Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente.
El objetivo del presente trabajo consistió en comparar el comportamiento de la señal electromiográfica por medio de análisis temporal y espectral durante contracción isométrica máxima voluntaria del vasto lateral en sujetos deportistas con énfasis en potencia, resistencia, sujetos sedentarios y acti...
- Autores:
-
Chaparro Gomez , David
Portocarrero Ortegate, Ivan Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2017
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/4075
- Acceso en línea:
- http://hdl.handle.net/11634/4075
- Palabra clave:
- Surface Electromyography, Motor Units, Muscular Fibers, Muscular Strength, Fractal Dimension.
Fractal Dimension
Motor Units
Muscle fibers
Muscular strength
Surface electromyography
Electromiografía de superficie
Unidades Motoras
Fibras musculares
Fuerza muscular
Dimensión Fractal
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_b6a23f51cb1a8cc42b55745b009f14bd |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/4075 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. |
title |
Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. |
spellingShingle |
Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. Surface Electromyography, Motor Units, Muscular Fibers, Muscular Strength, Fractal Dimension. Fractal Dimension Motor Units Muscle fibers Muscular strength Surface electromyography Electromiografía de superficie Unidades Motoras Fibras musculares Fuerza muscular Dimensión Fractal |
title_short |
Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. |
title_full |
Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. |
title_fullStr |
Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. |
title_full_unstemmed |
Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. |
title_sort |
Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. |
dc.creator.fl_str_mv |
Chaparro Gomez , David Portocarrero Ortegate, Ivan Felipe |
dc.contributor.author.none.fl_str_mv |
Chaparro Gomez , David Portocarrero Ortegate, Ivan Felipe |
dc.subject.keyword.spa.fl_str_mv |
Surface Electromyography, Motor Units, Muscular Fibers, Muscular Strength, Fractal Dimension. |
topic |
Surface Electromyography, Motor Units, Muscular Fibers, Muscular Strength, Fractal Dimension. Fractal Dimension Motor Units Muscle fibers Muscular strength Surface electromyography Electromiografía de superficie Unidades Motoras Fibras musculares Fuerza muscular Dimensión Fractal |
dc.subject.keyword.eng.fl_str_mv |
Fractal Dimension Motor Units Muscle fibers Muscular strength Surface electromyography |
dc.subject.proposal.spa.fl_str_mv |
Electromiografía de superficie Unidades Motoras Fibras musculares Fuerza muscular Dimensión Fractal |
description |
El objetivo del presente trabajo consistió en comparar el comportamiento de la señal electromiográfica por medio de análisis temporal y espectral durante contracción isométrica máxima voluntaria del vasto lateral en sujetos deportistas con énfasis en potencia, resistencia, sujetos sedentarios y activos físicamente. Población y muestra: La población estuvo conformada por 29 participantes, distribuidos de la siguiente forma: 9 deportistas entrenados en potencia, 5 en resistencia, 7 sedentarios y 8 activos, todos con un rango de edad entre 18 a 25 años. Métodos: Se realizó una prueba de contracción isométrica máxima voluntaria (MIVC) a todos los participantes que consto de 3 intentos de contracción de 6, 15 y 45 segundos c/u, con un tiempo de descanso entre cada intento de 3 minutos para asegurar la recuperación del musculo. Se les realizo medición de la señal de electromiografía de superficie (sEMG) por medio del sistema DataLab 2000 y sus respectivos electrodos ubicados sobre el vasto lateral de la pierna dominante. Los parámetros escogidos para el procesamiento de la señal fueron: raíz media cuadrática (RMS) y Dimensión Fractal (DF) para el análisis temporal y potencia media de las frecuencias (MPF) con transformada de Fourier previa para el análisis espectral. Resultados: diferencias significativas de p<0.05 a nivel intrasujetos e intersujetos fueron encontradas en RMS y Dimensión Fractal entre las poblaciones, en cuanto a la MPF solo se hallaron diferencias intersujetos. Las diferencias en las series temporales de los grupos poblacionales varían dependiendo del parámetro de la señal sEMG a observar. Conclusiones: Las diferencias en los parámetros de DF y RMS entre las poblaciones podrían reflejar las diferencias en las adaptaciones inducidas por el entrenamiento en el sistema nervioso, así mismo, se sugiere el uso de Dimensión Fractal como medio sensible para identificar estas diferencias. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-07-18T23:20:45Z |
dc.date.available.none.fl_str_mv |
2017-07-18T23:20:45Z |
dc.date.issued.none.fl_str_mv |
2017 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.none.fl_str_mv |
