Producción de energía a partir de la biomasa: una revisión sistemática
En las últimas tres décadas la eficiencia energética ha tenido gran desarrollo a nivel mundial, debido al trabajo constante de los países en sustituir combustibles fósiles para generación de energía eléctrica, el cual mitiga el impacto en los recursos naturales coadyuvando a prevenir los gases de ef...
- Autores:
-
Trujillo Lara, Ruby Vanessa
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/28586
- Acceso en línea:
- http://hdl.handle.net/11634/28586
- Palabra clave:
- Waste
Solid
Urban
Smart city
Social innovation
Energy
Biomass
Technology
Take care of the environment
Tecnologías Limpias
Cuidad del medio ambiente
Innovación social
Desecho
Sólido
Urbano
Ciudad inteligente
Energía
Biomasa
Tecnología
- Rights
- openAccess
- License
- Abierto (Texto Completo)
id |
SANTTOMAS2_d0545964aadb37a40e27b59dd6799573 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/28586 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Producción de energía a partir de la biomasa: una revisión sistemática |
title |
Producción de energía a partir de la biomasa: una revisión sistemática |
spellingShingle |
Producción de energía a partir de la biomasa: una revisión sistemática Waste Solid Urban Smart city Social innovation Energy Biomass Technology Take care of the environment Tecnologías Limpias Cuidad del medio ambiente Innovación social Desecho Sólido Urbano Ciudad inteligente Energía Biomasa Tecnología |
title_short |
Producción de energía a partir de la biomasa: una revisión sistemática |
title_full |
Producción de energía a partir de la biomasa: una revisión sistemática |
title_fullStr |
Producción de energía a partir de la biomasa: una revisión sistemática |
title_full_unstemmed |
Producción de energía a partir de la biomasa: una revisión sistemática |
title_sort |
Producción de energía a partir de la biomasa: una revisión sistemática |
dc.creator.fl_str_mv |
Trujillo Lara, Ruby Vanessa |
dc.contributor.advisor.spa.fl_str_mv |
Becerra Quiroz, Ana Paola |
dc.contributor.author.spa.fl_str_mv |
Trujillo Lara, Ruby Vanessa |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0002-0238-1586 |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.es/citations?user=Eq5InnAAAAAJ&hl=es |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000004523 |
dc.subject.keyword.spa.fl_str_mv |
Waste Solid Urban Smart city Social innovation Energy Biomass Technology Take care of the environment |
topic |
Waste Solid Urban Smart city Social innovation Energy Biomass Technology Take care of the environment Tecnologías Limpias Cuidad del medio ambiente Innovación social Desecho Sólido Urbano Ciudad inteligente Energía Biomasa Tecnología |
dc.subject.lemb.spa.fl_str_mv |
Tecnologías Limpias Cuidad del medio ambiente Innovación social |
dc.subject.proposal.spa.fl_str_mv |
Desecho Sólido Urbano Ciudad inteligente Energía Biomasa Tecnología |
description |
En las últimas tres décadas la eficiencia energética ha tenido gran desarrollo a nivel mundial, debido al trabajo constante de los países en sustituir combustibles fósiles para generación de energía eléctrica, el cual mitiga el impacto en los recursos naturales coadyuvando a prevenir los gases de efecto invernadero (GEI). La biomasa se considera de gran importancia como combustible primario en la generación de energía eléctrica, debido a que los productos derivados de un ecosistema por medio de la fotosíntesis, su buen manejo y aprovechamiento, son aptos para la transformación en un combustible eficiente y limpio, considerado con mayor eficacia entre su clasificación en biomasa natural, residual y los cultivos energéticos, tomando una transformación según el ideal de energía a producir. Este trabajo evalúa la evidencia científica existente sobre biomasa en la producción de energía, la optimización de recursos renovables, tecnologías convencionales para la economía y los impactos ambientales generados; el cual se inició por medio de la búsqueda de documentos en bases de datos electrónicas Scopus, Science Direct, Web of Science, relacionados con biomasa y energías renovables que han sido publicados en inglés, portugués, alemán y español, que fueron incluidos durante la revisión. Palabras clave: Desecho, sólido, urbano, ciudad inteligente, innovación social, energía, biomasa tecnología. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-07-28T22:38:20Z |
