Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil

La recuperación de aceite se mejoró utilizando la amina terciaria, N, N-dimetilciclohexilamina (DMCHA), un solvente conmutable potente y promisorio, en condiciones simuladas similares a las reservas de petróleo crudo colombiano. En primer lugar, el crudo colombiano (CCO) y el suelo se caracterizaron...

Full description

Autores:
Villabona Delgado, Cindy Carolina
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2019
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/16618
Acceso en línea:
http://hdl.handle.net/11634/16618
Palabra clave:
Tertiary amine
Switchable hydrophilicity solvent
Enhanced recovery
Recobro del petróleo
Industria del petróleo
Disolventes
Aminas
Ecología de suelos
Amina terciaria
Recobro mejorado
Solvente hidrófilo conmutable
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_bbbe737da7f605f2f0d3adba5c7322fd
oai_identifier_str oai:repository.usta.edu.co:11634/16618
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
title Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
spellingShingle Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
Tertiary amine
Switchable hydrophilicity solvent
Enhanced recovery
Recobro del petróleo
Industria del petróleo
Disolventes
Aminas
Ecología de suelos
Amina terciaria
Recobro mejorado
Solvente hidrófilo conmutable
title_short Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
title_full Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
title_fullStr Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
title_full_unstemmed Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
title_sort Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oil
dc.creator.fl_str_mv Villabona Delgado, Cindy Carolina
dc.contributor.advisor.none.fl_str_mv Merchán Arenas, Diego Rolando
dc.contributor.author.none.fl_str_mv Villabona Delgado, Cindy Carolina
dc.subject.keyword.spa.fl_str_mv Tertiary amine
Switchable hydrophilicity solvent
Enhanced recovery
topic Tertiary amine
Switchable hydrophilicity solvent
Enhanced recovery
Recobro del petróleo
Industria del petróleo
Disolventes
Aminas
Ecología de suelos
Amina terciaria
Recobro mejorado
Solvente hidrófilo conmutable
dc.subject.lemb.spa.fl_str_mv Recobro del petróleo
Industria del petróleo
Disolventes
Aminas
Ecología de suelos
dc.subject.proposal.spa.fl_str_mv Amina terciaria
Recobro mejorado
Solvente hidrófilo conmutable
description La recuperación de aceite se mejoró utilizando la amina terciaria, N, N-dimetilciclohexilamina (DMCHA), un solvente conmutable potente y promisorio, en condiciones simuladas similares a las reservas de petróleo crudo colombiano. En primer lugar, el crudo colombiano (CCO) y el suelo se caracterizaron por completo. Posteriormente, se obtuvo un sistema de crudo-roca envejecida para usar DMCHA que dio una extracción de crudo de petróleo del 80% en nuestros estudios preliminares. Por lo tanto, se usó un empaque de arena (suelo-caolín, 95: 5) saturado con CCO para simular las condiciones, en las cuales el DMCHA podría recuperar el aceite. Después del proceso de recuperación secundario, se obtuvo 15.4–33.8% del aceite original en sitio (OOIP). Después de la inyección de DMCHA, el rendimiento de recuperación aumentó a 87-97% de OOIP. Finalmente, 54-60% de DMCHA fue recuperado y reinyectado sin afectar su potencial en las condiciones simuladas.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-05-10T16:52:35Z
dc.date.available.none.fl_str_mv 2019-05-10T16:52:35Z
dc.date.issued.none.fl_str_mv 2019-05-02
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
format http://purl.org/coar/resource_type/c_bdcc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Merchán Arenas, D. R. y Villabona Delgado, C. C. (2019). Chemical-enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombian crude oil. International Journal of Chemical Engineering, 2019, 1-10. DOI: https://doi.org/10.1155/2019/5241419
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/16618
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Merchán Arenas, D. R. y Villabona Delgado, C. C. (2019). Chemical-enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombian crude oil. International Journal of Chemical Engineering, 2019, 1-10. DOI: https://doi.org/10.1155/2019/5241419
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/16618
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv BP Statistical Review of World Energy, 67th edition, 2018, http://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf.
IEA, World Energy Outlook 2014, International Energy Agency, Paris, France, 2014.
A. H. Alagorni, Z. B. Yaacob, and A. H. Nour, “An overview of oil production stages: enhanced oil recovery techniques and nitrogen injection,” International Journal of Environmental Science and Development, vol. 6, no. 9, pp. 693–701, 2015
J. J. Sheng, Introduction, in Modern Chemical Enhanced Oil Recovery, Elsevier, Amsterdam, Netherlands, 2011.
V. P. Dimri, R. Srivastava, and N. Vedanti, “Chapter 6. Fluid flow and recovery,” in Fractal Models in Exploration Geophysics, vol. 41, pp. 119–147, Elsevier Ltd., Amsterdam, Netherlands, 2012.
W. B. Gogarty, “Mobility control with polymer solutions,” Society of Petroleum Engineers Journal, vol. 7, no. 2, pp. 161–173, 1967.
H. J. Hill, J. Reisberg, and G. L. Stegemeier, “Aqueous surfactant systems for oil recovery,” Journal of Petroleum Technology, vol. 25, no. 2, pp. 186–194, 1973.
M. S. Kamal, A. S. Sultan, U. A. Al-Mubaiyedh, and I. A. Hussein, “Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems,” Polymer Reviews, vol. 55, no. 3, pp. 491–503, 2015
M. S. Kamal, I. A. Hussein, and A. S. Sultan, “Review on surfactant flooding: phase review on surfactant flooding: phase behavior, retention, IFT and field applications,” Energy & Fuels, vol. 31, no. 8, pp. 7701–7720, 2017
P. Yang, Z.-A. Li, B. Xia, Y.-J. Yuan, Q.-T. Huang, and W.-L. Liu, “Comprehensive review of alkaline-surfactant-polymer (ASP)-enhanced oil recovery (EOR),” in Proceedings of the International Field Exploration and Development Conference, 2017, Springer, Chengdu, China, September 2017.
S. Ko and C. Huh, “Use of nanoparticles for oil production applications,” Journal of Petroleum Science and Engineering, vol. 172, pp. 97–114, 2019.
M. S. Bin Dahbag, M. E. Hossain, and A. A. Alquraishi, “Efficiency of ionic liquids as an enhanced oil recovery chemical: simulation approach,” Energy & Fuels, vol. 30, no. 11, pp. 9260–9265, 2016.
D. G. De Almeida, R. D. C. F. Soares Da Silva, J. M. Luna et al., “Biosurfactants: promising molecules for petroleum biotechnology advances,” Frontiers in Microbiology, vol. 7, pp. 1–14, 2016.
E. O. Ansah, Y. Sugai, R. Nguele, and K. Sasaki, “Integrated microbial enhanced oil recovery (MEOR) simulation: main influencing parameters and uncertainty assessment,” Journal of Petroleum Science and Engineering, vol. 171, pp. 784–793, 2018
I. Al-Weheibi, R. Al-Hajri, Y. Al-Wahaibi, B. Jibril, and A. Mohsenzadeh, “Oil recovery enhancement in middle east heavy oil field using malonic acid based deep eutectic solvent,” in Proceedings of the SPE Middle East Oil and Gas Show and Conference (MEOS 2015), pp. 780–792, Manama, Bahrain, January 2015.
M. M. Sharma, T. F. Yen, G. V. Chilingarian, and E. C. Donaldson, “Chapter 7. Some chemical and physical problems in enhanced oil recovery operations,” in Developments in Petroleum Science, Part A, E. C. Donaldson, Ed., pp. 223–249, Elsevier Science, Amsterdam, Netherlands, 1985.
K. Carruthers, Environmental Impacts of CO2-EOR. The Offshore UK Context, Scottish Carbon Capture & Storage, UK, 2014
P. R. Hart, B. J. Stefan, P. Srivastava, and J. Debord, “Method for enhancing heavy hydrocarbon recovery,” 2008, US7938183B2
M. M. Amin, M. S. Hatamipour, F. Momenbeik, H. Nourmoradi, M. Farhadkhani, and F. Mohammadi-Moghadam, “Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction,” The Scientific World Journal, vol. 2014, Article ID 416752, 6 pages, 2014.
S. H. Hamid and M. A. Ali, “Comparative study of solvents for the extraction of aromatics from naphtha,” Energy Sources, vol. 18, no. 1, pp. 65–84, 1996
E. A. Taiwo and J. A. Otolorin, “Oil recovery from petroleum sludge by solvent extraction,” Petroleum Science and Technology, vol. 27, no. 8, pp. 836–844, 2009.
A. Holland, D. Wechsler, A. Patel, B. M. Molloy, A. R. Boyd, and P. G. Jessop, “Separation of bitumen from oil sands using a switchable hydrophilicity solvent,” Canadian Journal of Chemistry, vol. 90, no. 10, pp. 805–810, 2012.
H. Sui, L. Xu, X. Li, and L. He, “Understanding the roles of switchable-hydrophilicity tertiary amines in recovering heavy hydrocarbons from oil sands,” Chemical Engineering Journal, vol. 290, pp. 312–318, 2016
X. Li, Z. Yang, H. Sui, A. Jain, and L. He, “A hybrid process for oil-solid separation by a novel multifunctional switchable solvent,” Fuel, vol. 221, pp. 303–310, 2018.
U.S. Energy Information Administration, “Country analysis brief: Colombia,” 2016,
G. A. Maya, D. P. M. Sierra, R. Castro et al., “Enhanced oil recovery (EOR) status—Colombia,” in Proceedings of SPE Latin American and Caribbean Petroleum Engineering Conference (SPE 139199), Lima, Peru, December 2010.
P. G. Jessop, L. Kozycz, Z. G. Rahami et al., “Tertiary amine solvents having switchable hydrophilicity,” Green Chemistry, vol. 13, no. 3, pp. 619–623, 2011.
S. V. Mattigod, J. A. Frampton, and C. H. Lim, “Effect of ion-pair formation on boron adsorption by kaolinite,” Clays and Clay Minerals, vol. 33, no. 5, pp. 433–437, 1985
T. Mahmood, M. T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, and A. Alum, “Comparison of different methods for the point of zero charge determination of NiO,” Industrial & Engineering Chemistry Research, vol. 50, no. 17, pp. 10017–10023, 2011.
E. J. Gudiña, J. F. B. Pereira, R. Costa, J. A. P. Coutinho, J. A. Teixeira, and L. R. Rodrigues, “Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns,” Journal of Hazardous Materials, vol. 261, pp. 106–113, 2013.
J. F. B. Pereira, R. Costa, N. Foios, and J. A. P. Coutinho, “Ionic liquid enhanced oil recovery in sand-pack columns,” Fuel, vol. 134, pp. 196–200, 2014.
J. C. Poveda and D. R. Molina, “Average molecular parameters of heavy crude oils and their fractions using NMR spectroscopy,” Journal of Petroleum Science and Engineering, vol. 84-85, pp. 1–7, 2012.
X. Xin, G. Yu, Z. Chen, K. Wu, X. Dong, and Z. Zhu, “Effect of polymer degradation on polymer flooding in heterogeneous reservoirs,” Polymers, vol. 10, no. 8, pp. 857–882, 2018.
W. Yan, S. Huang, and E. H. Stenby, “Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density,” International Journal of Greenhouse Gas Control, vol. 5, no. 6, pp. 1460–1477, 2011.
L. Wang and X. Fu, “Data-driven analyses of low salinity water flooding in sandstones,” Fuel, vol. 234, pp. 674–686, 2018.
G.-Q. Tang and N. R. Morrow, “Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery,” Journal of Petroleum Science and Engineering, vol. 24, no. 2–4, pp. 99–111, 1999
X. Li, J. Hou, H. Sui, L. Sun, and L. Xu, “Switchable-hydrophilicity triethylamine: formation and synergistic effects of asphaltenes in stabilizing emulsions droplets,” Materials, vol. 11, no. 12, pp. 2431–2441, 2018.
D. F. G. Bautista, E. Vaz dos Santos Neto, and H. L. D. B. Penteado, “Controls on petroleum composition in the Llanos basin, Colombia: implications for exploration,” AAPG Bulletin, vol. 99, no. 8, pp. 1503–1535, 2015.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Ciencias y Tecnologías Ambientales
dc.publisher.faculty.spa.fl_str_mv Facultad de Química Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/16618/1/2019VillabonaCindy.pdf
https://repository.usta.edu.co/bitstream/11634/16618/2/2019VillabonaCindy1.pdf
https://repository.usta.edu.co/bitstream/11634/16618/3/2019VillabonaCindy2.pdf
https://repository.usta.edu.co/bitstream/11634/16618/4/license.txt
https://repository.usta.edu.co/bitstream/11634/16618/5/2019VillabonaCindy.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/16618/6/2019VillabonaCindy1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/16618/7/2019VillabonaCindy2.pdf.jpg
bitstream.checksum.fl_str_mv d786f218c1beee5681361e618e9224e5
b0e14acc4d4a7263f9804dee25662d3c
f45ae229c8be5d53ae3e4a6c0cd13466
f6b8c5608fa6b2f649b2d63e10c5fa73
60a93ecbcd0f44ad4ba8dd39462aec83
68cc9f260a4fe6e5931cce48c7d91746
1ffdbbf8dca0ae02375c3f7b0d862273
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026411324735488
spelling Merchán Arenas, Diego RolandoVillabona Delgado, Cindy Carolina2019-05-10T16:52:35Z2019-05-10T16:52:35Z2019-05-02Merchán Arenas, D. R. y Villabona Delgado, C. C. (2019). Chemical-enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombian crude oil. International Journal of Chemical Engineering, 2019, 1-10. DOI: https://doi.org/10.1155/2019/5241419http://hdl.handle.net/11634/16618reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLa recuperación de aceite se mejoró utilizando la amina terciaria, N, N-dimetilciclohexilamina (DMCHA), un solvente conmutable potente y promisorio, en condiciones simuladas similares a las reservas de petróleo crudo colombiano. En primer lugar, el crudo colombiano (CCO) y el suelo se caracterizaron por completo. Posteriormente, se obtuvo un sistema de crudo-roca envejecida para usar DMCHA que dio una extracción de crudo de petróleo del 80% en nuestros estudios preliminares. Por lo tanto, se usó un empaque de arena (suelo-caolín, 95: 5) saturado con CCO para simular las condiciones, en las cuales el DMCHA podría recuperar el aceite. Después del proceso de recuperación secundario, se obtuvo 15.4–33.8% del aceite original en sitio (OOIP). Después de la inyección de DMCHA, el rendimiento de recuperación aumentó a 87-97% de OOIP. Finalmente, 54-60% de DMCHA fue recuperado y reinyectado sin afectar su potencial en las condiciones simuladas.Oil recovery was improved using the tertiary amine, N,N-dimethylcyclohexylamine (DMCHA), a powerful and promissory switchable solvent, in simulated conditions similar to the Colombian crude oil reserves. Firstly, the Colombian crude oil (CCO) and the soil were characterized completely. Afterwards, an aged crude-rock system was obtained to use DMCHA that gave an oil crude extraction of 80% in our preliminary studies. Thus, a sand-pack column (soil-kaolin, 95 : 5) frame saturated with CCO was used to simulate the conditions, in which DMCHA could recover the oil. After the secondary recovery process, 15.4–33.8% of original oil in place (OOIP) is obtained. Following the injection of DMCHA, the recovery yield rose to 87–97% of OOIP. Finally, 54–60% of DMCHA was recovered and reinjected without affecting its potential in the simulated conditions.Magister en Ciencias y Tecnologías Ambientaleshttp://www.ustabuca.edu.co/ustabmanga/presentacionMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ciencias y Tecnologías AmbientalesFacultad de Química AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chemical enhanced oil recovery using N,N-Dimethylcyclohexylamine on a Colombia crude oilTertiary amineSwitchable hydrophilicity solventEnhanced recoveryRecobro del petróleoIndustria del petróleoDisolventesAminasEcología de suelosAmina terciariaRecobro mejoradoSolvente hidrófilo conmutableTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BucaramangaBP Statistical Review of World Energy, 67th edition, 2018, http://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf.IEA, World