Portocarrero Ortegate, I. F. (2017). Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/4075 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Portocarrero Ortegate, I. F. (2017). Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/4075 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Andersen, J. L. (2003). Muscle fibre type adaptation in the elderly human muscle. Scandinavian journal of medicine & science in sports, 13(1), 40-47 Anmuth, C. J., Goldberg, G., & Mayer, N. H. (1994). Fractal dimension of electromyographic signals recorded with surface electrodes during isometric contractions is linearly correlated with muscle activation. Muscle & nerve,17(8), 953-954. Arendt-Nielsen, L., & Mills, K. R. (1985). The relationship between mean power frequency of the EMG spectrum and muscle fibre conduction velocity. Electroencephalography and clinical neurophysiology, 60(2), 130-134. Arjunan, S. P., & Kumar, D. K. (2007, December). Fractal theory based non-linear analysis of sEMG. In Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007. 3rd International Conference on (pp. 545-548). IEEE. Arjunan, S. P., Wheeler, K., Shimada, H., & Kumar, D. (2013, February). Age related changes in the complexity of surface EMG in biceps: A model based study. In Biosignals and Biorobotics Conference (BRC), 2013 ISSNIP (pp. 1-4). IEEE. Åstrand, P. O., Rodahl, K. A. A. R. E., Dahl, H. A., & Strømme, S. B. (2010). Manual de fisiología del ejercicio. México: Editorial Paidotribo. Barbero, M., Merletti, R., & Rainoldi, A. (2012). Atlas of muscle innervation zones: understanding surface electromyography and its applications. Springer Science & Business Media. Barbosa, D. Assen, F. Alves, T. Campos, M. Oliveira, M. Avila, R. Netto, J y Pastre, C. (2015). Respuesta aguda de variáveis clínicas e funcionais em exercício máximo de contração concêntrica versus excêntrica. Revista Brasileira de Ciências do Esporte. 37. 87-95 Bartuzi, P., & Roman-Liu, D. (2014). Assessment of muscle load and fatigue with the usage of frequency and time-frequency analysis of the EMG signal. Acta of Bioengineering and Biomechanics, 16(2), 31-39. Basmajian, J. V., & De Luca, C. J. (1985). Muscles alive. Muscles alive: their functions revealed by electromyography, 278, 126. Beck, T. W., Housh, T. J., Fry, A. C., Cramer, J. T., Weir, J. P., Schilling, B. K., . Moore, C. A. (2007). The influence of muscle fiber type composition on the patterns of responses for electromyographic and mechanomyographic amplitude and mean power frequency during a fatiguing submaximal isometric muscle action. Electromyogr Clin Neurophysiol, 47(4-5), 221-232. Beck, T. W., Housh, T., Fry, A. C., Cramer, J. T., Weir, J., Schilling, B., ... & Moore, C. (2009). MMG-EMG cross spectrum and muscle fiber type. International journal of sports medicine, 30(07), 538-544. Beretta-Piccoli, M., D’Antona, G., Barbero, M., Fisher, B., Dieli-Conwright, C. M., Clijsen, R., & Cescon, C. (2015). Evaluation of central and peripheral fatigue in the quadriceps using fractal dimension and conduction velocity in young females. PloS one, 10(4), e0123921. Beretta-Piccoli, M., D’Antona, G., Barbero, M., Fisher, B., Dieli-Conwright, C. Bilodeau, M., Arsenault, A. B., Gravel, D., & Bourbonnais, D. (1993). EMG power spectrum of elbow extensors: a reliability study. Electromyography and clinical neurophysiology, 34(3), 149-158. Bilodeau, M., Schindler-Ivens, S., Williams, D. M., Chandran, R., & Sharma, S. S. (2003). EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. Journal of Electromyography and Kinesiology, 13(1), 83-92. Bompa, T. O. (2006). Periodización del entrenamiento deportivo. PAIDOTRIBO. Brandon, R., Howatson, G., Strachan, F., & Hunter, A. M. (2015). Neuromuscular response differences to power vs strength back squat exercise in elite athletes. Scandinavian journal of medicine & science in sports, 25(5), 630-639. Buczkowski, S., Hildgen, P., & Cartilier, L. (1998). Measurements of fractal dimension by box-counting: a critical analysis of data scatter. Physica A: Statistical Mechanics and its Applications, 252(1), 23-34 Caballero, K., Duque, L. M., Ceballos, S., Ramirez, J. C., & Peláez, A. (2002). Conceptos básicos para el análisis electromiográfico. CES Odontología, 15(1), 41-50. Chowdhury, S. K., & Nimbarte, A. D. (2015). Comparison of Fourier and wavelet analysis for fatigue assessment during repetitive dynamic exertion. Journal of Electromyography and Kinesiology, 25(2), 205-213. Criswell, E. (2010). Cram's introduction to surface electromyography. Jones & Bartlett Publishers. De Luca, C. J. (1985). Control properties of motor units. Journal of Experimental Biology, 115(1), 125-136. De Luca, C., LeFever, R., McCue, M., & Xenakis, A. (1982). Behaviour of human motor units in different muscles during linearly varying contractions. The Journal of physiology, 329(1), 113-128. De vita & Tan (2015) A structural constitutive model for smooth muscle contraction in biological tissues. International Journal of Non-Linear Mechanics. 75. 46,53 Dominguez, D. (2000). El análisis Fractal: una nueva herramienta para la investigación básica en ingeniería y otras disciplinas(Biología). ciencia e ingeniería neogranadina. Duchateau, J., Semmler, J. G., & Enoka, R. M. (2006). Training adaptations in the behavior of human motor units. Journal of Applied Physiology, 101(6), 1766- 1775. Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological measurement, 23(1). ENSIN. (2010). Encuesta Nacional de la situación Nutricional en Colombia Falkner. (1969). Desarrollo Humano. Barcelona: Salvat. Farina, D. (2008). Counterpoint: spectral properties of the surface EMG do not provide information about motor unit recruitment and muscle fiber type. Journal of Applied Physiology, 105(5), 1673-1674. Farina, D., & Merletti, R. (2000). Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. Journal of Electromyography and Kinesiology, 10(5), 337-349. Farina, D., Ferguson, R. A., Macaluso, A., & De Vito, G. (2007). Correlation of average muscle fiber conduction velocity measured during cycling exercise with myosin heavy chain composition, lactate threshold, and VO 2max. Journal of Electromyography and Kinesiology, 17(4), 393-400. Farina, D., Fosci, M., & Merletti, R. (2002). Motor unit recruitment strategies investigated by surface EMG variables. Journal of Applied Physiology, 92(1), 235-247. Feder, J. (2013). Fractals. Springer Science & Business Media. Fuglevand, A. J., Winter, D. A., & Patla, A. E. (1993). Models of recruitment and rate coding organization in motor-unit pools. Journal of neurophysiology, 70(6), 2470-2488. Garavito, F., Gonzalez, J., Cabarcas, J., Chaparro, D., Portocarrero, I., & Vargas, A. (2016, November). EMG signal analysis based on fractal dimension for muscle activation detection under exercice protocol. In Signal Processing, Images and Artificial Vision (STSIVA), 2016 XXI Symposium on (pp. 1-5). IEEE. Gerdle, B., HENRIKSSON-LARSÉN, K., Lorentzon, R., & WRETLING, M. L. (1991). Dependence of the mean power frequency of the electromyogram on muscle force and fibre type. Acta Physiologica Scandinavica, 142(4), 457-465. Gerdle, B., HENRIKSSON-LARSÉN, K., Lorentzon, R., & WRETLING, M. L. (1991). Dependence of the mean power frequency of the electromyogram on muscle force and fibre type. Acta Physiologica Scandinavica, 142(4), 457-465. Gerdle, B., Karlsson, S., Crenshaw, A. G., & Friden, J. (1997). The relationships between EMG and muscle morphology throughout sustained static knee extension at two submaximal force levels. Acta Physiologica Scandinavica, 160(4), 341-351. Gerdle, B., Karlsson, S., Crenshaw, A. G., Elert, J., & Fridén, J. (2000). The influences of muscle fibre proportions and areas upon EMG during maximal dynamic knee extensions. European journal of applied physiology, 81(1-2), 2- 10. Gerdle, B., WRETLING, M. L., & HENRIKSSON-LARSÉN, K. (1988). Do the fibretype proportion and the angular velocity influence the mean power frequency of the electromyogram?. Acta Physiologica Scandinavica, 134(3), 341-346. Gitter, J. A., & Czerniecki, M. J. (1995). Fractal analysis of the electromyographic interference pattern. Journal of neuroscience Methods, 58(1), 103-108. Gonzalez Barajas, J. E. (2015). Series y Transformada de Fourier para señales Continuas y Discretas en el Tiempo: Algoritmos para el desarrollo de ejercicios prácticos. OmniaScience Scholar Grassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors Physica D 9, 189–208. Mathematical Reviews (MathSciNet): MR732572 Digital Object Identifier: doi, 10, 0167-2789. Gupta, V., Suryanarayanan, S., & Reddy, N. P. (1997). Fractal analysis of surface EMG signals from the biceps. International journal of medical informatics, 45(3), 185-192 Heckman, C. J., & Enoka, R. M. (2004). Physiology of the motor neuron and the motor unit. Handbook of Clinical Neurophysiology, 4, 119-147. Henneman, E. (1981). Recruitment of motoneurons: the size principle. Progress in clinical neurophysiology, 9, 26-60. Herda, T. J., Housh, T. J., Fry, A. C., Weir, J. P., Schilling, B. K., Ryan, E. D., & Cramer, J. T. (2010). A noninvasive, log-transform method for fiber type discrimination using mechanomyography. Journal of Electromyography and Kinesiology, 20(5), 787-794. Herda, T. J., Siedlik, J. A., Trevino, M. A., Cooper, M. A., & Weir, J. P. (2015). Motor unit control strategies of endurance-versus resistance-trained individuals. Muscle & nerve, 52(5), 832-843. Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2), 277-283. Karthick, P. A., Venugopal, G., & Ramakrishnan, S. (2016). Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals. Journal of medical systems, 40(1), 1-11. Kent-Braun, J. A. (2009). Skeletal muscle fatigue in old age: whose advantage?. Exercise and sport sciences reviews, 37(1), 3. Kim, H., Eykholt, R., & Salas, J. D. (1999). Nonlinear dynamics, delay times, and embedding windows. Physica D: Nonlinear Phenomena, 127(1), 48-60. Kupa, E. J., Roy, S. H., Kandarian, S. C., & De Luca, C. J. (1995). Effects of muscle fiber type and size on EMG median frequency and conduction velocity.Journal of Applied Physiology, 79(1), 23-32. Lei, M., Wang, Z., & Feng, Z. (2001). Detecting nonlinearity of action surface EMG signal. Physics Letters A, 290(5), 297-303. Tikkanen, O., Haakana, P., Pesola, A. J., Häkkinen, K., Rantalainen, T., Havu, M., ... & Finni, T. (2013). Muscle activity and inactivity periods during normal daily life. PloS one, 8(1), e52228. Mandelbrot, B. B. (1983). The fractal geometry of nature (Vol. 173). Macmillan Mayer, F., Scharhag-Rosenberger, F., Carlsohn, A., Cassel, M., Müller, S., & Scharhag, J. (2011). The intensity and effects of strength training in the elderly.Dtsch Arztebl Int, 108(21), 359-64. Merletti, R., Knaflitz, M., & De Luca, C. J. (1990). Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. Journal of Applied Physiology, 69(5), 1810-1820. Mesin, L., Cescon, C., Gazzoni, M., Merletti, R., & Rainoldi, A. (2009). A bidimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue. Journal of Electromyography and Kinesiology, 19(5), 851-863. Molina, R. M., & Mayoral, M. G. (1998). Cambios en el análisis espectral electromiográfico durante la potenciación muscular mediante ejercicios isométricos. Fisioterapia, 20(4), 232-239. Oliveira, A. D. S. C., & Gonçalves, M. (2009). EMG amplitude and frequency parameters of muscular activity: effect of resistance training based on electromyographic fatigue threshold. Journal of Electromyography and Kinesiology, 19(2), 295-303. Rainoldi, A., Bullock-Saxton, J. E., Cavarretta, F., & Hogan, N. (2001). Repeatability of maximal voluntary force and of surface EMG variables during voluntary isometric contraction of quadriceps muscles in healthy subjects.Journal of Electromyography and Kinesiology, 11(6), 425-438. Romo, H. A., Realpe, J. C., & Jojoa, P. E. (2007). Análisis de señales EMG superficiales y su aplicación en control de prótesis de mano. Avances en Sistemas e informática, 4(1). Romo, H. A., Realpe, J. C., & Jojoa, P. E. (2007). Análisis de señales EMG superficiales y su aplicación en control de prótesis de mano. Avances en Sistemas e informática, 4(1). Sadoyama, T., Masuda, T., Miyata, H., & Katsuta, S. (1988). Fibre conduction velocity and fibre composition in human vastus lateralis. European journal of applied physiology and occupational physiology, 57(6), 767-771. Sakamoto, A., Khan, M. T., & Kurita, T. (2015, June). EMG signals in co-activations of lower limb muscles for knee joint analysis. In Informatics, Electronics & Vision (ICIEV), 2015 International Conference on (pp. 1-5). IEEE. Sánchez, I. A. (2009). Entrenamiento de la fuerza muscular como coadyuvante en la disminución del riesgo cardiovascular: una revisión sistemática. Scielo. Sarkar, M., & Leong, T. Y. (2003). Characterization of medical time series using fuzzy similarity-based fractal dimensions. Artificial Intelligence in Medicine,27(2), 201-222. Schmidt, G. (1991). Parker, TS; Chua, LO, Practical Numerical Algorithms for Chaotic Systems. Berlin etc., Springer-Verlag 1989. XIV, 348 S., 152 Abb., DM 98.—. ISBN 3-540-96689-7. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 71(7-8), 266- 266. Tikkanen, O., Haakana, P., Pesola, A. J., Häkkinen, K., Rantalainen, T., Havu, Topçu, Ç., Bedeloğlu, M., Akgül, A., Sever, R., Özkan, Ö., Özkan, Ö., ... & Çolak, Ö. H. (2014, October). Higuchi fractal dimension analysis of surface EMG signals and determination of active electrode positions. In Biomedical Engineering Meeting (BIYOMUT), 2014 18th National (pp. 1-4). IEEE. Toloza, S. M., & Gómez-Conesa, A. (2007). El cuestionario internacional de actividad física. Un instrumento adecuado en el seguimiento de la actividad física poblacional. Revista Iberoamericana de Fisioterapia y Kinesiología, 10(1), 48- 52. Travnik, L., Pernus, F., & Erzen, I. (1995). Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles. Journal of anatomy, 187(Pt 2), 403. Trevino, M. A., & Herda, T. J. (2015). The effects of training status and muscle action on muscle activation of the vastus lateralis. Acta of Bioengineering and Biomechanics, 17(4), 107-114. Trevino, M. A., & Herda, T. J. (2016). The effects of chronic exercise training status on motor unit activation and deactivation control strategies. Journal of sports sciences, 34(3), 199-208. Vila-Chã, C., Falla, D., & Farina, D. (2010). Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. Journal of Applied Physiology, 109(5), 1455-1466. Vila-Cha, C., Falla, D., Correia, M. V., & Farina, D. (2012). Adjustments in motor unit properties during fatiguing contractions after training. Med Sci Sports Exerc, 44(4), 616-624 Wakeling, J. M. (2009). Patterns of motor recruitment can be determined using surface EMG. Journal of Electromyography and Kinesiology, 19(2), 199-207. Xiao, H. U., Zhi-zhong, W. A. N. G., & Xiao-mei, R. E. N. (2005). Classification of surface EMG signal with fractal dimension. Journal of Zhejiang University Science B, 6(8), 844-848. Xu, L., Zhang, D., & Xian, X. (1997). Fractal dimensions of coals and cokes. Journal of colloid and interface science, 190(2), 357-359. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Cultura Física, Deporte y Recreación |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Cultura Física, Deporte y Recreación |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/4075/3/Chaparro%20Gomez%20David%20-%20Portocarrero%20Ivan%20Felipe.pdf.jpg https://repository.usta.edu.co/bitstream/11634/4075/5/2017davidchaparro.pdf.jpg https://repository.usta.edu.co/bitstream/11634/4075/9/2017cartadefacultad.pdf.jpg https://repository.usta.edu.co/bitstream/11634/4075/10/2017cartadederechosdeautor.pdf.jpg https://repository.usta.edu.co/bitstream/11634/4075/4/2017davidchaparro.pdf https://repository.usta.edu.co/bitstream/11634/4075/6/2017cartadefacultad.pdf https://repository.usta.edu.co/bitstream/11634/4075/7/2017cartadederechosdeautor.pdf https://repository.usta.edu.co/bitstream/11634/4075/8/2017cartadefacultad.pdf https://repository.usta.edu.co/bitstream/11634/4075/2/license.txt |
bitstream.checksum.fl_str_mv |
54998f6c9f1045d6e956651e16558a81 f6a4c54e5e9c873b1bd37c5efad6aa7e c164d1d2d0b9006905eeffd0b285a6ea 2b24a830357f73d3ad9a59313f19f496 11e20fb0e2f802421d393975ca3ca530 694620e0431b74c4d101e2dd59e0f0ab 6b29e9f68758db3994d37a2799f990a8 18b526610aa7cab4c61af65e18e96bc9 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026175698173952 |
spelling |