dc.date.available.spa.fl_str_mv |
2020-07-28T22:38:20Z |
dc.date.issued.spa.fl_str_mv |
2020-05-29 |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Trujilo, R. (2020). Producción de Energía a partir de la Biomasa: una Revisión Sistemática [Trabajo de grado de pregrado de Ingeniería Ambiental] Universidad Santo Tomás. Bogotá, Colombia. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/28586 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Trujilo, R. (2020). Producción de Energía a partir de la Biomasa: una Revisión Sistemática [Trabajo de grado de pregrado de Ingeniería Ambiental] Universidad Santo Tomás. Bogotá, Colombia. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/28586 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abomohra, A. E. F., Eladel, H., El-Esawi, M., Wang, S., Wang, Q., He, Z., … Hanelt, D. (2018). Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresource Technology, 249, 992–999. https://doi.org/10.1016/j.biortech.2017.10.102 Acha, S., Mariaud, A., Shah, N., & Markides, C. N. (2018). Optimal design and operation of distributed low-carbon energy technologies in commercial buildings. Energy, 142, 578–591. https://doi.org/10.1016/j.energy.2017.10.066 Awasthi, M. K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R. P., Yan, B., … Taherzadeh, M. J. (2020). Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109876 Bhoi, P. R., Huhnke, R. L., Kumar, A., Indrawan, N., & Thapa, S. (2018). Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy, 163, 513–518. https://doi.org/10.1016/j.energy.2018.08.151 Cárdenas-Ferrer, Teresa Margarita, Santos Herrero, Ronaldo Francisco, Contreras Moya, Ana Margarita, Rosa Domínguez, Elena, Domínguez Nuñez, J. (2019). propuesta metodologica para la gestion de RSU en villa clara, 39(2), 464–484. Castells, Xavier Elías; Cadavid, C. (2005). Clasificación de la biomasa, en Tratamiento y valorización energética de residuos. Ediciones Díaz de Santos, 118. Choi, C. H., Eun, J., Cao, J., Lee, S., & Zhao, F. (2018). Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium. Energy, 147, 950–964. https://doi.org/10.1016/j.energy.2018.01.063 Co-digestion, S., Grown, W., Bohutskyi, P., Phan, D., Kopachevsky, A. M., Chow, S., … Betenbaugh, M. J. (2018). Synergistic Co-Digestion of Wastewater Grown Algae-Bacteria Polyculture Biomass Affiliations : Biological Sciences Division , Pacific Northwest National Laboratory , 3300 Stevens Dr ., Department of Environmental Health and Engineering , Johns Hopkins Uni. Delpech, B., Milani, M., Montorsi, L., Boscardin, D., Chauhan, A., Almahmoud, S., … Jouhara, H. (2018). Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry. Energy, 158, 656–665. https://doi.org/10.1016/j.energy.2018.06.041 Feng, J., Hse, C., Yang, Z., Wang, K., Jiang, J., & Xu, J. (2017). Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass. Bioresource Technology, 244(July), 496–508. https://doi.org/10.1016/j.biortech.2017.07.182 Florentino, M., & Lucy, M. (2020). Acta Scientiarum Análise da sustentabilidade de cooperativas de materiais recicláveis selecionadas : alternativas para o tratamento de resíduos sólidos urbanos, 42, 1–13. https://doi.org/10.4025/actascihumansoc.v42i1.51002 Genus, A., & Iskandarova, M. (2020). Transforming the energy system? Technology and organisational legitimacy and the institutionalisation of community renewable energy. Renewable and Sustainable Energy Reviews, 125. https://doi.org/10.1016/j.rser.2020.109795 Gerber Van Doren, L., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource Technology (Vol. 225). https://doi.org/10.1016/j.biortech.2016.11.030 González Velasco, J. (2012). Energías Renovables (Primera). Editorial Reverté. S.A., 2012. Hahn, H., Hau, D., Dick, C., & Puchta, M. (2017). Techno-economic assessment of a subsea energy storage technology for power balancing services. Energy, 133, 121–127. https://doi.org/10.1016/j.energy.2017.05.116 Indrawan, N., Thapa, S., Bhoi, P. R., Huhnke, R. L., & Kumar, A. (2018). Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance. Energy, 162, 764–775. https://doi.org/10.1016/j.energy.2018.07.169 Internacional Energy Agency. (2011). World Energy Islam, M. S., Akhter, R., & Rahman, M. A. (2018). A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural off-grid areas or not? Energy, 145, 338–355. https://doi.org/10.1016/j.energy.2017.12.125 Jia, J., Shu, L., Zang, G., Xu, L., Abudula, A., & Ge, K. (2018). Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system. Energy, 149, 750–761. https://doi.org/10.1016/j.energy.2018.02.057 Jing, R., Kuriyan, K., Kong, Q., Zhang, Z., Shah, N., Li, N., & Zhao, Y. (2019). Exploring the impact space of different technologies using a portfolio constraint based approach for multi-objective optimization of integrated urban energy systems. Renewable and Sustainable Energy Reviews, 113(February). Keinath, C. M., & Garimella, S. (2017). An energy and cost comparison of residential water heating technologies. Energy, 128, 626–633. https://doi.org/10.1016/j.energy.2017.03.055 Lee, S. K., & Mogi, G. (2018). Relative efficiency of energy technologies in the Korean mid-term strategic energy technology development plan. Renewable and Sustainable Energy Reviews, 91(May 2016), 472–482. https://doi.org/10.1016/j.rser.2018.03.031 Li, W., Dang, Q., Brown, R. C., Laird, D., & Wright, M. M. (2017). The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy. Bioresource Technology, 241, 959–968. https://doi.org/10.1016/j.biortech.2017.06.049 Lin, L., Yu, Z., & Li, Y. (2017). Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part II: Microbial diversity and succession. Bioresource Technology, 241, 1027–1035. https://doi.org/10.1016/j.biortech.2017.06.011 Mateo, W., Lei, H., Villota, E., Qian, M., Zhao, Y., Huo, E., … Huang, Z. (2020). Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresource Technology, 297. https://doi.org/10.1016/j.biortech.2019.122411 Materazzi, M., & Holt, A. (2019). Experimental analysis and preliminary Materazzi, M., & Holt, A. (2019). Experimental analysis and preliminary assessment of an integrated thermochemical process for production of low-molecular weight biofuels from municipal solid waste (MSW). Renewable Energy, 143, 663–678. https://doi.org/10.1016/j.renene.2019.05.027 Montiel bohórquez, N. D., & Pérez, J. F. (2019). Generación de Energía a partir de Residuos Sólidos Urbanos . Estrategias Termodinámicas para Optimizar el Desempeño de Centrales Térmicas Energy Generation from Municipal Solid Waste . Thermodynamic Strategies to Optimize the Performance of Thermal Power. Informacion Tecnológica, 30(1), 273–284. Retrieved from http://dx.doi.org/10.4067/S0718-07642019000100273 Moset, V., Fontaine, D., & Møller, H. B. (2017). Co-digestion of cattle manure and grass harvested with different technologies. Effect on methane yield, digestate composition and energy balance. Energy, 141, 451–460. https://doi.org/10.1016/j.energy.2017.08.068 Oliveira, E. A. F. de, Gonçalves, J. F., Homem, I. C. A., Januário, T. L. da S., & Sabiá, R. J. (2018). Gerenciamento dos resíduos sólidos urbanos: um estudo de caso no município de Crato (CE). Nature and Conservation, 11(2), 31–40. https://doi.org/10.6008/cbpc2318-2881.2018.002.0004 Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143. https://doi.org/10.1016/j.biortech.2017.02.095 Ren, H., Tuo, J., Addy, M. M., Zhang, R., Lu, Q., Anderson, E., … Ruan, R. (2017). Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresource Technology, 245, 1130–1138. https://doi.org/10.1016/j.biortech.2017.09.040 Rybak, W., Moroń, W., & Ferens, W. (2019). Dust ignition characteristics of different coal ranks, biomass and solid waste. Fuel, 237(March 2018), 606–618. https://doi.org/10.1016/j.fuel.2018.10.022 Shahnazari, M., Bahri, P. A., Parlevliet, D., Minakshi, M., & Moheimani, N. R. (2017). Sustainable conversion of light to algal biomass and electricity: A net energy return analysis. Energy, 131, 218–229. https://doi.org/10.1016/j.energy.2017.04.162 Shang, Y., Wu, M., Zhou, J., Zhang, X., Zhong, Y., An, J., & Qian, G. (2019). Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. Journal of Hazardous Materials, 367, 316–324. https://doi.org/10.1016/j.jhazmat.2018.12.065 Sharvini, S. R., Noor, Z. Z., Chong, C. S., Stringer, L. C., & Glew, D. (2020). Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies. Energy, 191(xxxx). https://doi.org/10.1016/j.energy.2019.116513 Sitorus, F., & Brito-Parada, P. R. (2020). A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109891 Surendra, K. C., Ogoshi, R., Zaleski, H. M., Hashimoto, A. G., & Khanal, S. K. (2018). High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition. Bioresource Technology, 251, 218–229. https://doi.org/10.1016/j.biortech.2017.12.044 Trieb, F., & Moser, M. (2018). Accepted Manuscript. https://doi.org/10.1016/j.energy.2018.04.027.This Xu, D., Chai, M., Dong, Z., & Yu, X. (2018). for Lignocellulosic Biomass Pyrolysis Biomass Energy Engineering Research Center , Key Laboratory of Urban Agriculture CAS Key Laboratory of Renewable Energy , Guangzhou Institute of Energy. Xue, J., & Goldfarb, J. L. (2018). Enhanced devolatilization during torrefaction of blended biomass streams results in additive heating values and synergistic oxidation behavior of solid fuels. Energy, 152, 1–12. https://doi.org/10.1016/j.energy.2018.03.037 Yılmaz Balaman, Ş., Wright, D. G., Scott, J., & Matopoulos, A. (2018). Network design and technology management for waste to energy production: An integrated optimization framework under the principles of circular economy. Energy, 143, 911–933. https://doi.org/10.1016/j.energy.2017.11.058 Zhao, Y., Noori, M., & Tatari, O. (2017). Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy, 120, 608–618. https://doi.org/10.1016/j.energy.2016.11.112 Zheng, Y., Jenkins, B. M., Kornbluth, K., Kendall, A., & Træholt, C. (2018). Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage. Energy, 155, 620–629. https://doi.org/10.1016/j.energy.2018.05.036 |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado de Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/28586/10/2020rubytrujillo.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28586/11/Carta_aprobacion_facultad_autoarchivo%20-%20Ruby%20Vanessa%20Trujillo%20Lara%20-%20julio%2022.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28586/12/Carta_autorizacion_autoarchivo.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28586/9/license.txt https://repository.usta.edu.co/bitstream/11634/28586/7/2020rubytrujillo.pdf https://repository.usta.edu.co/bitstream/11634/28586/3/Carta_aprobacion_facultad_autoarchivo%20-%20Ruby%20Vanessa%20Trujillo%20Lara%20-%20julio%2022.pdf https://repository.usta.edu.co/bitstream/11634/28586/8/Carta_autorizacion_autoarchivo.pdf |
bitstream.checksum.fl_str_mv |
95a219f9ba13783d2dd3f84dae26ff68 a54cbbb6261b557610b509d26a7744e1 b7839f94dbc7972d2ac79a00a22f5e71 aedeaf396fcd827b537c73d23464fc27 ceb51f3c78961a96ae6f1eb03d8731e3 acb2d9a13756912d57414252f9f667e1 829340a710f93d62d6335fe1b08cfd95 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026194799034368 |
spelling |