Energy Outlook 2014, International Energy Agency, Paris, France, 2014.A. H. Alagorni, Z. B. Yaacob, and A. H. Nour, “An overview of oil production stages: enhanced oil recovery techniques and nitrogen injection,” International Journal of Environmental Science and Development, vol. 6, no. 9, pp. 693–701, 2015J. J. Sheng, Introduction, in Modern Chemical Enhanced Oil Recovery, Elsevier, Amsterdam, Netherlands, 2011.V. P. Dimri, R. Srivastava, and N. Vedanti, “Chapter 6. Fluid flow and recovery,” in Fractal Models in Exploration Geophysics, vol. 41, pp. 119–147, Elsevier Ltd., Amsterdam, Netherlands, 2012.W. B. Gogarty, “Mobility control with polymer solutions,” Society of Petroleum Engineers Journal, vol. 7, no. 2, pp. 161–173, 1967.H. J. Hill, J. Reisberg, and G. L. Stegemeier, “Aqueous surfactant systems for oil recovery,” Journal of Petroleum Technology, vol. 25, no. 2, pp. 186–194, 1973.M. S. Kamal, A. S. Sultan, U. A. Al-Mubaiyedh, and I. A. Hussein, “Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems,” Polymer Reviews, vol. 55, no. 3, pp. 491–503, 2015M. S. Kamal, I. A. Hussein, and A. S. Sultan, “Review on surfactant flooding: phase review on surfactant flooding: phase behavior, retention, IFT and field applications,” Energy & Fuels, vol. 31, no. 8, pp. 7701–7720, 2017P. Yang, Z.-A. Li, B. Xia, Y.-J. Yuan, Q.-T. Huang, and W.-L. Liu, “Comprehensive review of alkaline-surfactant-polymer (ASP)-enhanced oil recovery (EOR),” in Proceedings of the International Field Exploration and Development Conference, 2017, Springer, Chengdu, China, September 2017.S. Ko and C. Huh, “Use of nanoparticles for oil production applications,” Journal of Petroleum Science and Engineering, vol. 172, pp. 97–114, 2019.M. S. Bin Dahbag, M. E. Hossain, and A. A. Alquraishi, “Efficiency of ionic liquids as an enhanced oil recovery chemical: simulation approach,” Energy & Fuels, vol. 30, no. 11, pp. 9260–9265, 2016.D. G. De Almeida, R. D. C. F. Soares Da Silva, J. M. Luna et al., “Biosurfactants: promising molecules for petroleum biotechnology advances,” Frontiers in Microbiology, vol. 7, pp. 1–14, 2016.E. O. Ansah, Y. Sugai, R. Nguele, and K. Sasaki, “Integrated microbial enhanced oil recovery (MEOR) simulation: main influencing parameters and uncertainty assessment,” Journal of Petroleum Science and Engineering, vol. 171, pp. 784–793, 2018I. Al-Weheibi, R. Al-Hajri, Y. Al-Wahaibi, B. Jibril, and A. Mohsenzadeh, “Oil recovery enhancement in middle east heavy oil field using malonic acid based deep eutectic solvent,” in Proceedings of the SPE Middle East Oil and Gas Show and Conference (MEOS 2015), pp. 780–792, Manama, Bahrain, January 2015.M. M. Sharma, T. F. Yen, G. V. Chilingarian, and E. C. Donaldson, “Chapter 7. Some chemical and physical problems in enhanced oil recovery operations,” in Developments in Petroleum Science, Part A, E. C. Donaldson, Ed., pp. 223–249, Elsevier Science, Amsterdam, Netherlands, 1985.K. Carruthers, Environmental Impacts of CO2-EOR. The Offshore UK Context, Scottish Carbon Capture & Storage, UK, 2014P. R. Hart, B. J. Stefan, P. Srivastava, and J. Debord, “Method for enhancing heavy hydrocarbon recovery,” 2008, US7938183B2M. M. Amin, M. S. Hatamipour, F. Momenbeik, H. Nourmoradi, M. Farhadkhani, and F. Mohammadi-Moghadam, “Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction,” The Scientific World Journal, vol. 2014, Article ID 416752, 6 pages, 2014.S. H. Hamid and M. A. Ali, “Comparative study of solvents for the extraction of aromatics from naphtha,” Energy Sources, vol. 18, no. 1, pp. 65–84, 1996E. A. Taiwo and J. A. Otolorin, “Oil recovery from petroleum sludge by solvent extraction,” Petroleum Science and Technology, vol. 27, no. 8, pp. 836–844, 2009.A. Holland, D. Wechsler, A. Patel, B. M. Molloy, A. R. Boyd, and P. G. Jessop, “Separation of bitumen from oil sands using a switchable hydrophilicity solvent,” Canadian Journal of Chemistry, vol. 90, no. 10, pp. 805–810, 2012.H. Sui, L. Xu, X. Li, and L. He, “Understanding the roles of switchable-hydrophilicity tertiary amines in recovering heavy hydrocarbons from oil sands,” Chemical Engineering Journal, vol. 290, pp. 312–318, 2016X. Li, Z. Yang, H. Sui, A. Jain, and L. He, “A hybrid process for oil-solid separation by a novel multifunctional switchable solvent,” Fuel, vol. 221, pp. 303–310, 2018.U.S. Energy Information Administration, “Country analysis brief: Colombia,” 2016,G. A. Maya, D. P. M. Sierra, R. Castro et al., “Enhanced oil recovery (EOR) status—Colombia,” in Proceedings of SPE Latin American and Caribbean Petroleum Engineering Conference (SPE 139199), Lima, Peru, December 2010.P. G. Jessop, L. Kozycz, Z. G. Rahami et al., “Tertiary amine solvents having switchable hydrophilicity,” Green Chemistry, vol. 13, no. 3, pp. 619–623, 2011.S. V. Mattigod, J. A. Frampton, and C. H. Lim, “Effect of ion-pair formation on boron adsorption by kaolinite,” Clays and Clay Minerals, vol. 33, no. 5, pp. 433–437, 1985T. Mahmood, M. T. Saddique, A. Naeem, P. Westerhoff, S. Mustafa, and A. Alum, “Comparison of different methods for the point of zero charge determination of NiO,” Industrial & Engineering Chemistry Research, vol. 50, no. 17, pp. 10017–10023, 2011.E. J. Gudiña, J. F. B. Pereira, R. Costa, J. A. P. Coutinho, J. A. Teixeira, and L. R. Rodrigues, “Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns,” Journal of Hazardous Materials, vol. 261, pp. 106–113, 2013.J. F. B. Pereira, R. Costa, N. Foios, and J. A. P. Coutinho, “Ionic liquid enhanced oil recovery in sand-pack columns,” Fuel, vol. 134, pp. 196–200, 2014.J. C. Poveda and D. R. Molina, “Average molecular parameters of heavy crude oils and their fractions using NMR spectroscopy,” Journal of Petroleum Science and Engineering, vol. 84-85, pp. 1–7, 2012.X. Xin, G. Yu, Z. Chen, K. Wu, X. Dong, and Z. Zhu, “Effect of polymer degradation on polymer flooding in heterogeneous reservoirs,” Polymers, vol. 10, no. 8, pp. 857–882, 2018.W. Yan, S. Huang, and E. H. Stenby, “Measurement and modeling of CO2 solubility in NaCl brine and CO2-saturated NaCl brine density,” International Journal of Greenhouse Gas Control, vol. 5, no. 6, pp. 1460–1477, 2011.L. Wang and X. Fu, “Data-driven analyses of low salinity water flooding in sandstones,” Fuel, vol. 234, pp. 674–686, 2018.G.-Q. Tang and N. R. Morrow, “Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery,” Journal of Petroleum Science and Engineering, vol. 24, no. 2–4, pp. 99–111, 1999X. Li, J. Hou, H. Sui, L. Sun, and L. Xu, “Switchable-hydrophilicity triethylamine: formation and synergistic effects of asphaltenes in stabilizing emulsions droplets,” Materials, vol. 11, no. 12, pp. 2431–2441, 2018.D. F. G. Bautista, E. Vaz dos Santos Neto, and H. L. D. B. Penteado, “Controls on petroleum composition in the Llanos basin, Colombia: implications for exploration,” AAPG Bulletin, vol. 99, no. 8, pp. 1503–1535, 2015.ORIGINAL2019VillabonaCindy.pdf2019VillabonaCindy.pdfArtículo principalapplication/pdf3213275https://repository.usta.edu.co/bitstream/11634/16618/1/2019VillabonaCindy.pdfd786f218c1beee5681361e618e9224e5MD51metadata only access2019VillabonaCindy1.pdf2019VillabonaCindy1.pdfAprobación facultadapplication/pdf118150https://repository.usta.edu.co/bitstream/11634/16618/2/2019VillabonaCindy1.pdfb0e14acc4d4a7263f9804dee25662d3cMD52metadata only access2019VillabonaCindy2.pdf2019VillabonaCindy2.pdfAcuerdo de confidencialidadapplication/pdf535012https://repository.usta.edu.co/bitstream/11634/16618/3/2019VillabonaCindy2.pdff45ae229c8be5d53ae3e4a6c0cd13466MD53metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/16618/4/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD54open accessTHUMBNAIL2019VillabonaCindy.pdf.jpg2019VillabonaCindy.pdf.jpgIM Thumbnailimage/jpeg11483https://repository.usta.edu.co/bitstream/11634/16618/5/2019VillabonaCindy.pdf.jpg60a93ecbcd0f44ad4ba8dd39462aec83MD55open access2019VillabonaCindy1.pdf.jpg2019VillabonaCindy1.pdf.jpgIM Thumbnailimage/jpeg8115https://repository.usta.edu.co/bitstream/11634/16618/6/2019VillabonaCindy1.pdf.jpg68cc9f260a4fe6e5931cce48c7d91746MD56open access2019VillabonaCindy2.pdf.jpg2019VillabonaCindy2.pdf.jpgIM Thumbnailimage/jpeg9629https://repository.usta.edu.co/bitstream/11634/16618/7/2019VillabonaCindy2.pdf.jpg1ffdbbf8dca0ae02375c3f7b0d862273MD57open access11634/16618oai:repository.usta.edu.co:11634/166182022-10-10 15:15:49.629metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K