Chaparro Gomez , DavidPortocarrero Ortegate, Ivan Felipe2017-07-18T23:20:45Z2017-07-18T23:20:45Z2017Portocarrero Ortegate, I. F. (2017). Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente.http://hdl.handle.net/11634/4075reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEl objetivo del presente trabajo consistió en comparar el comportamiento de la señal electromiográfica por medio de análisis temporal y espectral durante contracción isométrica máxima voluntaria del vasto lateral en sujetos deportistas con énfasis en potencia, resistencia, sujetos sedentarios y activos físicamente. Población y muestra: La población estuvo conformada por 29 participantes, distribuidos de la siguiente forma: 9 deportistas entrenados en potencia, 5 en resistencia, 7 sedentarios y 8 activos, todos con un rango de edad entre 18 a 25 años. Métodos: Se realizó una prueba de contracción isométrica máxima voluntaria (MIVC) a todos los participantes que consto de 3 intentos de contracción de 6, 15 y 45 segundos c/u, con un tiempo de descanso entre cada intento de 3 minutos para asegurar la recuperación del musculo. Se les realizo medición de la señal de electromiografía de superficie (sEMG) por medio del sistema DataLab 2000 y sus respectivos electrodos ubicados sobre el vasto lateral de la pierna dominante. Los parámetros escogidos para el procesamiento de la señal fueron: raíz media cuadrática (RMS) y Dimensión Fractal (DF) para el análisis temporal y potencia media de las frecuencias (MPF) con transformada de Fourier previa para el análisis espectral. Resultados: diferencias significativas de p<0.05 a nivel intrasujetos e intersujetos fueron encontradas en RMS y Dimensión Fractal entre las poblaciones, en cuanto a la MPF solo se hallaron diferencias intersujetos. Las diferencias en las series temporales de los grupos poblacionales varían dependiendo del parámetro de la señal sEMG a observar. Conclusiones: Las diferencias en los parámetros de DF y RMS entre las poblaciones podrían reflejar las diferencias en las adaptaciones inducidas por el entrenamiento en el sistema nervioso, así mismo, se sugiere el uso de Dimensión Fractal como medio sensible para identificar estas diferencias.The aim of this study was to compare the behavior of the electromyographic sign by means of temporal and spectral analysis during maximum isometric voluntary contraction (MIVC) of the lateral vastus in sports subjects with emphasis on potency, resistance, sedentary subjects and physically active subjects. Population and sample: The population consisted of 29 participants, distributed in the following form: 9 athletes trained in power, 5 in resistance, 7 sedentary and 8 active, all with a range of age between 18 and 25 years. Methods: A maximal isometric voluntary contraction test (MIVC) was performed on all participants, consisting of 3 contraction attempts of 6, 15 and 45 seconds c / u, with a rest period of 3-minute between each attempt to assure the Muscle Recovery. Surface electromyography (sEMG) signal sensing realization test by means of the DataLab 2000 system and its electrodes placed on the lateral vastus of the dominant leg. The parameters chosen for signal processing were root mean square (RMS) and Fractal Dimension (DF) for the temporal analysis and the mean power of the frequencies (MPF) with the previous Fourier transform for the spectral analysis. Results: significant differences of p <0.05 a level in the intra and inter-subjects were found in RMS and Fractal Dimension among populations, as for MPF only inter-subjects differences were found. The differences in the time series of the population groups vary depending on the signal parameter. CONCLUSIONS: Differences in DF and RMS parameters among populations reflect the differences in adaptations induced by training in the nervous system, also, the use of Fractal Dimension as a sensitive means to identify these differences is suggestedProfesional en Cultura Física, Deporte y RecreaciónPregradoapplication/pdfspaUniversidad Santo TomásPregrado Cultura Física, Deporte y RecreaciónFacultad de Cultura Física, Deporte y RecreaciónAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Comparación de la señal de SEMG durante MIVC en sujetos deportistas, sedentarios y activos físicamente.Surface Electromyography, Motor Units, Muscular Fibers, Muscular Strength, Fractal Dimension.Fractal DimensionMotor UnitsMuscle fibersMuscular strengthSurface electromyographyElectromiografía de superficieUnidades MotorasFibras muscularesFuerza muscularDimensión FractalTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáAndersen, J. L. (2003). Muscle fibre type adaptation in the elderly human muscle. Scandinavian journal of medicine & science in sports, 13(1), 40-47Anmuth, C. J., Goldberg, G., & Mayer, N. H. (1994). Fractal dimension of electromyographic signals recorded with surface electrodes during isometric contractions is linearly correlated with muscle activation. Muscle & nerve,17(8), 953-954.Arendt-Nielsen, L., & Mills, K. R. (1985). The relationship between mean power frequency of the EMG spectrum and muscle fibre conduction velocity. Electroencephalography and clinical neurophysiology, 60(2), 130-134.Arjunan, S. P., & Kumar, D. K. (2007, December). Fractal theory based non-linear analysis of sEMG. In Intelligent Sensors, Sensor Networks and Information, 2007. ISSNIP 2007. 3rd International Conference on (pp. 545-548). IEEE.Arjunan, S. P., Wheeler, K., Shimada, H., & Kumar, D. (2013, February). Age related changes in the complexity of surface EMG in biceps: A model based study. In Biosignals and Biorobotics Conference (BRC), 2013 ISSNIP (pp. 1-4). IEEE.Åstrand, P. O., Rodahl, K. A. A. R. E., Dahl, H. A., & Strømme, S. B. (2010). Manual de fisiología del ejercicio. México: Editorial Paidotribo.Barbero, M., Merletti, R., & Rainoldi, A. (2012). Atlas of muscle innervation zones: understanding surface electromyography and its applications. Springer Science & Business Media.Barbosa, D. Assen, F. Alves, T. Campos, M. Oliveira, M. Avila, R. Netto, J y Pastre, C. (2015). Respuesta aguda de variáveis clínicas e funcionais em exercício máximo de contração concêntrica versus excêntrica. Revista Brasileira de Ciências do Esporte. 37. 87-95Bartuzi, P., & Roman-Liu, D. (2014). Assessment of muscle load and fatigue with the usage of frequency and time-frequency analysis of the EMG signal. Acta of Bioengineering and Biomechanics, 16(2), 31-39.Basmajian, J. V., & De Luca, C. J. (1985). Muscles alive. Muscles alive: their functions revealed by electromyography, 278, 126.Beck, T. W., Housh, T. J., Fry, A. C., Cramer, J. T., Weir, J. P., Schilling, B. K., . Moore, C. A. (2007). The influence of muscle fiber type composition on the patterns of responses for electromyographic and mechanomyographic amplitude and mean power frequency during a fatiguing submaximal isometric muscle action. Electromyogr Clin Neurophysiol, 47(4-5), 221-232.Beck, T. W., Housh, T., Fry, A. C., Cramer, J. T., Weir, J., Schilling, B., ... & Moore, C. (2009). MMG-EMG cross spectrum and muscle fiber type. International journal of sports medicine, 30(07), 538-544.Beretta-Piccoli, M., D’Antona, G., Barbero, M., Fisher, B., Dieli-Conwright, C. M., Clijsen, R., & Cescon, C. (2015). Evaluation of central and peripheral fatigue in the quadriceps using fractal dimension and conduction velocity in young females. PloS one, 10(4), e0123921.Beretta-Piccoli, M., D’Antona, G., Barbero, M., Fisher, B., Dieli-Conwright, C. Bilodeau, M., Arsenault, A. B., Gravel, D., & Bourbonnais, D. (1993). EMG power spectrum of elbow extensors: a reliability study. Electromyography and clinical neurophysiology, 34(3), 149-158.Bilodeau, M., Schindler-Ivens, S., Williams, D. M., Chandran, R., & Sharma, S. S. (2003). EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. Journal of Electromyography and Kinesiology, 13(1), 83-92.Bompa, T. O. (2006). Periodización del entrenamiento deportivo. PAIDOTRIBO.Brandon, R., Howatson, G., Strachan, F., & Hunter, A. M. (2015). Neuromuscular response differences to power vs strength back squat exercise in elite athletes. Scandinavian journal of medicine & science in sports, 25(5), 630-639.Buczkowski, S., Hildgen, P., & Cartilier, L. (1998). Measurements of fractal dimension by box-counting: a critical analysis of data scatter. Physica A: Statistical Mechanics and its Applications, 252(1), 23-34Caballero, K., Duque, L. M., Ceballos, S., Ramirez, J. C., & Peláez, A. (2002). Conceptos básicos para el análisis electromiográfico. CES Odontología, 15(1), 41-50.Chowdhury, S. K., & Nimbarte, A. D. (2015). Comparison of Fourier and wavelet analysis for fatigue assessment during repetitive dynamic exertion. Journal of Electromyography and Kinesiology, 25(2), 205-213.Criswell, E. (2010). Cram's introduction to surface electromyography. Jones & Bartlett Publishers.De Luca, C. J. (1985). Control properties of motor units. Journal of Experimental Biology, 115(1), 125-136.De Luca, C., LeFever, R., McCue, M., & Xenakis, A. (1982). Behaviour of human motor units in different muscles during linearly varying contractions. The Journal of physiology, 329(1), 113-128.De vita & Tan (2015) A structural constitutive model for smooth muscle contraction in biological tissues. International Journal of Non-Linear Mechanics. 75. 46,53Dominguez, D. (2000). El análisis Fractal: una nueva herramienta para la investigación básica en ingeniería y otras disciplinas(Biología). ciencia e ingeniería neogranadina.Duchateau, J., Semmler, J. G., & Enoka, R. M. (2006). Training adaptations in the behavior of human motor units. Journal of Applied Physiology, 101(6), 1766- 1775.Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological measurement, 23(1).ENSIN. (2010). Encuesta Nacional de la situación Nutricional en ColombiaFalkner. (1969). Desarrollo Humano. Barcelona: Salvat.Farina, D. (2008). Counterpoint: spectral properties of the surface EMG do not provide information about motor unit recruitment and muscle fiber type. Journal of Applied Physiology, 105(5), 1673-1674.Farina, D., & Merletti, R. (2000). Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. Journal of Electromyography and Kinesiology, 10(5), 337-349.Farina, D., Ferguson, R. A., Macaluso, A., & De Vito, G. (2007). Correlation of average muscle fiber conduction velocity measured during cycling exercise with myosin heavy chain composition, lactate threshold, and VO 2max. Journal of Electromyography and Kinesiology, 17(4), 393-400.Farina, D., Fosci, M., & Merletti, R. (2002). Motor unit recruitment strategies investigated by surface EMG variables. Journal of Applied Physiology, 92(1), 235-247.Feder, J. (2013). Fractals. Springer Science & Business Media.Fuglevand, A. J., Winter, D. A., & Patla, A. E. (1993). Models of recruitment and rate coding organization in motor-unit pools. Journal of neurophysiology, 70(6), 2470-2488.Garavito, F., Gonzalez, J., Cabarcas, J., Chaparro, D., Portocarrero, I., & Vargas, A. (2016, November). EMG signal analysis based on fractal dimension for muscle activation detection under exercice protocol. In Signal Processing, Images and Artificial Vision (STSIVA), 2016 XXI Symposium on (pp. 1-5). IEEE.Gerdle, B., HENRIKSSON-LARSÉN, K., Lorentzon, R., & WRETLING, M. L. (1991). Dependence of the mean power frequency of the electromyogram on muscle force and fibre type. Acta Physiologica Scandinavica, 142(4), 457-465.Gerdle, B., HENRIKSSON-LARSÉN, K., Lorentzon, R., & WRETLING, M. L. (1991). Dependence of the mean power frequency of the electromyogram on muscle force and fibre type. Acta Physiologica Scandinavica, 142(4), 457-465.Gerdle, B., Karlsson, S., Crenshaw, A. G., & Friden, J. (1997). The relationships between EMG and muscle morphology throughout sustained static knee extension at two submaximal force levels. Acta Physiologica Scandinavica, 160(4), 341-351.Gerdle, B., Karlsson, S., Crenshaw, A. G., Elert, J., & Fridén, J. (2000). The influences of muscle fibre proportions and areas upon EMG during maximal dynamic knee extensions. European journal of applied physiology, 81(1-2), 2- 10.Gerdle, B., WRETLING, M. L., & HENRIKSSON-LARSÉN, K. (1988). Do the fibretype proportion and the angular velocity influence the mean power frequency of the electromyogram?. Acta Physiologica Scandinavica, 134(3), 341-346.Gitter, J. A., & Czerniecki, M. J. (1995). Fractal analysis of the electromyographic interference pattern. Journal of neuroscience Methods, 58(1), 103-108.Gonzalez Barajas, J. E. (2015). Series y Transformada de Fourier para señales Continuas y Discretas en el Tiempo: Algoritmos para el desarrollo de ejercicios prácticos. OmniaScience ScholarGrassberger, P., & Procaccia, I. (1983). Measuring the strangeness of strange attractors Physica D 9, 189–208. Mathematical Reviews (MathSciNet): MR732572 Digital Object Identifier: doi, 10, 0167-2789.Gupta, V., Suryanarayanan, S., & Reddy, N. P. (1997). Fractal analysis of surface EMG signals from the biceps. International journal of medical informatics, 45(3), 185-192Heckman, C. J., & Enoka, R. M. (2004). Physiology of the motor neuron and the motor unit. Handbook of Clinical Neurophysiology, 4, 119-147.Henneman, E. (1981). Recruitment of motoneurons: the size principle. Progress in clinical neurophysiology, 9, 26-60.Herda, T. J., Housh, T. J., Fry, A. C., Weir, J. P., Schilling, B. K., Ryan, E. D., & Cramer, J. T. (2010). A noninvasive, log-transform method for fiber type discrimination using mechanomyography. Journal of Electromyography and Kinesiology, 20(5), 787-794.Herda, T. J., Siedlik, J. A., Trevino, M. A., Cooper, M. A., & Weir, J. P. (2015). Motor unit control strategies of endurance-versus resistance-trained individuals. Muscle & nerve, 52(5), 832-843.Higuchi, T. (1988). Approach to an irregular time series on the basis of the fractal theory. Physica D: Nonlinear Phenomena, 31(2), 277-283.Karthick, P. A., Venugopal, G., & Ramakrishnan, S. (2016). Analysis of Muscle Fatigue Progression using Cyclostationary Property of Surface Electromyography Signals. Journal of medical systems, 40(1), 1-11.Kent-Braun, J. A. (2009). Skeletal muscle fatigue in old age: whose advantage?. Exercise and sport sciences reviews, 37(1), 3.Kim, H., Eykholt, R., & Salas, J. D. (1999). Nonlinear dynamics, delay times, and embedding windows. Physica D: Nonlinear Phenomena, 127(1), 48-60.Kupa, E. J., Roy, S. H., Kandarian, S. C., & De Luca, C. J. (1995). Effects of muscle fiber type and size on EMG median frequency and conduction velocity.Journal of Applied Physiology, 79(1), 23-32.Lei, M., Wang, Z., & Feng, Z. (2001). Detecting nonlinearity of action surface EMG signal. Physics Letters A, 290(5), 297-303.Tikkanen, O., Haakana, P., Pesola, A. J., Häkkinen, K., Rantalainen, T., Havu, M., ... & Finni, T. (2013). Muscle activity and inactivity periods during normal daily life. PloS one, 8(1), e52228.Mandelbrot, B. B. (1983). The fractal geometry of nature (Vol. 173). MacmillanMayer, F., Scharhag-Rosenberger, F., Carlsohn, A., Cassel, M., Müller, S., & Scharhag, J. (2011). The intensity and effects of strength training in the elderly.Dtsch Arztebl Int, 108(21), 359-64.Merletti, R., Knaflitz, M., & De Luca, C. J. (1990). Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. Journal of Applied Physiology, 69(5), 1810-1820.Mesin, L., Cescon, C., Gazzoni, M., Merletti, R., & Rainoldi, A. (2009). A bidimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue. Journal of Electromyography and Kinesiology, 19(5), 851-863.Molina, R. M., & Mayoral, M. G. (1998). Cambios en el análisis espectral electromiográfico durante la potenciación muscular mediante ejercicios isométricos. Fisioterapia, 20(4), 232-239.Oliveira, A. D. S. C., & Gonçalves, M. (2009). EMG amplitude and frequency parameters of muscular activity: effect of resistance training based on electromyographic fatigue threshold. Journal of Electromyography and Kinesiology, 19(2), 295-303.Rainoldi, A., Bullock-Saxton, J. E., Cavarretta, F., & Hogan, N. (2001). Repeatability of maximal voluntary force and of surface EMG variables during voluntary isometric contraction of quadriceps muscles in healthy subjects.Journal of Electromyography and Kinesiology, 11(6), 425-438.Romo, H. A., Realpe, J. C., & Jojoa, P. E. (2007). Análisis de señales EMG superficiales y su aplicación en control de prótesis de mano. Avances en Sistemas e informática, 4(1).Romo, H. A., Realpe, J. C., & Jojoa, P. E. (2007). Análisis de señales EMG superficiales y su aplicación en control de prótesis de mano. Avances en Sistemas e informática, 4(1).Sadoyama, T., Masuda, T., Miyata, H., & Katsuta, S. (1988). Fibre conduction velocity and fibre composition in human vastus lateralis. European journal of applied physiology and occupational physiology, 57(6), 767-771.Sakamoto, A., Khan, M. T., & Kurita, T. (2015, June). EMG signals in co-activations of lower limb muscles for knee joint analysis. In Informatics, Electronics & Vision (ICIEV), 2015 International Conference on (pp. 1-5). IEEE.Sánchez, I. A. (2009). Entrenamiento de la fuerza muscular como coadyuvante en la disminución del riesgo cardiovascular: una revisión sistemática. Scielo.Sarkar, M., & Leong, T. Y. (2003). Characterization of medical time series using fuzzy similarity-based fractal dimensions. Artificial Intelligence in Medicine,27(2), 201-222.Schmidt, G. (1991). Parker, TS; Chua, LO, Practical Numerical Algorithms for Chaotic Systems. Berlin etc., Springer-Verlag 1989. XIV, 348 S., 152 Abb., DM 98.—. ISBN 3-540-96689-7. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 71(7-8), 266- 266.Tikkanen, O., Haakana, P., Pesola, A. J., Häkkinen, K., Rantalainen, T., Havu, Topçu, Ç., Bedeloğlu, M., Akgül, A., Sever, R., Özkan, Ö., Özkan, Ö., ... & Çolak, Ö. H. (2014, October). Higuchi fractal dimension analysis of surface EMG signals and determination of active electrode positions. In Biomedical Engineering Meeting (BIYOMUT), 2014 18th National (pp. 1-4). IEEE.Toloza, S. M., & Gómez-Conesa, A. (2007). El cuestionario internacional de actividad física. Un instrumento adecuado en el seguimiento de la actividad física poblacional. Revista Iberoamericana de Fisioterapia y Kinesiología, 10(1), 48- 52.Travnik, L., Pernus, F., & Erzen, I. (1995). Histochemical and morphometric characteristics of the normal human vastus medialis longus and vastus medialis obliquus muscles. Journal of anatomy, 187(Pt 2), 403.Trevino, M. A., & Herda, T. J. (2015). The effects of training status and muscle action on muscle activation of the vastus lateralis. Acta of Bioengineering and Biomechanics, 17(4), 107-114.Trevino, M. A., & Herda, T. J. (2016). The effects of chronic exercise training status on motor unit activation and deactivation control strategies. Journal of sports sciences, 34(3), 199-208.Vila-Chã, C., Falla, D., & Farina, D. (2010). Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. Journal of Applied Physiology, 109(5), 1455-1466.Vila-Cha, C., Falla, D., Correia, M. V., & Farina, D. (2012). Adjustments in motor unit properties during fatiguing contractions after training. Med Sci Sports Exerc, 44(4), 616-624Wakeling, J. M. (2009). Patterns of motor recruitment can be determined using surface EMG. Journal of Electromyography and Kinesiology, 19(2), 199-207.Xiao, H. U., Zhi-zhong, W. A. N. G., & Xiao-mei, R. E. N. (2005). Classification of surface EMG signal with fractal dimension. Journal of Zhejiang University Science B, 6(8), 844-848.Xu, L., Zhang, D., & Xian, X. (1997). Fractal dimensions of coals and cokes. Journal of colloid and interface science, 190(2), 357-359.THUMBNAILChaparro Gomez David - Portocarrero Ivan Felipe.pdf.jpgChaparro Gomez David - Portocarrero Ivan Felipe.pdf.jpgIM Thumbnailimage/jpeg12279https://repository.usta.edu.co/bitstream/11634/4075/3/Chaparro%20Gomez%20David%20-%20Portocarrero%20Ivan%20Felipe.pdf.jpg54998f6c9f1045d6e956651e16558a81MD53open access2017davidchaparro.pdf.jpg2017davidchaparro.pdf.jpgIM Thumbnailimage/jpeg8123https://repository.usta.edu.co/bitstream/11634/4075/5/2017davidchaparro.pdf.jpgf6a4c54e5e9c873b1bd37c5efad6aa7eMD55open access2017cartadefacultad.pdf.jpg2017cartadefacultad.pdf.jpgIM Thumbnailimage/jpeg5290https://repository.usta.edu.co/bitstream/11634/4075/9/2017cartadefacultad.pdf.jpgc164d1d2d0b9006905eeffd0b285a6eaMD59open access2017cartadederechosdeautor.pdf.jpg2017cartadederechosdeautor.pdf.jpgIM Thumbnailimage/jpeg7417https://repository.usta.edu.co/bitstream/11634/4075/10/2017cartadederechosdeautor.pdf.jpg2b24a830357f73d3ad9a59313f19f496MD510open accessORIGINAL2017davidchaparro.pdf2017davidchaparro.pdfapplication/pdf607357https://repository.usta.edu.co/bitstream/11634/4075/4/2017davidchaparro.pdf11e20fb0e2f802421d393975ca3ca530MD54open access2017cartadefacultad.pdf2017cartadefacultad.pdfapplication/pdf41623https://repository.usta.edu.co/bitstream/11634/4075/6/2017cartadefacultad.pdf694620e0431b74c4d101e2dd59e0f0abMD56metadata only access2017cartadederechosdeautor.pdf2017cartadederechosdeautor.pdfapplication/pdf79787https://repository.usta.edu.co/bitstream/11634/4075/7/2017cartadederechosdeautor.pdf6b29e9f68758db3994d37a2799f990a8MD57metadata only access2017cartadefacultad.pdf2017cartadefacultad.pdfapplication/pdf22216https://repository.usta.edu.co/bitstream/11634/4075/8/2017cartadefacultad.pdf18b526610aa7cab4c61af65e18e96bc9MD58metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.usta.edu.co/bitstream/11634/4075/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open access11634/4075oai:repository.usta.edu.co:11634/40752023-07-11 03:03:03.17open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |