zhong, Y., An, J., & Qian, G. (2019). Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. Journal of Hazardous Materials, 367, 316–324. https://doi.org/10.1016/j.jhazmat.2018.12.065Sharvini, S. R., Noor, Z. Z., Chong, C. S., Stringer, L. C., & Glew, D. (2020). Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies. Energy, 191(xxxx). https://doi.org/10.1016/j.energy.2019.116513Sitorus, F., & Brito-Parada, P. R. (2020). A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109891Surendra, K. C., Ogoshi, R., Zaleski, H. M., Hashimoto, A. G., & Khanal, S. K. (2018). High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition. Bioresource Technology, 251, 218–229. https://doi.org/10.1016/j.biortech.2017.12.044Trieb, F., & Moser, M. (2018). Accepted Manuscript. https://doi.org/10.1016/j.energy.2018.04.027.ThisXu, D., Chai, M., Dong, Z., & Yu, X. (2018). for Lignocellulosic Biomass Pyrolysis Biomass Energy Engineering Research Center , Key Laboratory of Urban Agriculture CAS Key Laboratory of Renewable Energy , Guangzhou Institute of Energy.Xue, J., & Goldfarb, J. L. (2018). Enhanced devolatilization during torrefaction of blended biomass streams results in additive heating values and synergistic oxidation behavior of solid fuels. Energy, 152, 1–12. https://doi.org/10.1016/j.energy.2018.03.037Yılmaz Balaman, Ş., Wright, D. G., Scott, J., & Matopoulos, A. (2018). Network design and technology management for waste to energy production: An integrated optimization framework under the principles of circular economy. Energy, 143, 911–933. https://doi.org/10.1016/j.energy.2017.11.058Zhao, Y., Noori, M., & Tatari, O. (2017). Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy, 120, 608–618. https://doi.org/10.1016/j.energy.2016.11.112Zheng, Y., Jenkins, B. M., Kornbluth, K., Kendall, A., & Træholt, C. (2018). Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage. Energy, 155, 620–629. https://doi.org/10.1016/j.energy.2018.05.036THUMBNAIL2020rubytrujillo.pdf.jpg2020rubytrujillo.pdf.jpgGenerated Thumbnailimage/jpeg2275https://repository.usta.edu.co/bitstream/11634/28586/10/2020rubytrujillo.pdf.jpg95a219f9ba13783d2dd3f84dae26ff68MD510open accessCarta_aprobacion_facultad_autoarchivo - Ruby Vanessa Trujillo Lara - julio 22.pdf.jpgCarta_aprobacion_facultad_autoarchivo - Ruby Vanessa Trujillo Lara - julio 22.pdf.jpgGenerated Thumbnailimage/jpeg3305https://repository.usta.edu.co/bitstream/11634/28586/11/Carta_aprobacion_facultad_autoarchivo%20-%20Ruby%20Vanessa%20Trujillo%20Lara%20-%20julio%2022.pdf.jpga54cbbb6261b557610b509d26a7744e1MD511metadata only accessCarta_autorizacion_autoarchivo.pdf.jpgCarta_autorizacion_autoarchivo.pdf.jpgGenerated Thumbnailimage/jpeg3776https://repository.usta.edu.co/bitstream/11634/28586/12/Carta_autorizacion_autoarchivo.pdf.jpgb7839f94dbc7972d2ac79a00a22f5e71MD512metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/28586/9/license.txtaedeaf396fcd827b537c73d23464fc27MD59open accessORIGINAL2020rubytrujillo.pdf2020rubytrujillo.pdfapplication/pdf417961https://repository.usta.edu.co/bitstream/11634/28586/7/2020rubytrujillo.pdfceb51f3c78961a96ae6f1eb03d8731e3MD57open accessCarta_aprobacion_facultad_autoarchivo - Ruby Vanessa Trujillo Lara - julio 22.pdfCarta_aprobacion_facultad_autoarchivo - Ruby Vanessa Trujillo Lara - julio 22.pdfapplication/pdf305481https://repository.usta.edu.co/bitstream/11634/28586/3/Carta_aprobacion_facultad_autoarchivo%20-%20Ruby%20Vanessa%20Trujillo%20Lara%20-%20julio%2022.pdfacb2d9a13756912d57414252f9f667e1MD53metadata only accessCarta_autorizacion_autoarchivo.pdfCarta_autorizacion_autoarchivo.pdfapplication/pdf268746https://repository.usta.edu.co/bitstream/11634/28586/8/Carta_autorizacion_autoarchivo.pdf829340a710f93d62d6335fe1b08cfd95MD58metadata only access11634/28586oai:repository.usta.edu.co:11634/285862022-10-10 15:33:35.99open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K