Becerra Quiroz, Ana PaolaTrujillo Lara, Ruby Vanessahttps://orcid.org/0000-0002-0238-1586https://scholar.google.es/citations?user=Eq5InnAAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00000045232020-07-28T22:38:20Z2020-07-28T22:38:20Z2020-05-29Trujilo, R. (2020). Producción de Energía a partir de la Biomasa: una Revisión Sistemática [Trabajo de grado de pregrado de Ingeniería Ambiental] Universidad Santo Tomás. Bogotá, Colombia.http://hdl.handle.net/11634/28586reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn las últimas tres décadas la eficiencia energética ha tenido gran desarrollo a nivel mundial, debido al trabajo constante de los países en sustituir combustibles fósiles para generación de energía eléctrica, el cual mitiga el impacto en los recursos naturales coadyuvando a prevenir los gases de efecto invernadero (GEI). La biomasa se considera de gran importancia como combustible primario en la generación de energía eléctrica, debido a que los productos derivados de un ecosistema por medio de la fotosíntesis, su buen manejo y aprovechamiento, son aptos para la transformación en un combustible eficiente y limpio, considerado con mayor eficacia entre su clasificación en biomasa natural, residual y los cultivos energéticos, tomando una transformación según el ideal de energía a producir. Este trabajo evalúa la evidencia científica existente sobre biomasa en la producción de energía, la optimización de recursos renovables, tecnologías convencionales para la economía y los impactos ambientales generados; el cual se inició por medio de la búsqueda de documentos en bases de datos electrónicas Scopus, Science Direct, Web of Science, relacionados con biomasa y energías renovables que han sido publicados en inglés, portugués, alemán y español, que fueron incluidos durante la revisión. Palabras clave: Desecho, sólido, urbano, ciudad inteligente, innovación social, energía, biomasa tecnología.In the last three decades, energy efficiency has had great development worldwide, due to the constant work of countries in substituting fossil fuels for electric power generation, which mitigates the impact on natural resources, helping to prevent greenhouse gases (GHG). Biomass is considered of great importance as a primary fuel in the generation of electrical energy, because the products derived from an ecosystem through photosynthesis, its good management and use, are suitable for transformation into an efficient and clean fuel, considered most effectively between its classification in natural, residual biomass and energy crops, taking a transformation according to the ideal energy to be produced. This work evaluates the existing scientific evidence on biomass in energy production, the optimization of renewable resources, conventional technologies for the economy and the environmental impacts generated; which was started by searching documents in electronic databases Scopus, Science Direct, Web of Science, related to biomass and renewable energy that have been published in English, Portuguese, German and Spanish, which were included during the review. . Key words: Waste, solid, urban, smart city, social innovation, energy, biomass technology.Ingeniero Ambientalhttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalProducción de energía a partir de la biomasa: una revisión sistemáticaWasteSolidUrbanSmart citySocial innovationEnergyBiomassTechnologyTake care of the environmentTecnologías LimpiasCuidad del medio ambienteInnovación socialDesechoSólidoUrbanoCiudad inteligenteEnergíaBiomasaTecnologíaTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAbierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CRAI-USTA BogotáAbomohra, A. E. F., Eladel, H., El-Esawi, M., Wang, S., Wang, Q., He, Z., … Hanelt, D. (2018). Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresource Technology, 249, 992–999. https://doi.org/10.1016/j.biortech.2017.10.102Acha, S., Mariaud, A., Shah, N., & Markides, C. N. (2018). Optimal design and operation of distributed low-carbon energy technologies in commercial buildings. Energy, 142, 578–591. https://doi.org/10.1016/j.energy.2017.10.066Awasthi, M. K., Sarsaiya, S., Patel, A., Juneja, A., Singh, R. P., Yan, B., … Taherzadeh, M. J. (2020). Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109876Bhoi, P. R., Huhnke, R. L., Kumar, A., Indrawan, N., & Thapa, S. (2018). Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier. Energy, 163, 513–518. https://doi.org/10.1016/j.energy.2018.08.151Cárdenas-Ferrer, Teresa Margarita, Santos Herrero, Ronaldo Francisco, Contreras Moya, Ana Margarita, Rosa Domínguez, Elena, Domínguez Nuñez, J. (2019). propuesta metodologica para la gestion de RSU en villa clara, 39(2), 464–484.Castells, Xavier Elías; Cadavid, C. (2005). Clasificación de la biomasa, en Tratamiento y valorización energética de residuos. Ediciones Díaz de Santos, 118.Choi, C. H., Eun, J., Cao, J., Lee, S., & Zhao, F. (2018). Global strategic level supply planning of materials critical to clean energy technologies – A case study on indium. Energy, 147, 950–964. https://doi.org/10.1016/j.energy.2018.01.063Co-digestion, S., Grown, W., Bohutskyi, P., Phan, D., Kopachevsky, A. M., Chow, S., … Betenbaugh, M. J. (2018). Synergistic Co-Digestion of Wastewater Grown Algae-Bacteria Polyculture Biomass Affiliations : Biological Sciences Division , Pacific Northwest National Laboratory , 3300 Stevens Dr ., Department of Environmental Health and Engineering , Johns Hopkins Uni.Delpech, B., Milani, M., Montorsi, L., Boscardin, D., Chauhan, A., Almahmoud, S., … Jouhara, H. (2018). Energy efficiency enhancement and waste heat recovery in industrial processes by means of the heat pipe technology: Case of the ceramic industry. Energy, 158, 656–665. https://doi.org/10.1016/j.energy.2018.06.041Feng, J., Hse, C., Yang, Z., Wang, K., Jiang, J., & Xu, J. (2017). Renewable platform chemicals from directional microwave-assisted liquefaction coupling stepwise extraction of waste biomass. Bioresource Technology, 244(July), 496–508. https://doi.org/10.1016/j.biortech.2017.07.182Florentino, M., & Lucy, M. (2020). Acta Scientiarum Análise da sustentabilidade de cooperativas de materiais recicláveis selecionadas : alternativas para o tratamento de resíduos sólidos urbanos, 42, 1–13. https://doi.org/10.4025/actascihumansoc.v42i1.51002Genus, A., & Iskandarova, M. (2020). Transforming the energy system? Technology and organisational legitimacy and the institutionalisation of community renewable energy. Renewable and Sustainable Energy Reviews, 125. https://doi.org/10.1016/j.rser.2020.109795Gerber Van Doren, L., Posmanik, R., Bicalho, F. A., Tester, J. W., & Sills, D. L. (2017). Prospects for energy recovery during hydrothermal and biological processing of waste biomass. Bioresource Technology (Vol. 225). https://doi.org/10.1016/j.biortech.2016.11.030González Velasco, J. (2012). Energías Renovables (Primera). Editorial Reverté. S.A., 2012.Hahn, H., Hau, D., Dick, C., & Puchta, M. (2017). Techno-economic assessment of a subsea energy storage technology for power balancing services. Energy, 133, 121–127. https://doi.org/10.1016/j.energy.2017.05.116Indrawan, N., Thapa, S., Bhoi, P. R., Huhnke, R. L., & Kumar, A. (2018). Electricity power generation from co-gasification of municipal solid wastes and biomass: Generation and emission performance. Energy, 162, 764–775. https://doi.org/10.1016/j.energy.2018.07.169Internacional Energy Agency. (2011). World EnergyIslam, M. S., Akhter, R., & Rahman, M. A. (2018). A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural off-grid areas or not? Energy, 145, 338–355. https://doi.org/10.1016/j.energy.2017.12.125Jia, J., Shu, L., Zang, G., Xu, L., Abudula, A., & Ge, K. (2018). Energy analysis and techno-economic assessment of a co-gasification of woody biomass and animal manure, solid oxide fuel cells and micro gas turbine hybrid system. Energy, 149, 750–761. https://doi.org/10.1016/j.energy.2018.02.057Jing, R., Kuriyan, K., Kong, Q., Zhang, Z., Shah, N., Li, N., & Zhao, Y. (2019). Exploring the impact space of different technologies using a portfolio constraint based approach for multi-objective optimization of integrated urban energy systems. Renewable and Sustainable Energy Reviews, 113(February).Keinath, C. M., & Garimella, S. (2017). An energy and cost comparison of residential water heating technologies. Energy, 128, 626–633. https://doi.org/10.1016/j.energy.2017.03.055Lee, S. K., & Mogi, G. (2018). Relative efficiency of energy technologies in the Korean mid-term strategic energy technology development plan. Renewable and Sustainable Energy Reviews, 91(May 2016), 472–482. https://doi.org/10.1016/j.rser.2018.03.031Li, W., Dang, Q., Brown, R. C., Laird, D., & Wright, M. M. (2017). The impacts of biomass properties on pyrolysis yields, economic and environmental performance of the pyrolysis-bioenergy-biochar platform to carbon negative energy. Bioresource Technology, 241, 959–968. https://doi.org/10.1016/j.biortech.2017.06.049Lin, L., Yu, Z., & Li, Y. (2017). Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part II: Microbial diversity and succession. Bioresource Technology, 241, 1027–1035. https://doi.org/10.1016/j.biortech.2017.06.011Mateo, W., Lei, H., Villota, E., Qian, M., Zhao, Y., Huo, E., … Huang, Z. (2020). Synthesis and characterization of sulfonated activated carbon as a catalyst for bio-jet fuel production from biomass and waste plastics. Bioresource Technology, 297. https://doi.org/10.1016/j.biortech.2019.122411 Materazzi, M., & Holt, A. (2019). Experimental analysis and preliminaryMaterazzi, M., & Holt, A. (2019). Experimental analysis and preliminary assessment of an integrated thermochemical process for production of low-molecular weight biofuels from municipal solid waste (MSW). Renewable Energy, 143, 663–678. https://doi.org/10.1016/j.renene.2019.05.027Montiel bohórquez, N. D., & Pérez, J. F. (2019). Generación de Energía a partir de Residuos Sólidos Urbanos . Estrategias Termodinámicas para Optimizar el Desempeño de Centrales Térmicas Energy Generation from Municipal Solid Waste . Thermodynamic Strategies to Optimize the Performance of Thermal Power. Informacion Tecnológica, 30(1), 273–284. Retrieved from http://dx.doi.org/10.4067/S0718-07642019000100273Moset, V., Fontaine, D., & Møller, H. B. (2017). Co-digestion of cattle manure and grass harvested with different technologies. Effect on methane yield, digestate composition and energy balance. Energy, 141, 451–460. https://doi.org/10.1016/j.energy.2017.08.068Oliveira, E. A. F. de, Gonçalves, J. F., Homem, I. C. A., Januário, T. L. da S., & Sabiá, R. J. (2018). Gerenciamento dos resíduos sólidos urbanos: um estudo de caso no município de Crato (CE). Nature and Conservation, 11(2), 31–40. https://doi.org/10.6008/cbpc2318-2881.2018.002.0004Posmanik, R., Labatut, R. A., Kim, A. H., Usack, J. G., Tester, J. W., & Angenent, L. T. (2017). Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 233, 134–143. https://doi.org/10.1016/j.biortech.2017.02.095Ren, H., Tuo, J., Addy, M. M., Zhang, R., Lu, Q., Anderson, E., … Ruan, R. (2017). Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresource Technology, 245, 1130–1138. https://doi.org/10.1016/j.biortech.2017.09.040Rybak, W., Moroń, W., & Ferens, W. (2019). Dust ignition characteristics of different coal ranks, biomass and solid waste. Fuel, 237(March 2018), 606–618. https://doi.org/10.1016/j.fuel.2018.10.022Shahnazari, M., Bahri, P. A., Parlevliet, D., Minakshi, M., & Moheimani, N. R. (2017). Sustainable conversion of light to algal biomass and electricity: A net energy return analysis. Energy, 131, 218–229. https://doi.org/10.1016/j.energy.2017.04.162Shang, Y., Wu, M., Zhou, J., Zhang, X., Zhong, Y., An, J., & Qian, G. (2019). Cytotoxicity comparison between fine particles emitted from the combustion of municipal solid waste and biomass. Journal of Hazardous Materials, 367, 316–324. https://doi.org/10.1016/j.jhazmat.2018.12.065Sharvini, S. R., Noor, Z. Z., Chong, C. S., Stringer, L. C., & Glew, D. (2020). Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies. Energy, 191(xxxx). https://doi.org/10.1016/j.energy.2019.116513Sitorus, F., & Brito-Parada, P. R. (2020). A multiple criteria decision making method to weight the sustainability criteria of renewable energy technologies under uncertainty. Renewable and Sustainable Energy Reviews, 127. https://doi.org/10.1016/j.rser.2020.109891Surendra, K. C., Ogoshi, R., Zaleski, H. M., Hashimoto, A. G., & Khanal, S. K. (2018). High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition. Bioresource Technology, 251, 218–229. https://doi.org/10.1016/j.biortech.2017.12.044Trieb, F., & Moser, M. (2018). Accepted Manuscript. https://doi.org/10.1016/j.energy.2018.04.027.ThisXu, D., Chai, M., Dong, Z., & Yu, X. (2018). for Lignocellulosic Biomass Pyrolysis Biomass Energy Engineering Research Center , Key Laboratory of Urban Agriculture CAS Key Laboratory of Renewable Energy , Guangzhou Institute of Energy.Xue, J., & Goldfarb, J. L. (2018). Enhanced devolatilization during torrefaction of blended biomass streams results in additive heating values and synergistic oxidation behavior of solid fuels. Energy, 152, 1–12. https://doi.org/10.1016/j.energy.2018.03.037Yılmaz Balaman, Ş., Wright, D. G., Scott, J., & Matopoulos, A. (2018). Network design and technology management for waste to energy production: An integrated optimization framework under the principles of circular economy. Energy, 143, 911–933. https://doi.org/10.1016/j.energy.2017.11.058Zhao, Y., Noori, M., & Tatari, O. (2017). Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology. Energy, 120, 608–618. https://doi.org/10.1016/j.energy.2016.11.112Zheng, Y., Jenkins, B. M., Kornbluth, K., Kendall, A., & Træholt, C. (2018). Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage. Energy, 155, 620–629. https://doi.org/10.1016/j.energy.2018.05.036THUMBNAIL2020rubytrujillo.pdf.jpg2020rubytrujillo.pdf.jpgGenerated Thumbnailimage/jpeg2275https://repository.usta.edu.co/bitstream/11634/28586/10/2020rubytrujillo.pdf.jpg95a219f9ba13783d2dd3f84dae26ff68MD510open accessCarta_aprobacion_facultad_autoarchivo - Ruby Vanessa Trujillo Lara - julio 22.pdf.jpgCarta_aprobacion_facultad_autoarchivo - Ruby Vanessa Trujillo Lara - julio 22.pdf.jpgGenerated Thumbnailimage/jpeg3305https://repository.usta.edu.co/bitstream/11634/28586/11/Carta_aprobacion_facultad_autoarchivo%20-%20Ruby%20Vanessa%20Trujillo%20Lara%20-%20julio%2022.pdf.jpga54cbbb6261b557610b509d26a7744e1MD511metadata only accessCarta_autorizacion_autoarchivo.pdf.jpgCarta_autorizacion_autoarchivo.pdf.jpgGenerated Thumbnailimage/jpeg3776https://repository.usta.edu.co/bitstream/11634/28586/12/Carta_autorizacion_autoarchivo.pdf.jpgb7839f94dbc7972d2ac79a00a22f5e71MD512metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/28586/9/license.txtaedeaf396fcd827b537c73d23464fc27MD59open accessORIGINAL2020rubytrujillo.pdf2020rubytrujillo.pdfapplication/pdf417961https://repository.usta.edu.co/bitstream/11634/28586/7/2020rubytrujillo.pdfceb51f3c78961a96ae6f1eb03d8731e3MD57open accessCarta_aprobacion_facultad_autoarchivo - Ruby Vanessa Trujillo Lara - julio 22.pdfCarta_aprobacion_facultad_autoarchivo - Ruby Vanessa Trujillo Lara - julio 22.pdfapplication/pdf305481https://repository.usta.edu.co/bitstream/11634/28586/3/Carta_aprobacion_facultad_autoarchivo%20-%20Ruby%20Vanessa%20Trujillo%20Lara%20-%20julio%2022.pdfacb2d9a13756912d57414252f9f667e1MD53metadata only accessCarta_autorizacion_autoarchivo.pdfCarta_autorizacion_autoarchivo.pdfapplication/pdf268746https://repository.usta.edu.co/bitstream/11634/28586/8/Carta_autorizacion_autoarchivo.pdf829340a710f93d62d6335fe1b08cfd95MD58metadata only access11634/28586oai:repository.usta.edu.co:11634/285862022-10-10 15:33:35.99open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |