Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos
El Aedes aegypti (Díptera: Culicidae) es una de las especies de zancudos que trasmiten enfermedades virales, como dengue, fiebre amarilla, zika, chikungunya y mayaro, entre otras. La disminución en el contagio de estas enfermedades está basada en el control de los vectores. Dentro de ellos se encuen...
- Autores:
-
Alvarez Angarita, Yelicsa Dayana
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/21390
- Acceso en línea:
- http://hdl.handle.net/11634/21390
- Palabra clave:
- Aedes aegypti,
α-aminonitriles
larvicidal activity
Mosquitos-control
Epidemiología
Salud pública
Insectos-vectores
Aedes aegypti
α-aminonitrilos
Actividad larvicida
- Rights
- openAccess
- License
- Abierto (Texto Completo)
id |
SANTTOMAS2_bccfba59ae5e2233fc5c0b42e9b22874 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/21390 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos |
title |
Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos |
spellingShingle |
Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos Aedes aegypti, α-aminonitriles larvicidal activity Mosquitos-control Epidemiología Salud pública Insectos-vectores Aedes aegypti α-aminonitrilos Actividad larvicida |
title_short |
Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos |
title_full |
Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos |
title_fullStr |
Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos |
title_full_unstemmed |
Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos |
title_sort |
Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos |
dc.creator.fl_str_mv |
Alvarez Angarita, Yelicsa Dayana |
dc.contributor.advisor.spa.fl_str_mv |
Vargas Mendez, Leonor Yamile |
dc.contributor.author.spa.fl_str_mv |
Alvarez Angarita, Yelicsa Dayana |
dc.subject.keyword.spa.fl_str_mv |
Aedes aegypti, α-aminonitriles larvicidal activity |
topic |
Aedes aegypti, α-aminonitriles larvicidal activity Mosquitos-control Epidemiología Salud pública Insectos-vectores Aedes aegypti α-aminonitrilos Actividad larvicida |
dc.subject.lemb.spa.fl_str_mv |
Mosquitos-control Epidemiología Salud pública Insectos-vectores |
dc.subject.proposal.spa.fl_str_mv |
Aedes aegypti α-aminonitrilos Actividad larvicida |
description |
El Aedes aegypti (Díptera: Culicidae) es una de las especies de zancudos que trasmiten enfermedades virales, como dengue, fiebre amarilla, zika, chikungunya y mayaro, entre otras. La disminución en el contagio de estas enfermedades está basada en el control de los vectores. Dentro de ellos se encuentra el control químico, que es uno de los métodos más empleados, en este método se utilizan insecticidas sintéticos como los organofosforados; sin embargo, diversas poblaciones de dichos mosquitos alrededor del mundo han mostrado resistencia a estos, amenazando el control del vector. La continua necesidad de sintetizar y explorar nuevas moléculas bioactivas como larvicidas hizo que en el presente trabajo de grado se prepararan y estudiaran nuevos derivados de α-aminonitrilos Los α-aminonitrilos evaluados como larvicidas son nuevas alternativas para el control del vector debido a que son altamente activos CL50 < 50 ppm frente a larvas en tercer instar del zancudo Aedes aegypti, cepa Piedecuesta. De los diez compuestos evaluados, la 3,4-dicloro-N-(-4-clorobencil)anilina presentó la mejor actividad larvicida con una CL50 de 3.16 ppm. Los nuevos compuestos sintetizados pueden ser útiles para desarrollar formulaciones que puedan usarse en el control de mosquitos transmisores de enfermedades. Palabras clave: Aedes aegypti, α-aminonitrilos, actividad larvicida. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-02-04T13:57:49Z |
dc.date.available.spa.fl_str_mv |
2020-02-04T13:57:49Z |
dc.date.issued.spa.fl_str_mv |
2020-02-02 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Alvarez A, Y., Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos (2020). |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/21390 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Alvarez A, Y., Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos (2020). reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/21390 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alinezhad, H., Yavari, H., & Salehian, F. (2015). Recent advances in reductive amination. Catalysis and its applications. Current Organic Chemistry 19(11), 1021-1049. Anez, G., Chancey, C., Grinev, A., & Rios, M. (2012). Dengue virus and other arboviruses: A global view of risks. ISBT Science Series, 7(1), 274-282. doi: 10.1111/j.1751-2824.2012. 01602.x Araya, R. L., Carazo, E. R., & Cartin, V. M. (2005). Diagnóstico del uso de insecticidas utilizados contra Bemisia tabaci (Gennadius) en tomate y Chile en Costa Rica. Manejo Integrado de Plagas y Agroecología 75(1), 68-76. Attar, N. (2016). ZIKA virus circulates in new regions. Nature Reviews Microbiology, 14(2), 62-62. doi: org/10.1038/nrmicro.2015.28. Baker-Austin, C., Trinanes, J.A., Taylor, N.G.H., Hartnell, R., Siitonen, A., & Martinez-Urtaza, J. (2013). Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Climate Change 5(3), 73-77- doi: org/10.1038/nclimate1628. Bisset, J. A. (2002). Uso correcto de insecticidas: control de la resistencia. Medicina Tropical 54(3), 202-219. Bisset, Lazcano., J. A., Rodríguez, M. M., San Martin, J. L., Romero, J. E., & Montoya, R. (2009). Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de el salvador. Pan American Health Organization, 26(3), 229-234. Botello, A. V; Von Osten J, R., Gold-Bouchot. G., & Agraz-Hernandez, C. (2005). Golfo de México: contaminación e impacto ambiental: diagnóstico y tendencias. (Eds.), 2da ed.,Universidad Autonoma de Campeche, Universidad Nacional Autónoma de México, Instituto Nacional de Ecología. Campeche México pp. 261-268. Braga, I. A., Lima, Pereira, J. B., Sidinei da, S. S., & Valle, D. (2004). Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe, and Alagoas, Brazil. Memórias do Instituto Oswaldo Cruz 99(2), 199-203. doi.org/10.1590/S0074-02762004000200015 Brown, A.W. (1986). Insecticide resistance in mosquitoes: A pragmatic review. Journal of the American Mosquito Control Association 2(2), 123-140. Burge, C.A., Friedman, C.S., Froelich, B., Ford, S.E., Harvell, C.D., Hershberger, P.K., Hofmann, E.E., Mark-Eakin, C., Prager, K.C., Petes, L.E., Weil, E., & Willis, B. L. (2014). Climate change influences on marine infectious diseases: implications for management and society. Annual Review of Marine Science 6, 249-277. doi: 10.1146/annurev-marine-010213-135029. Byun, E., Hong, B., De Castro, K. A., Lim, M., & Hakjune. Rhee., (2007). One-pot reductive mono-N-alkylation of aniline and nitroarene derivatives using aldehydes. The Journal of Organic Chemistry 72(25), 9815-9817. doi: org/10.1021/jo701503q. Cáceres, L., Rovira, J., García, A., & Torres, R. (2011).) Determinación de la resistencia a insecticidas organofosforados, carbamatos y piretroides en tres poblaciones de Anopheles Albimanus (Díptera: Culicidae) de Panamá. Biomedica 31(3), 419-427. doi: org/10.7705/biomedica.v31i3.388 Cahyo Mulyatno K., Yamanaka, A., Ngadino., & Konish. (2012). Resistencia de Aedes aegypti (L.) larvae a temephos en Surabaya, Indonesia. The Southeast Asian journal of tropical medicine and public health 43 (1); 29-33 Cao-Lormeau, V. M., Roche, C., Teissier, A., Robin, E., Berry, A. L., Mallet, H. P., Sall, A. A; & Musso, D. (2014). Zika virus, french polynesia, south pacific, 2013. Emerging Infectious Diseases, 20(6), 1085-1086. doi: 10.3201/eid2006.140138. Carey, F., a (2006), Química orgánica. (6ta ed., pp. 639-640). McGraw-Hill InterAmericana Carreño Otero., A, L; Vargas Méndez, L, Y., Duque, L., J. E., & Kouznetzov, V. V., & (2014). Desing, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue. European Journal of Medicinal Chemistry, 78(1), 392-400. doi: 10.1016/j.ejmech.2014.03.067. Centers for Disease Control and Prevention. (2016). Flaviviridae. Recuperado el 30 de junio de 2018, de la fuente: https://www.cdc.gov/vhf/virus-families/flaviviridae.html. Charpentier, A., Menozzi, P., Marcel, V., Villatte, F & Fournier, D. (2000). A method to estimate acetylcholinesterase-active sites and turnover in insects. Analytical Biochemistry 285(1), 76-81. doi:10.1006/abio.2000.4738. Chaudhry, M., Prabhu-Dass, J.F., Selvakumar, D., Kumar, N.S. (2013). In-silico study of acetylcholinesterase inhibition by organophosphate pesticides. International Journal of Pharma and Bio Sciences 4(3), 788-802. Chen, L. H., Hamer, D. H. (2016). Zika virus: Rapid spread in the western hemisphere. Annals of Internal Medicine 164(9), 613-615. doi: 10.7326/M16-0150. Colleen A. B., Mark, E. C., Carolyn, S. Friedman., Brett, Froelich., Hershberger, P. K., Hofmann, E. E., Peters, L. E., Prager, K. C., Weil, E., Bette, L., Willis, S. E., Ford, and Drew Harvell. (2014). Climate change influences on marine infectious diseases: implications for management and society. Annual Review of Marine Science 6, 249-277. doi: 10.1146/annurev-marine-010213-135029 Cruz, S., Cifuentes, D., Hurtado, N., & Roman, M. (2016). Solvent-free microwave synthesis of pyridazin-3(2H)-ones. Información Tecnológica 27(5), 57-62. doi: 10.4067/S0718-07642016000500007 Cuadros, J., Carreño, A. L., Kouznetsov, V. V., & Duque, J. E. (2017). Acción insecticida de análogos de girgensohnina sintéticos y aceites esenciales en Rhodnius prolixus (Hemiptera: Reduviidae). Biomédica 37(2), 50,58 doi.org/10.7705/biomedica.v37i0.3379 Diagne, C. T., Diallo, D., Faye, O., Ba, Y., Faye, O., Gaye, A., Dia, I., Ibrahima., Faye, O.,Weaver, S. C., Sall A. A., & Diallo, M. (2015). Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infectious Diseases, 15(1), 2-6. doi:10.1186/s12879-015-1231-2 Dias, C.N. & Moraes, D.F.C. (2014). Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) Larvicides. Parasitology Research 113(2), doi.org/10.1007/s00436-013-3687-6 Dick, G., Kitchen, S., Haddow, A. (1952). Zika Virus I. isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene 46(5), 509-520. doi: 10.1016/0035-9203(52)90042-4 Dieter, E., & Shilvock, J. Some recent applications α-amino nitrile; Chemical Society Review 2000(5), 359-373. doi: 10.1039/A908290E Ditsuwan, T., Liabsuetrakul, T., Ditsuwan, V., Thammapalo, S. (2012). Cost of standard indoor ultra-low-volume space spraying as a method to control adult dengue vectors. Tropical Medicine & International Health 17(6), 767- 740. doi: 10.1111/j.1365-3156.2012.02997 doi: 10.2174/1385272819666150311233021. Duffield, A. M.; Budzikiewicz, H.; Williams, D. H.; Djerassi, C. (1965). Mass spectrometry in structural and stereochemical problems. LXIV.1 A study of the fragmentation processes of some cyclic amine. J. Am. Chem. Soc. 87, p.810-816. Duffy, M., Chen, T., Hancock, W., Powers, A., Kool, J., Lanciotti, R., Guillaumot, L., Griggs, A. M., Lambert, A. J., Laven, J., Kosoy, O., Panella, A, Biggerstaff B. J., Fischer, M., & Hayes E. B. (2009). Zika virus outbreak on yap island, Federated States of Micronesia. The New England Journal of Medicine, 24(350), 2536-2543. doi: 10.1056/NEJMoa0805715. Duthaler, R. (1994). Recent developments in the stereoselective synthesis of α-aminonitriles. Tetrahedron 50(6), 1539-1650. doi: 10.1016/j.tet.2006.08.105 Enders, D. (2000). Reactions for Functional Group Transformations. (3era ed., pp. 359-373). Jie Jack Li Pfizer Global Research & Development. Esu, E., Horstick, O., Lenhart, A., & Smith L. (2010). Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Tropical Medicine & International Health 15(5), 619-631. doi: 10.1111/j.1365-3156.2010.02489.x. Evangelista, I. M. (1998). Plaguicidas: Aspectos ambientales, analíticos y toxicológicos (4ta ed., pp. 275-276) Editorial Castelló de la Plana Publicacions de la Universitart Jaume I Fagbami, A. (1979). Zika virus infections in Nigeria: Virological and seroepidemiological The Journal of Hygiene 83(2), 213-219. doi:10.1017/s00221724000 25997 FAO (1993). Estado mundial de la agricultura y la alimentación. Recuperado el 6 de marzo de 2019. http://www.fao.org/3/a-t0800s.pdf Faye, O., Faye, O., De Olivera., Freire, C., Iamarino, A., J., Diallo, M, & Simpson, D. (2014). Molecular evolution of zika virus during its emergence in the 20th century. Plos Neglected Tropical Diseases, 8(1), 2636. doi: org/10.1371/journal.pntd.0002636 Garamszegi, L.Z. (2011). Climate change increases the risk of malaria in birds. Global Change Biology 17(5), 1751-1759. doi: org/10.1111/j.1365-2486.2010.02346. Garrett, K., Dobson, A.D.M., Kroschel, J., Natarajan, B., Orlandini, S., Tonnang, H.E., & Valdivia, C. (2013). The effects of climate variability and the color of weather time series on agricultural diseases and pests, and on decisions for their management. Agricultural and Forest Meteorology 170, 216-227. doi: org/10.1016/j.agrformet.2012.04.018 Gómez, A, V., Biswas, A., Tadini, C, C., Furtado, R, F., Alves, C, R., Cheng, H, N (2019). Use of Natural Deep Eutectic Solvents for Polymerization and Polymer Reactions. Revista de la sociedad Brasileña de Química 30 (4), 717-726. doi: org/10.21577/0103-5053.20190001. González, G. (2013). Resistencia a insecticidas en el mosquito vector del dengue Aedes aegypti (L.) en dos épocas de trasmisión de la enfermedad en Mérida, Yucatán. Tesis doctoral. Universidad Autonoma de Nuevo León. p.132. Gregor, J., Dominique, E., Ogusuku, E., & Michael, J. (2008). Uso de insecticidas: contexto y consecuencias ecológicas. Revista Peruana de Medicina Experimental y Salud Publica 25(1), 74-100. Gregory, Uso de insecticidas J., Devine1, A., Dominique, E., Ogusuku, E., & Furlong, M. (2008) Uso de insecticidas contexto y consecuencias ecológicas. Revista Peruana de Medicina Experimental y Salud Publica 25(1), u74-100. Harvell, C., Mitchell, C., Ward, J. Altizer, S., Dobson, A., Ostfeld, R., Samuel, M. (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296(5576), 2158-2162. doi: 10.1126/science.1063699 Harvell, D., Altizer, S., Cattadori, I.M., Harrington, L., & Weil, E. (2009). Climate change and wildlife diseases: When does the host matter the most. Ecology 90(4), 912-920. Hayes, E. (2009). Zika virus outside africa; Emerging Infefctious Diseases, 15(9), 1347-1350. doi: 10.3201/eid1509.090442. Hemingway, J., & Ranson, H. Insecticide resistance in insect vectors of human disease. 45(1), 371-391. doi: 10.1146/annurev.ento.45.1.371. Hennessey, M., Fischer, M., & Staples, E. (2016). Zika Virus Spreads to New Areas- region of the Americas, May 2015-january 2016. Morbidity and Mortality Weekly Reort (MMWR), 65(3), 55-58. doi: 10.15585/mmwr.mm6503e1. Higgs, s. (2016). Zika virus: Emergence and emergency Vector-Borne and Zoonotic Diseases, 16(2), 75-76. doi: 10.1089/vbz.2016.29001.hig IDEAM (2017). Tercera Comunicación Nacional de Colombia: Resumen Ejecutivo: Bogotá. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023732/RESUMEN_EJECUTIVO_ TCNCC_COLOMBIA.pdf Instituto Nacional de Salud (INS). (2018). Semana epidemiológica 22. Recuperado el 23 junio de 2019, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2018% Instituto Nacional de Salud (INS). (2019-1). Semana epidemiológica 22. Recuperado el 23 junio de 2019, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/ 2019%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2022.pdf?fbclid=IwAR0k7APrSVioOG0tiYLAQ1Ne4KIx3jjkSkQX48Pjt1dRG7m-YXlKtReQOn4. Instituto Nacional de Salud (INS). (2019-2). Semana epidemiológica 23. Recuperado el 23 junio de 2019, de la fuente https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/ 2019%20Boletín%20epidemiológico%20semana%2023.pdf Instituto Nacional del Cáncer de Estados Unidos. (2017). Artralgia. Recuperado el 4 de marzo de la fuente: https://www.cancer.gov/espanol/publicaciones/diccionario?cdrid=455150. Ioos, S., Mallet, H., Goffart, I., Cardoso, T., & Herida, M. (2014). Current zika virus epidemiology and recent epidemics. Medicine Et Maladies Infectieuses 44(7), 302-307. doi:10.1016/j.medmal.2014.04.008. Jeschke, P., Moriya, K., Lantzsch, R., Seifert, H., Linder, W., Jelich, K., Gohrt, A., Beck, M.E & Etzel, W. (2001). Thiacloprid a new membeer of the chloronicotinyl insecticide (CNI) family. Pflanzenschutz Nachrichten Bayer (English Edition 54(2), 147-160. Jirakanjanakit, N., Rongnoparut, P., Saengtharatip, S., Chareonviriyaphap, T., Duchon, S., Bellec, C., & Yoksan, S. (2007). Insecticide susceptible/ resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003-2005. Journal of Economic Entomology 100(2), 545-550. doi: 10.1603/0022-0493(2007)100[545:IRSIAS]2.0.CO;2. Jones, K., Patel, N., Levy, M., Storeygard, A., Balk, D., Gittleman, J., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451(7181), 990-993. doi: 10.1038/ nature06536. Kuno, G. (2007). Research on dengue and dengue-like illness in East Asia and the Western Pacific during the first half of the 20th century. Reviews in Medical Virology 17(5), 327-341. doi:10.1002/rmv.545 Lazaro, Lazaro, E., & Homs C.E. (2002). Virus Emergentes: La Amenaza Oculta. (1ra ed., pp. 513-602.) Lazcano, J., Rodríguez, M., San Martin., J., Romero J., & Montoya R. (2009). Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de el salvador. Revista Panamericana De Salud Pública, 26(3), 229-234. Liu, N. (2015). Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review of Entomology 60(1), 537-559. doi: 10.1146/annurev-ento-010814-020828 Lobaina, C, A., Tamayo R, O., Zamora Y., & Castle, Y (2005). Obtención de bases de schiff por condensación del ohidroxibenzaldehido con anilina y p-derivados. Revista cubana de Química XVll (2) 33-43. López, S., Garrido, F., & Hernández M. (2000). Desarrollo histórico de la epidemiologia: formación como disciplina científica. Salud Pública de México 42(2), 133-137. Maestre S, R., Rey, V. G., Salas, A. J., Vergara, S. C., Santacoloma, V. I., Goenaga, S. O., & Carrasquilla, F. M. C. (2009). Susceptibilidad de Aedes aegypti (Diptera: Culicidae) a temefos en Atlántico-Colombia. Revista Colombiana de Entomología 35(2) 202-205. Martins, J. A., Lins, R., M., M., A., Gerlind, J., Linss, B., Peixoto, A. A., & Valle, D (2009). Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil. The American Journal of Tropical Medicine and Hygiene 81(1), 108-115. doi: org/10.4269/ajtmh.2009.81.108. Massoulie, J; Pezzementi, L., Bon, S., Krejci, E., & Vallette, F.M. (1993). Molecular and cellular biology of cholinesterases. Progress in Neurobiology 41(1), 31-91. Morita, M., Ueda, T., Yoneda, T., Koyanagi, T., & Haga, T. (2007). Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Management Science 63(10), 969-973. doi: 10.1002/ps.1423 Morrison, T.R., Boyd. N.R. (1990). Química Orgánica. (5ta ed., pp. 934-942). Editorial Addison-Wesley Iberoamericana Musso, D. (2015). Zika virus transmission from French Polynesia to Brazil. Emerging Infectious Diseases 21(10), 1887-1887. doi:10.3201/eid2110.151125 Mutero, A., Pralavorio, M., Bride, J.M., Fournier, D. (1994). Resistance associated point mutations in insecticide-insensitive acetylcholinesterase. Proceedings of the National Academy of Sciences 91(13), 5922-5926. doi: 10.1073/pnas.91.13.5922. Nezhad, A.K., Divar, M., & Panahi, F. (2013). Synthesis of α-aminonitriles with benzimidazolic and theophyllinic backbones using the Strecker reaction. The Journal of Organic Chemistry 78(21), 10902-10908. doi: org/10.1021/jo401890g. Noisakran, S.; Chokephaibulkit, K.; Songprakhon, P.; Onlamoon, N.; Hsiao, H-M.; Villinger, F.; Ansari, A.; Perng, G.C. (2009). A re-evaluation of the mechanisms leading to dengue hemorrhagic fever. Annals of the New York Academy of Science 1171, E24-E35. doi: 10.1111/j.1749-6632.2009.05050. Ocampo, C., Brogdon, W., Salazar, M., Mina, N., & McAllister, J. (2011). Insecticide resistance status of aedes aegypti in 10 localities in Colombia. Acta Tropica, 118(1), 37-44. doi: 10.1016/j.actatropica.2011.01.007. Organización Mundial de la Salud (2018). Dengue y dengue severo. Recuperado el 4 de marzo de 2019. https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue. Organización Mundial de la Salud (OMS), (2016). Síndrome de Guillain-Barrré Recuperado el 9 abril de 2019,https://www.who.int/es/newsroom/factsheets/detail/guillainbarr%C3%A9syndrome?fbclid=IwAR1HxBFcigThPONqIOlgx6ZSpoF5IUCsShiRdUo-4LYY3PFAqh8MuUherJA Organización Mundial de la Salud (OMS), (2017-1). Lucha contra el dengue. Recuperado el 4 De marzo de 2019, de la fuente: https://www.who.int/denguecontrol/mosquito/es/ Organización Mundial de la Salud (OMS), (2017-2). Enfermedades trasmitidas por vectores. Recuperado el 5 de marzo de 2019, de la fuente https://www.who.int/es/news-room/fact-sheets/detail/vector-borne-diseases Organización Mundial de la Salud (OMS), (2019). Dengue y dengue grave. Recuperado el 9 marzo de 2019, de la fuente: https://www.who.int/es/newsroom/factsheets/detail/denguan dseveredengue?fbclid=IwAR3gXjr9Bgki8MQDevxMKEpVvzSInRchMUXpq12gdqDQINQLB9mjJmv-0LA Organización Mundial de la Salud, (OMS). (2011). Global insecticide use for vector-borne disease control: A 10-Year assessment (2000-2009). Consultado el 29 de agosto de 2018, de la fuenta http://apps.who.int/iris/bitstream/10665/44670/1/9789241502153 Organización Mundial de la Salud, (OMS). (2012). Dengue y dengue hemorrágico. Recuperado el 7 marzo de 2019. http://apps.who.int/mediacentre/factsheets/fs387/es/index2.html Pinkus, R. (2010). El hombre y los artrópodos: Un vínculo inalienable. Universidad Nacional Autónoma de México, 5(2), 81-100. Puc, V., Herrera, J., Carmona, C., Mendoza, A., Medina, A., Chablé, J., Arredondo, J., Suárez, A., & Manrique, P. (2016). Effectiveness of commercial repellents against Aedes aegypti (L.) in Yucatan, México. Salud Publica de México 58(4), 472-475. doi:org/10.21149/spm.v58i4.8030 Rendón, M. A. (2010). El hombre y los artrópodos: un vínculo inalienable. Revista Península 5(2), 81-100 Rodríguez, A., M., Prieto, P, de la Hoz A., Diaz Ortiz, A., Martin, D, R & Garcia, J, I. (2015). Influence of polarity and activaton energy in microwave-assisted organic synthesis (MAOS). ChemistryOpen 4(3), 308-317 doi: 10.1002/open.201402123. Rodríguez, A., Suárez, S., & Palacio, D. (2014). Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiología 52(3), 1561-3003. Rosenberg, R. (2015). Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cellular and Molecular Life Sciences 72(6), 1115-1125. doi: 10.1007/s00018-014-1785-y. Rosenberry, T.L. (1975-1). Acetylcholinesterase. Advances in Enzymology and Related Areas of Molecular Biology 43(1) 103-218. doi:10.1002/9780470122884.ch3 Rosenberry, T.L. (1975-2). Catalysis by acetylcholinesterase: Evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base Catalysis. Proceedings of the National Academy of Sciences 72(10), 3834-3838. doi: 10.1073/pnas.72.10.3834. Rueda, A, G., Carreño Otero, A, L., Duque, J. E., & Kouznetsov, V. V. (2018). Synthesis of new α-amino nitriles with insecticidal action on Aedes aegypti (Díptera: Culicidae). Revista Brasileira de Entomologia 62(2), 112-118. doi: org/10.1016/j.rbe.2018.01.004 Saavedra, K., Strode, C., Flores, A., Garcia, S., Reyes, G., Ranson, H., Hemingway, J., & Black, W. (2014). Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection. Insect Molecular Biology 23(2), 199-215. doi: 10.1111/imb.12073. Salvatore, R., Nagle, A., & Jung, K. (2002). Cesium effect: High chemoselectivity in direct N-alkylation of amines. The Journal of Organic Chemistry 67(3), 674-683. doi: org/10.1021/ jo010643c. Schuenemeyer, J. H., & Drew, L. J. (2011). Statistics for Earth and Environmental Scientists. New Jersey: John Wiley & Sons. 11-57-59-109. Schuler, F. L., Ribeiro, E. M., Feitosa, I. M., Horovitz, D.D.G., Cavalcanti, D.P., Pessoa, A., Doriqui, M., Neri, J, I., Pina, N., Monteiro, W, H., Cernach, M., Antonette, S,H., Pone, M. V. S,.Serao, C., & Sanseverino, M.T.V. (2016). Possible association between Zika virus infection and microcephaly - Brazil, 2015. Morbidity and Mortality Weekly Report 65(3), 59-62. doi:org/10.15585/mmwr.mm6503e2external icon. Shafran, Y., Bakulev, V., & Mokrushin, V. (1989). Synthesis and properties of α-aminonitriles. Russian Chemical Reviews 58(2), 148-162. doi: org/10.1070/RC1989v058n02A BEH003432. Shan, C., Xie, X., Barrett, A., Garcia, M., Tesh, R., Vasconcelos., Vasilakis, N., Weaver, C. S. & Shi, P.Y. (2016). Zika virus: Diagnosis, therapeutics, and vaccine. ACS Infectious Diseases 2(3), 170-172. doi.org/10.1021/acsinfecdis.6b00030. Singh, C. B. Kavala, V., Samal, A., & Patel, B. K. (2007). Aqueous‐Mediated N‐Alkylation of amines. European Journal of Organic Chemistry, 2007(8), 1211-1383. doi: org/10.1002/ejoc.200600937. Singhal, S., Jain, S., & Sain, B. (2010). Heterogeneously catalyzed oxidative cyanation of tertiary amines with sodium cyanide/hydrogen peroxide using polymersupported iron(II) phthalocyanines as catalyst. Advanced Synthesis & Catalysis 352(8), 1338-1344. doi.org/ 10.1002/adsc.201000007. Steinman, M., Topliss, J. G., Alekel, R., Wong, Y. S. & York, E. (1974). 1-poly(fluoroalkyl)benzo diazepine. Journal of Medicinal Chemistry 16(12), 1354-13560. doi: org/10.1021/jm00270a008. Steinman, M., Topliss, J. G., Alekel, R., Wong, Y. S. & York, E. (1974). 1-poly(fluoroalkyl)benzo diazepine. Journal of Medicinal Chemistry 16(12), 1354-13560. doi: org/10.1021/jm00270a008. Symala, M. (2009). A decade of advances in three component reactions Organic Preparations and Procedures International 2(37), 103-171. doi: org/10.1080/00304940509354882 Tabashnik, B.E.; Mota-Sanchez, D.; Whalon, M.E.; Hollingworth, R.M.; Carrière, Y. (2014). Defining terms for proactive management of resistance to bt crops and pesticides. Journal of Economic Entomology 107(2), 496-507. doi: 10.1603/ec13458. Tang, B. (2012). The cell biology of Chikungunya virus infection. Cellular Microbiology 14(9), 1354-1363. doi: org/10.1111/j.1462-5822.2012.01825. Taylor, P., Radic, Z. (1994). The cholinesterases: from genes to proteins. Annual Review of Pharmacology and Toxicology 34(1), 281-320. doi:10.1146/annurev.pa.34.040194.001433 Torres, R. (2011). Determinación de la resistencia a insecticidas organofosforados, carbamatos y piretroides en tres poblaciones de Anopheles Albimanus (Diptera: Culicidae). Biomédica, 31(3), 419-427. doi: org/10.7705/biomedica.v31i3.388. Urbano, N. (2007). El endemismo: diferenciación del término, métodos y aplicaciones. Acta Zoológica Mexicana 33(1), 89-107. US Environmental Protection Agency, (EPA). DEET. (2017). Consultado el 29 de agosto de 2018. De la fuente: https://www.epa.gov/insect-repellents/deet. Vargas, L. Y., & Kouznetsov, V. V (2013). First girgensohnine analogs prepared through InCl3 catalized Current Organic Synthesis 10(6), 969-973 doi: 10.2174/157017941006140206105449 Vollhardt, K. Peter C.Schore, Neil E (2007) Organic chemistry Structure and function (EDS), 2da pp 1021-1022 Wang, J., Masui, Y., & Onaka. M. (2010). Synthesis of α-amino nitriles from carbonyl compounds, amines, and trimethylsilyl cyanide: comparison between catalyst-free conditions and the presence of tin ion-exchanged montmorillonite. European Journal of Organic Chemistry 1(9), doi: https://doi.org/10.1002/ejoc.200901323 1763-1771 Woolhouse, M., Scott, F., Hudson, Z., Howey, R., & Chase, T.M. (2012). Human viruses: Discovery and emergence. Philosophical Transactions of the Royal Society B: Biological Sciences 367 (1604), 2864-2871. doi:10.1098/rstb.2011.0354 World Health Organization (2018). Anual review of the blueprint list of priority diseases. Consultado el 21 de agosto de 2018. http://www.who.int/blueprint/priority-diseases/en/ World Health Organization (WHO). (2019). Malaria. Consultado el 29 de agosto de 2018. De la fuente: http://www.who.int/mediacentre/factsheets/fs094/en/ World Health Organization. (1957). Seventh Report Expert Committee on Insecticides. WHO Technical Report Series 125, 37. Consultado el 25 de junio de 2019. https://apps.who.int/ iris/handle/10665/40380. World Health Organization. (2005). Guidelines for laboratory and field testing of mosquito larvicida. Consultado el 24 de junio de 2016. http://apps.who.int/iris/bitstream/ 10665/69101/1/WHO_DS_WHOPES_GCDPP_2005.13.pdf World Health Organization. (2016). Zika situation report. Consultado el 5 de marzo de 2019. https://www.who.int/emergencies/zika-virus/situation-report/4-march-2016/en/ Zaim, Y., & Guillet, P. (2002). Alternative insecticides: An urgent need. Trends in Parasitology 18(4), 161-163. doi: 10.1371/journal.ppat.1001000 Zamora, V.I.S., Williams, E., & Johnson, C.N. (2012). Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: Implications for disease in a warming climate. 7(6), 208-239. Zhang, Y., Peng, H., Zhang, M., Cheng, Y., & Zhu, C. (2011). Gold-complexes catalyzed oxidative α-cyanation of tertiary amines. Chemical Communications 47(8), 2354-2356. doi: 10.1039/C0CC01742F xx |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bucaramanga |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Química Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Química Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/21390/1/2020AlvarezYelicsa.pdf https://repository.usta.edu.co/bitstream/11634/21390/5/2020%20AlvarezYelicsa1.pdf https://repository.usta.edu.co/bitstream/11634/21390/6/2020AlvarezYelicsa2.pdf https://repository.usta.edu.co/bitstream/11634/21390/7/license.txt https://repository.usta.edu.co/bitstream/11634/21390/8/2020AlvarezYelicsa.pdf.jpg https://repository.usta.edu.co/bitstream/11634/21390/9/2020%20AlvarezYelicsa1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/21390/10/2020AlvarezYelicsa2.pdf.jpg |
bitstream.checksum.fl_str_mv |
120b49407ec37a4b864b627bb5cfc1fa d40d36727240e81aee092366d0057f9f de277ab72c57152fe6bc8b4d579785e2 f6b8c5608fa6b2f649b2d63e10c5fa73 5f7156c03826858b709e07a59bf1657f 9b381f355d0dfbfb72e18fca7ce6a110 70110710649047220e746b4abe9bd4ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026169685639168 |
spelling |
Vargas Mendez, Leonor YamileAlvarez Angarita, Yelicsa Dayana2020-02-04T13:57:49Z2020-02-04T13:57:49Z2020-02-02Alvarez A, Y., Síntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilos (2020).http://hdl.handle.net/11634/21390reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl Aedes aegypti (Díptera: Culicidae) es una de las especies de zancudos que trasmiten enfermedades virales, como dengue, fiebre amarilla, zika, chikungunya y mayaro, entre otras. La disminución en el contagio de estas enfermedades está basada en el control de los vectores. Dentro de ellos se encuentra el control químico, que es uno de los métodos más empleados, en este método se utilizan insecticidas sintéticos como los organofosforados; sin embargo, diversas poblaciones de dichos mosquitos alrededor del mundo han mostrado resistencia a estos, amenazando el control del vector. La continua necesidad de sintetizar y explorar nuevas moléculas bioactivas como larvicidas hizo que en el presente trabajo de grado se prepararan y estudiaran nuevos derivados de α-aminonitrilos Los α-aminonitrilos evaluados como larvicidas son nuevas alternativas para el control del vector debido a que son altamente activos CL50 < 50 ppm frente a larvas en tercer instar del zancudo Aedes aegypti, cepa Piedecuesta. De los diez compuestos evaluados, la 3,4-dicloro-N-(-4-clorobencil)anilina presentó la mejor actividad larvicida con una CL50 de 3.16 ppm. Los nuevos compuestos sintetizados pueden ser útiles para desarrollar formulaciones que puedan usarse en el control de mosquitos transmisores de enfermedades. Palabras clave: Aedes aegypti, α-aminonitrilos, actividad larvicida.Aedes aegypti (Dipteran: Culicidae) is one of the species of mosquitoes that transmit viral diseases, such as dengue, yellow fever, zika, chikungunya and mayaro, among others. The decrease in the spread of these diseases is based on vector control. Among them is the chemical control, which is one of the most used methods, in this method synthetic insecticides such as organophosphates are used; however, various populations of these mosquitoes around the world have shown resistance to these, threatening vector control. The continuing need to synthesize and explore new bioactive molecules such as larvicides meant that in the present dissertation project new α-aminonitrile derivatives were prepared and studied The α-aminonitriles evaluated as larvicides are new alternatives for vector control because LC50 <50 ppm are highly active against third instar larvae of the Aedes aegypti mosquito, Piedecuesta strain. Of the ten compounds evaluated, 3,4-dichloro-N - (- 4-chlorobenzyl) aniline had the best larvicidal activity with an LC50 of 3.16 ppm. The new synthesized compounds may be useful for developing formulations that can be used in the control of disease-transmitting mosquitoes. Keywords: Aedes aegypti, α-aminonitriles, larvicidal activity.Químico Ambientalhttp://www.ustabuca.edu.co/ustabmanga/presentacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Química AmbientalFacultad de Química AmbientalSíntesis, caracterización y estudio de la actividad larvicida de nuevos 2-[bencil(aril)amino]acetonitrilosAedes aegypti,α-aminonitrileslarvicidal activityMosquitos-controlEpidemiologíaSalud públicaInsectos-vectoresAedes aegyptiα-aminonitrilosActividad larvicidaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisAbierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2CRAI-USTA BucaramangaAlinezhad, H., Yavari, H., & Salehian, F. (2015). Recent advances in reductive amination. Catalysis and its applications. Current Organic Chemistry 19(11), 1021-1049.Anez, G., Chancey, C., Grinev, A., & Rios, M. (2012). Dengue virus and other arboviruses: A global view of risks. ISBT Science Series, 7(1), 274-282. doi: 10.1111/j.1751-2824.2012. 01602.xAraya, R. L., Carazo, E. R., & Cartin, V. M. (2005). Diagnóstico del uso de insecticidas utilizados contra Bemisia tabaci (Gennadius) en tomate y Chile en Costa Rica. Manejo Integrado de Plagas y Agroecología 75(1), 68-76.Attar, N. (2016). ZIKA virus circulates in new regions. Nature Reviews Microbiology, 14(2), 62-62. doi: org/10.1038/nrmicro.2015.28.Baker-Austin, C., Trinanes, J.A., Taylor, N.G.H., Hartnell, R., Siitonen, A., & Martinez-Urtaza, J. (2013). Emerging Vibrio risk at high latitudes in response to ocean warming. Nature Climate Change 5(3), 73-77- doi: org/10.1038/nclimate1628.Bisset, J. A. (2002). Uso correcto de insecticidas: control de la resistencia. Medicina Tropical 54(3), 202-219.Bisset, Lazcano., J. A., Rodríguez, M. M., San Martin, J. L., Romero, J. E., & Montoya, R. (2009). Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de el salvador. Pan American Health Organization, 26(3), 229-234.Botello, A. V; Von Osten J, R., Gold-Bouchot. G., & Agraz-Hernandez, C. (2005). Golfo de México: contaminación e impacto ambiental: diagnóstico y tendencias. (Eds.), 2da ed.,Universidad Autonoma de Campeche, Universidad Nacional Autónoma de México, Instituto Nacional de Ecología. Campeche México pp. 261-268.Braga, I. A., Lima, Pereira, J. B., Sidinei da, S. S., & Valle, D. (2004). Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe, and Alagoas, Brazil. Memórias do Instituto Oswaldo Cruz 99(2), 199-203. doi.org/10.1590/S0074-02762004000200015Brown, A.W. (1986). Insecticide resistance in mosquitoes: A pragmatic review. Journal of the American Mosquito Control Association 2(2), 123-140.Burge, C.A., Friedman, C.S., Froelich, B., Ford, S.E., Harvell, C.D., Hershberger, P.K., Hofmann, E.E., Mark-Eakin, C., Prager, K.C., Petes, L.E., Weil, E., & Willis, B. L. (2014). Climate change influences on marine infectious diseases: implications for management and society. Annual Review of Marine Science 6, 249-277. doi: 10.1146/annurev-marine-010213-135029.Byun, E., Hong, B., De Castro, K. A., Lim, M., & Hakjune. Rhee., (2007). One-pot reductive mono-N-alkylation of aniline and nitroarene derivatives using aldehydes. The Journal of Organic Chemistry 72(25), 9815-9817. doi: org/10.1021/jo701503q.Cáceres, L., Rovira, J., García, A., & Torres, R. (2011).) Determinación de la resistencia a insecticidas organofosforados, carbamatos y piretroides en tres poblaciones de Anopheles Albimanus (Díptera: Culicidae) de Panamá. Biomedica 31(3), 419-427. doi: org/10.7705/biomedica.v31i3.388Cahyo Mulyatno K., Yamanaka, A., Ngadino., & Konish. (2012). Resistencia de Aedes aegypti (L.) larvae a temephos en Surabaya, Indonesia. The Southeast Asian journal of tropical medicine and public health 43 (1); 29-33Cao-Lormeau, V. M., Roche, C., Teissier, A., Robin, E., Berry, A. L., Mallet, H. P., Sall, A. A; & Musso, D. (2014). Zika virus, french polynesia, south pacific, 2013. Emerging Infectious Diseases, 20(6), 1085-1086. doi: 10.3201/eid2006.140138.Carey, F., a (2006), Química orgánica. (6ta ed., pp. 639-640). McGraw-Hill InterAmericanaCarreño Otero., A, L; Vargas Méndez, L, Y., Duque, L., J. E., & Kouznetzov, V. V., & (2014). Desing, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue. European Journal of Medicinal Chemistry, 78(1), 392-400. doi: 10.1016/j.ejmech.2014.03.067.Centers for Disease Control and Prevention. (2016). Flaviviridae. Recuperado el 30 de junio de 2018, de la fuente: https://www.cdc.gov/vhf/virus-families/flaviviridae.html.Charpentier, A., Menozzi, P., Marcel, V., Villatte, F & Fournier, D. (2000). A method to estimate acetylcholinesterase-active sites and turnover in insects. Analytical Biochemistry 285(1), 76-81. doi:10.1006/abio.2000.4738.Chaudhry, M., Prabhu-Dass, J.F., Selvakumar, D., Kumar, N.S. (2013). In-silico study of acetylcholinesterase inhibition by organophosphate pesticides. International Journal of Pharma and Bio Sciences 4(3), 788-802.Chen, L. H., Hamer, D. H. (2016). Zika virus: Rapid spread in the western hemisphere. Annals of Internal Medicine 164(9), 613-615. doi: 10.7326/M16-0150.Colleen A. B., Mark, E. C., Carolyn, S. Friedman., Brett, Froelich., Hershberger, P. K., Hofmann, E. E., Peters, L. E., Prager, K. C., Weil, E., Bette, L., Willis, S. E., Ford, and Drew Harvell. (2014). Climate change influences on marine infectious diseases: implications for management and society. Annual Review of Marine Science 6, 249-277. doi: 10.1146/annurev-marine-010213-135029Cruz, S., Cifuentes, D., Hurtado, N., & Roman, M. (2016). Solvent-free microwave synthesis of pyridazin-3(2H)-ones. Información Tecnológica 27(5), 57-62. doi: 10.4067/S0718-07642016000500007Cuadros, J., Carreño, A. L., Kouznetsov, V. V., & Duque, J. E. (2017). Acción insecticida de análogos de girgensohnina sintéticos y aceites esenciales en Rhodnius prolixus (Hemiptera: Reduviidae). Biomédica 37(2), 50,58 doi.org/10.7705/biomedica.v37i0.3379Diagne, C. T., Diallo, D., Faye, O., Ba, Y., Faye, O., Gaye, A., Dia, I., Ibrahima., Faye, O.,Weaver, S. C., Sall A. A., & Diallo, M. (2015). Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infectious Diseases, 15(1), 2-6. doi:10.1186/s12879-015-1231-2Dias, C.N. & Moraes, D.F.C. (2014). Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) Larvicides. Parasitology Research 113(2), doi.org/10.1007/s00436-013-3687-6Dick, G., Kitchen, S., Haddow, A. (1952). Zika Virus I. isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene 46(5), 509-520. doi: 10.1016/0035-9203(52)90042-4Dieter, E., & Shilvock, J. Some recent applications α-amino nitrile; Chemical Society Review 2000(5), 359-373. doi: 10.1039/A908290EDitsuwan, T., Liabsuetrakul, T., Ditsuwan, V., Thammapalo, S. (2012). Cost of standard indoor ultra-low-volume space spraying as a method to control adult dengue vectors. Tropical Medicine & International Health 17(6), 767- 740. doi: 10.1111/j.1365-3156.2012.02997 doi: 10.2174/1385272819666150311233021.Duffield, A. M.; Budzikiewicz, H.; Williams, D. H.; Djerassi, C. (1965). Mass spectrometry in structural and stereochemical problems. LXIV.1 A study of the fragmentation processes of some cyclic amine. J. Am. Chem. Soc. 87, p.810-816.Duffy, M., Chen, T., Hancock, W., Powers, A., Kool, J., Lanciotti, R., Guillaumot, L., Griggs, A. M., Lambert, A. J., Laven, J., Kosoy, O., Panella, A, Biggerstaff B. J., Fischer, M., & Hayes E. B. (2009). Zika virus outbreak on yap island, Federated States of Micronesia. The New England Journal of Medicine, 24(350), 2536-2543. doi: 10.1056/NEJMoa0805715.Duthaler, R. (1994). Recent developments in the stereoselective synthesis of α-aminonitriles. Tetrahedron 50(6), 1539-1650. doi: 10.1016/j.tet.2006.08.105Enders, D. (2000). Reactions for Functional Group Transformations. (3era ed., pp. 359-373). Jie Jack Li Pfizer Global Research & Development.Esu, E., Horstick, O., Lenhart, A., & Smith L. (2010). Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Tropical Medicine & International Health 15(5), 619-631. doi: 10.1111/j.1365-3156.2010.02489.x.Evangelista, I. M. (1998). Plaguicidas: Aspectos ambientales, analíticos y toxicológicos (4ta ed., pp. 275-276) Editorial Castelló de la Plana Publicacions de la Universitart Jaume IFagbami, A. (1979). Zika virus infections in Nigeria: Virological and seroepidemiological The Journal of Hygiene 83(2), 213-219. doi:10.1017/s00221724000 25997FAO (1993). Estado mundial de la agricultura y la alimentación. Recuperado el 6 de marzo de 2019. http://www.fao.org/3/a-t0800s.pdfFaye, O., Faye, O., De Olivera., Freire, C., Iamarino, A., J., Diallo, M, & Simpson, D. (2014). Molecular evolution of zika virus during its emergence in the 20th century. Plos Neglected Tropical Diseases, 8(1), 2636. doi: org/10.1371/journal.pntd.0002636Garamszegi, L.Z. (2011). Climate change increases the risk of malaria in birds. Global Change Biology 17(5), 1751-1759. doi: org/10.1111/j.1365-2486.2010.02346.Garrett, K., Dobson, A.D.M., Kroschel, J., Natarajan, B., Orlandini, S., Tonnang, H.E., & Valdivia, C. (2013). The effects of climate variability and the color of weather time series on agricultural diseases and pests, and on decisions for their management. Agricultural and Forest Meteorology 170, 216-227. doi: org/10.1016/j.agrformet.2012.04.018Gómez, A, V., Biswas, A., Tadini, C, C., Furtado, R, F., Alves, C, R., Cheng, H, N (2019). Use of Natural Deep Eutectic Solvents for Polymerization and Polymer Reactions. Revista de la sociedad Brasileña de Química 30 (4), 717-726. doi: org/10.21577/0103-5053.20190001.González, G. (2013). Resistencia a insecticidas en el mosquito vector del dengue Aedes aegypti (L.) en dos épocas de trasmisión de la enfermedad en Mérida, Yucatán. Tesis doctoral. Universidad Autonoma de Nuevo León. p.132.Gregor, J., Dominique, E., Ogusuku, E., & Michael, J. (2008). Uso de insecticidas: contexto y consecuencias ecológicas. Revista Peruana de Medicina Experimental y Salud Publica 25(1), 74-100.Gregory, Uso de insecticidas J., Devine1, A., Dominique, E., Ogusuku, E., & Furlong, M. (2008) Uso de insecticidas contexto y consecuencias ecológicas. Revista Peruana de Medicina Experimental y Salud Publica 25(1), u74-100.Harvell, C., Mitchell, C., Ward, J. Altizer, S., Dobson, A., Ostfeld, R., Samuel, M. (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296(5576), 2158-2162. doi: 10.1126/science.1063699Harvell, D., Altizer, S., Cattadori, I.M., Harrington, L., & Weil, E. (2009). Climate change and wildlife diseases: When does the host matter the most. Ecology 90(4), 912-920.Hayes, E. (2009). Zika virus outside africa; Emerging Infefctious Diseases, 15(9), 1347-1350. doi: 10.3201/eid1509.090442.Hemingway, J., & Ranson, H. Insecticide resistance in insect vectors of human disease. 45(1), 371-391. doi: 10.1146/annurev.ento.45.1.371.Hennessey, M., Fischer, M., & Staples, E. (2016). Zika Virus Spreads to New Areas- region of the Americas, May 2015-january 2016. Morbidity and Mortality Weekly Reort (MMWR), 65(3), 55-58. doi: 10.15585/mmwr.mm6503e1.Higgs, s. (2016). Zika virus: Emergence and emergency Vector-Borne and Zoonotic Diseases, 16(2), 75-76. doi: 10.1089/vbz.2016.29001.higIDEAM (2017). Tercera Comunicación Nacional de Colombia: Resumen Ejecutivo: Bogotá. http://documentacion.ideam.gov.co/openbiblio/bvirtual/023732/RESUMEN_EJECUTIVO_ TCNCC_COLOMBIA.pdfInstituto Nacional de Salud (INS). (2018). Semana epidemiológica 22. Recuperado el 23 junio de 2019, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2018%Instituto Nacional de Salud (INS). (2019-1). Semana epidemiológica 22. Recuperado el 23 junio de 2019, de la fuente: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/ 2019%20Bolet%C3%ADn%20epidemiol%C3%B3gico%20semana%2022.pdf?fbclid=IwAR0k7APrSVioOG0tiYLAQ1Ne4KIx3jjkSkQX48Pjt1dRG7m-YXlKtReQOn4.Instituto Nacional de Salud (INS). (2019-2). Semana epidemiológica 23. Recuperado el 23 junio de 2019, de la fuente https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/ 2019%20Boletín%20epidemiológico%20semana%2023.pdfInstituto Nacional del Cáncer de Estados Unidos. (2017). Artralgia. Recuperado el 4 de marzo de la fuente: https://www.cancer.gov/espanol/publicaciones/diccionario?cdrid=455150.Ioos, S., Mallet, H., Goffart, I., Cardoso, T., & Herida, M. (2014). Current zika virus epidemiology and recent epidemics. Medicine Et Maladies Infectieuses 44(7), 302-307. doi:10.1016/j.medmal.2014.04.008.Jeschke, P., Moriya, K., Lantzsch, R., Seifert, H., Linder, W., Jelich, K., Gohrt, A., Beck, M.E & Etzel, W. (2001). Thiacloprid a new membeer of the chloronicotinyl insecticide (CNI) family. Pflanzenschutz Nachrichten Bayer (English Edition 54(2), 147-160.Jirakanjanakit, N., Rongnoparut, P., Saengtharatip, S., Chareonviriyaphap, T., Duchon, S., Bellec, C., & Yoksan, S. (2007). Insecticide susceptible/ resistance status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003-2005. Journal of Economic Entomology 100(2), 545-550. doi: 10.1603/0022-0493(2007)100[545:IRSIAS]2.0.CO;2.Jones, K., Patel, N., Levy, M., Storeygard, A., Balk, D., Gittleman, J., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451(7181), 990-993. doi: 10.1038/ nature06536.Kuno, G. (2007). Research on dengue and dengue-like illness in East Asia and the Western Pacific during the first half of the 20th century. Reviews in Medical Virology 17(5), 327-341. doi:10.1002/rmv.545Lazaro, Lazaro, E., & Homs C.E. (2002). Virus Emergentes: La Amenaza Oculta. (1ra ed., pp. 513-602.)Lazcano, J., Rodríguez, M., San Martin., J., Romero J., & Montoya R. (2009). Evaluación de la resistencia a insecticidas de una cepa de Aedes aegypti de el salvador. Revista Panamericana De Salud Pública, 26(3), 229-234.Liu, N. (2015). Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review of Entomology 60(1), 537-559. doi: 10.1146/annurev-ento-010814-020828Lobaina, C, A., Tamayo R, O., Zamora Y., & Castle, Y (2005). Obtención de bases de schiff por condensación del ohidroxibenzaldehido con anilina y p-derivados. Revista cubana de Química XVll (2) 33-43.López, S., Garrido, F., & Hernández M. (2000). Desarrollo histórico de la epidemiologia: formación como disciplina científica. Salud Pública de México 42(2), 133-137.Maestre S, R., Rey, V. G., Salas, A. J., Vergara, S. C., Santacoloma, V. I., Goenaga, S. O., & Carrasquilla, F. M. C. (2009). Susceptibilidad de Aedes aegypti (Diptera: Culicidae) a temefos en Atlántico-Colombia. Revista Colombiana de Entomología 35(2) 202-205.Martins, J. A., Lins, R., M., M., A., Gerlind, J., Linss, B., Peixoto, A. A., & Valle, D (2009). Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil. The American Journal of Tropical Medicine and Hygiene 81(1), 108-115. doi: org/10.4269/ajtmh.2009.81.108.Massoulie, J; Pezzementi, L., Bon, S., Krejci, E., & Vallette, F.M. (1993). Molecular and cellular biology of cholinesterases. Progress in Neurobiology 41(1), 31-91.Morita, M., Ueda, T., Yoneda, T., Koyanagi, T., & Haga, T. (2007). Flonicamid, a novel insecticide with a rapid inhibitory effect on aphid feeding. Pest Management Science 63(10), 969-973. doi: 10.1002/ps.1423Morrison, T.R., Boyd. N.R. (1990). Química Orgánica. (5ta ed., pp. 934-942). Editorial Addison-Wesley IberoamericanaMusso, D. (2015). Zika virus transmission from French Polynesia to Brazil. Emerging Infectious Diseases 21(10), 1887-1887. doi:10.3201/eid2110.151125Mutero, A., Pralavorio, M., Bride, J.M., Fournier, D. (1994). Resistance associated point mutations in insecticide-insensitive acetylcholinesterase. Proceedings of the National Academy of Sciences 91(13), 5922-5926. doi: 10.1073/pnas.91.13.5922.Nezhad, A.K., Divar, M., & Panahi, F. (2013). Synthesis of α-aminonitriles with benzimidazolic and theophyllinic backbones using the Strecker reaction. The Journal of Organic Chemistry 78(21), 10902-10908. doi: org/10.1021/jo401890g.Noisakran, S.; Chokephaibulkit, K.; Songprakhon, P.; Onlamoon, N.; Hsiao, H-M.; Villinger, F.; Ansari, A.; Perng, G.C. (2009). A re-evaluation of the mechanisms leading to dengue hemorrhagic fever. Annals of the New York Academy of Science 1171, E24-E35. doi: 10.1111/j.1749-6632.2009.05050.Ocampo, C., Brogdon, W., Salazar, M., Mina, N., & McAllister, J. (2011). Insecticide resistance status of aedes aegypti in 10 localities in Colombia. Acta Tropica, 118(1), 37-44. doi: 10.1016/j.actatropica.2011.01.007.Organización Mundial de la Salud (2018). Dengue y dengue severo. Recuperado el 4 de marzo de 2019. https://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue.Organización Mundial de la Salud (OMS), (2016). Síndrome de Guillain-Barrré Recuperado el 9 abril de 2019,https://www.who.int/es/newsroom/factsheets/detail/guillainbarr%C3%A9syndrome?fbclid=IwAR1HxBFcigThPONqIOlgx6ZSpoF5IUCsShiRdUo-4LYY3PFAqh8MuUherJAOrganización Mundial de la Salud (OMS), (2017-1). Lucha contra el dengue. Recuperado el 4 De marzo de 2019, de la fuente: https://www.who.int/denguecontrol/mosquito/es/Organización Mundial de la Salud (OMS), (2017-2). Enfermedades trasmitidas por vectores. Recuperado el 5 de marzo de 2019, de la fuente https://www.who.int/es/news-room/fact-sheets/detail/vector-borne-diseasesOrganización Mundial de la Salud (OMS), (2019). Dengue y dengue grave. Recuperado el 9 marzo de 2019, de la fuente: https://www.who.int/es/newsroom/factsheets/detail/denguan dseveredengue?fbclid=IwAR3gXjr9Bgki8MQDevxMKEpVvzSInRchMUXpq12gdqDQINQLB9mjJmv-0LAOrganización Mundial de la Salud, (OMS). (2011). Global insecticide use for vector-borne disease control: A 10-Year assessment (2000-2009). Consultado el 29 de agosto de 2018, de la fuenta http://apps.who.int/iris/bitstream/10665/44670/1/9789241502153Organización Mundial de la Salud, (OMS). (2012). Dengue y dengue hemorrágico. Recuperado el 7 marzo de 2019. http://apps.who.int/mediacentre/factsheets/fs387/es/index2.htmlPinkus, R. (2010). El hombre y los artrópodos: Un vínculo inalienable. Universidad Nacional Autónoma de México, 5(2), 81-100.Puc, V., Herrera, J., Carmona, C., Mendoza, A., Medina, A., Chablé, J., Arredondo, J., Suárez, A., & Manrique, P. (2016). Effectiveness of commercial repellents against Aedes aegypti (L.) in Yucatan, México. Salud Publica de México 58(4), 472-475. doi:org/10.21149/spm.v58i4.8030Rendón, M. A. (2010). El hombre y los artrópodos: un vínculo inalienable. Revista Península 5(2), 81-100Rodríguez, A., M., Prieto, P, de la Hoz A., Diaz Ortiz, A., Martin, D, R & Garcia, J, I. (2015). Influence of polarity and activaton energy in microwave-assisted organic synthesis (MAOS). ChemistryOpen 4(3), 308-317 doi: 10.1002/open.201402123.Rodríguez, A., Suárez, S., & Palacio, D. (2014). Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiología 52(3), 1561-3003.Rosenberg, R. (2015). Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cellular and Molecular Life Sciences 72(6), 1115-1125. doi: 10.1007/s00018-014-1785-y.Rosenberry, T.L. (1975-1). Acetylcholinesterase. Advances in Enzymology and Related Areas of Molecular Biology 43(1) 103-218. doi:10.1002/9780470122884.ch3Rosenberry, T.L. (1975-2). Catalysis by acetylcholinesterase: Evidence that the rate-limiting step for acylation with certain substrates precedes general acid-base Catalysis. Proceedings of the National Academy of Sciences 72(10), 3834-3838. doi: 10.1073/pnas.72.10.3834.Rueda, A, G., Carreño Otero, A, L., Duque, J. E., & Kouznetsov, V. V. (2018). Synthesis of new α-amino nitriles with insecticidal action on Aedes aegypti (Díptera: Culicidae). Revista Brasileira de Entomologia 62(2), 112-118. doi: org/10.1016/j.rbe.2018.01.004Saavedra, K., Strode, C., Flores, A., Garcia, S., Reyes, G., Ranson, H., Hemingway, J., & Black, W. (2014). Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection. Insect Molecular Biology 23(2), 199-215. doi: 10.1111/imb.12073.Salvatore, R., Nagle, A., & Jung, K. (2002). Cesium effect: High chemoselectivity in direct N-alkylation of amines. The Journal of Organic Chemistry 67(3), 674-683. doi: org/10.1021/ jo010643c.Schuenemeyer, J. H., & Drew, L. J. (2011). Statistics for Earth and Environmental Scientists. New Jersey: John Wiley & Sons. 11-57-59-109.Schuler, F. L., Ribeiro, E. M., Feitosa, I. M., Horovitz, D.D.G., Cavalcanti, D.P., Pessoa, A., Doriqui, M., Neri, J, I., Pina, N., Monteiro, W, H., Cernach, M., Antonette, S,H., Pone, M. V. S,.Serao, C., & Sanseverino, M.T.V. (2016). Possible association between Zika virus infection and microcephaly - Brazil, 2015. Morbidity and Mortality Weekly Report 65(3), 59-62. doi:org/10.15585/mmwr.mm6503e2external icon.Shafran, Y., Bakulev, V., & Mokrushin, V. (1989). Synthesis and properties of α-aminonitriles. Russian Chemical Reviews 58(2), 148-162. doi: org/10.1070/RC1989v058n02A BEH003432.Shan, C., Xie, X., Barrett, A., Garcia, M., Tesh, R., Vasconcelos., Vasilakis, N., Weaver, C. S. & Shi, P.Y. (2016). Zika virus: Diagnosis, therapeutics, and vaccine. ACS Infectious Diseases 2(3), 170-172. doi.org/10.1021/acsinfecdis.6b00030.Singh, C. B. Kavala, V., Samal, A., & Patel, B. K. (2007). Aqueous‐Mediated N‐Alkylation of amines. European Journal of Organic Chemistry, 2007(8), 1211-1383. doi: org/10.1002/ejoc.200600937.Singhal, S., Jain, S., & Sain, B. (2010). Heterogeneously catalyzed oxidative cyanation of tertiary amines with sodium cyanide/hydrogen peroxide using polymersupported iron(II) phthalocyanines as catalyst. Advanced Synthesis & Catalysis 352(8), 1338-1344. doi.org/ 10.1002/adsc.201000007.Steinman, M., Topliss, J. G., Alekel, R., Wong, Y. S. & York, E. (1974). 1-poly(fluoroalkyl)benzo diazepine. Journal of Medicinal Chemistry 16(12), 1354-13560. doi: org/10.1021/jm00270a008.Steinman, M., Topliss, J. G., Alekel, R., Wong, Y. S. & York, E. (1974). 1-poly(fluoroalkyl)benzo diazepine. Journal of Medicinal Chemistry 16(12), 1354-13560. doi: org/10.1021/jm00270a008.Symala, M. (2009). A decade of advances in three component reactions Organic Preparations and Procedures International 2(37), 103-171. doi: org/10.1080/00304940509354882Tabashnik, B.E.; Mota-Sanchez, D.; Whalon, M.E.; Hollingworth, R.M.; Carrière, Y. (2014). Defining terms for proactive management of resistance to bt crops and pesticides. Journal of Economic Entomology 107(2), 496-507. doi: 10.1603/ec13458.Tang, B. (2012). The cell biology of Chikungunya virus infection. Cellular Microbiology 14(9), 1354-1363. doi: org/10.1111/j.1462-5822.2012.01825.Taylor, P., Radic, Z. (1994). The cholinesterases: from genes to proteins. Annual Review of Pharmacology and Toxicology 34(1), 281-320. doi:10.1146/annurev.pa.34.040194.001433Torres, R. (2011). Determinación de la resistencia a insecticidas organofosforados, carbamatos y piretroides en tres poblaciones de Anopheles Albimanus (Diptera: Culicidae). Biomédica, 31(3), 419-427. doi: org/10.7705/biomedica.v31i3.388.Urbano, N. (2007). El endemismo: diferenciación del término, métodos y aplicaciones. Acta Zoológica Mexicana 33(1), 89-107.US Environmental Protection Agency, (EPA). DEET. (2017). Consultado el 29 de agosto de 2018. De la fuente: https://www.epa.gov/insect-repellents/deet.Vargas, L. Y., & Kouznetsov, V. V (2013). First girgensohnine analogs prepared through InCl3 catalized Current Organic Synthesis 10(6), 969-973 doi: 10.2174/157017941006140206105449Vollhardt, K. Peter C.Schore, Neil E (2007) Organic chemistry Structure and function (EDS), 2da pp 1021-1022Wang, J., Masui, Y., & Onaka. M. (2010). Synthesis of α-amino nitriles from carbonyl compounds, amines, and trimethylsilyl cyanide: comparison between catalyst-free conditions and the presence of tin ion-exchanged montmorillonite. European Journal of Organic Chemistry 1(9), doi: https://doi.org/10.1002/ejoc.200901323 1763-1771Woolhouse, M., Scott, F., Hudson, Z., Howey, R., & Chase, T.M. (2012). Human viruses: Discovery and emergence. Philosophical Transactions of the Royal Society B: Biological Sciences 367 (1604), 2864-2871. doi:10.1098/rstb.2011.0354World Health Organization (2018). Anual review of the blueprint list of priority diseases. Consultado el 21 de agosto de 2018. http://www.who.int/blueprint/priority-diseases/en/World Health Organization (WHO). (2019). Malaria. Consultado el 29 de agosto de 2018. De la fuente: http://www.who.int/mediacentre/factsheets/fs094/en/World Health Organization. (1957). Seventh Report Expert Committee on Insecticides. WHO Technical Report Series 125, 37. Consultado el 25 de junio de 2019. https://apps.who.int/ iris/handle/10665/40380.World Health Organization. (2005). Guidelines for laboratory and field testing of mosquito larvicida. Consultado el 24 de junio de 2016. http://apps.who.int/iris/bitstream/ 10665/69101/1/WHO_DS_WHOPES_GCDPP_2005.13.pdfWorld Health Organization. (2016). Zika situation report. Consultado el 5 de marzo de 2019. https://www.who.int/emergencies/zika-virus/situation-report/4-march-2016/en/Zaim, Y., & Guillet, P. (2002). Alternative insecticides: An urgent need. Trends in Parasitology 18(4), 161-163. doi: 10.1371/journal.ppat.1001000Zamora, V.I.S., Williams, E., & Johnson, C.N. (2012). Environmental temperature affects prevalence of blood parasites of birds on an elevation gradient: Implications for disease in a warming climate. 7(6), 208-239.Zhang, Y., Peng, H., Zhang, M., Cheng, Y., & Zhu, C. (2011). Gold-complexes catalyzed oxidative α-cyanation of tertiary amines. Chemical Communications 47(8), 2354-2356. doi: 10.1039/C0CC01742F xxORIGINAL2020AlvarezYelicsa.pdf2020AlvarezYelicsa.pdfapplication/pdf4431621https://repository.usta.edu.co/bitstream/11634/21390/1/2020AlvarezYelicsa.pdf120b49407ec37a4b864b627bb5cfc1faMD51metadata only access2020 AlvarezYelicsa1.pdf2020 AlvarezYelicsa1.pdfCarta de aprobación facultadapplication/pdf405951https://repository.usta.edu.co/bitstream/11634/21390/5/2020%20AlvarezYelicsa1.pdfd40d36727240e81aee092366d0057f9fMD55metadata only access2020AlvarezYelicsa2.pdf2020AlvarezYelicsa2.pdfAcuerdo de Confidencialidadapplication/pdf691362https://repository.usta.edu.co/bitstream/11634/21390/6/2020AlvarezYelicsa2.pdfde277ab72c57152fe6bc8b4d579785e2MD56metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/21390/7/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD57open accessTHUMBNAIL2020AlvarezYelicsa.pdf.jpg2020AlvarezYelicsa.pdf.jpgIM Thumbnailimage/jpeg5053https://repository.usta.edu.co/bitstream/11634/21390/8/2020AlvarezYelicsa.pdf.jpg5f7156c03826858b709e07a59bf1657fMD58open access2020 AlvarezYelicsa1.pdf.jpg2020 AlvarezYelicsa1.pdf.jpgIM Thumbnailimage/jpeg7052https://repository.usta.edu.co/bitstream/11634/21390/9/2020%20AlvarezYelicsa1.pdf.jpg9b381f355d0dfbfb72e18fca7ce6a110MD59open access2020AlvarezYelicsa2.pdf.jpg2020AlvarezYelicsa2.pdf.jpgIM Thumbnailimage/jpeg10023https://repository.usta.edu.co/bitstream/11634/21390/10/2020AlvarezYelicsa2.pdf.jpg70110710649047220e746b4abe9bd4adMD510open access11634/21390oai:repository.usta.edu.co:11634/213902022-10-10 14:31:34.507metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |