Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa

Actualmente, el acetaminofén (ACE) es el analgésico más utilizado en la prevención, diagnóstico y tratamiento de enfermedades en humanos y animales, que finalmente se dispone en el agua al ser excretado en la orina y heces fecales y que finalmente llegan a las plantas de aguas residuales (PTARs) las...

Full description

Autores:
Quintero, Claudia Sofía
Tipo de recurso:
Masters Thesis
Fecha de publicación:
2020
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/21502
Acceso en línea:
http://hdl.handle.net/11634/21502
Palabra clave:
Acetaminophen
Waste water treatment
HPLC
Allium Cepa test
Effective Concentration
Mosquitos-control
Salud pública
Epidemiología
Agentes antibacteriales
Acetaminofén
Planta de Aguas Residuales
HPLC
concentración efectiva
Método Allium Cepa
Rights
openAccess
License
CC0 1.0 Universal
id SANTTOMAS2_a814c355d93939bc1a6a4b0417a49a60
oai_identifier_str oai:repository.usta.edu.co:11634/21502
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa
title Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa
spellingShingle Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa
Acetaminophen
Waste water treatment
HPLC
Allium Cepa test
Effective Concentration
Mosquitos-control
Salud pública
Epidemiología
Agentes antibacteriales
Acetaminofén
Planta de Aguas Residuales
HPLC
concentración efectiva
Método Allium Cepa
title_short Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa
title_full Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa
title_fullStr Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa
title_full_unstemmed Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa
title_sort Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium Cepa
dc.creator.fl_str_mv Quintero, Claudia Sofía
dc.contributor.advisor.spa.fl_str_mv Cerón, Alexandra
Cervantes Díaz, Martha
dc.contributor.author.spa.fl_str_mv Quintero, Claudia Sofía
dc.subject.keyword.spa.fl_str_mv Acetaminophen
Waste water treatment
HPLC
Allium Cepa test
Effective Concentration
topic Acetaminophen
Waste water treatment
HPLC
Allium Cepa test
Effective Concentration
Mosquitos-control
Salud pública
Epidemiología
Agentes antibacteriales
Acetaminofén
Planta de Aguas Residuales
HPLC
concentración efectiva
Método Allium Cepa
dc.subject.lemb.spa.fl_str_mv Mosquitos-control
Salud pública
Epidemiología
Agentes antibacteriales
dc.subject.proposal.spa.fl_str_mv Acetaminofén
Planta de Aguas Residuales
HPLC
concentración efectiva
Método Allium Cepa
description Actualmente, el acetaminofén (ACE) es el analgésico más utilizado en la prevención, diagnóstico y tratamiento de enfermedades en humanos y animales, que finalmente se dispone en el agua al ser excretado en la orina y heces fecales y que finalmente llegan a las plantas de aguas residuales (PTARs) las cuales han sido diseñadas y construidas principalmente para remover materia orgánica y en menor grado nutrientes y microorganismos. Por lo tanto, estimar la concentración la concentración del acetaminofén en la PTAR UPB, constituye un gran avance en la región, ya que la Universidad Pontificia Bolivariana, es la única institución académica que posee un sistema de tratamiento para sus aguas residuales. Adicionalmente, el efluente es vertido en un cuerpo de agua superficial (Quebrada Menzuly), por lo que es de importancia analizar la concentración efectiva del acetaminofén, con el fín de analizar con aproximación su influencia ecotoxicológica. En este estudio se evaluó la concentración del acetaminofén en la planta de tratamiento de aguas residuales de la Universidad Pontificia Bolivariana (PTAR – UPB) en las muestras procendentes del Afluente, Reactor de Flujo a Pistón y Efluente, junto con los lodos utilizando cromatografía de alta resolución (HPLC), adicionalmente se evaluó efecto tóxico empleando como bioindicador el Allium Cepa. Los resultados obtenidos de las matrices extraídas (extracción líquido-líquido) de los lodos y muestras líquidas que fueron analizadas por HPLC, arrojaron datos con un coeficiente de variación entre 0.3% en matrices líquidas y 10% en lodos, porcentajes de recuperación entre 92% -101% en matrices líquidas y y límite de detección de 20 ng/L. Las desviaciones entre los valores obtenidos son pequeños y se deben a la influencia de la matriz y pretratamiento de la muestra. Los resultados muestran concentraciones de acetaminofén entre 460 ng/L y 80 ng/L en el afluente y efluente, respectivamente. En los lodos del reactor de flujo a pistón se obtuvo una concentración 5.2 mg/Kg y en los lechos de secado de 3.4 mg/Kg. La remoción obtenida en la PTAR- UPB por degradación varía entre 88% y 91%, por sorción fue 12% y un 34.7% permaneció en el efluente final. De acuerdo con lo anterior, en la PTAR predominó el proceso de degradación del acetaminofén en la fase líquida y la adsorción en los lodos fue menor. La evaluación ecotoxicológica del acetaminofén (método Allium Cepa) evidenció que la concentración encontrada en el efluente final es menor que la concentración efectiva hallada en el patrón puro (45.34 ppm) y en la pastilla (139.5 ppm), indicando que el contenido de acetaminofén en el efluente no es potencialmente tóxico.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-02-07T22:29:03Z
dc.date.available.spa.fl_str_mv 2020-02-07T22:29:03Z
dc.date.issued.spa.fl_str_mv 2020-02-05
dc.type.local.spa.fl_str_mv Tesis de maestría
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_bdcc
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/masterThesis
format http://purl.org/coar/resource_type/c_bdcc
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Quintero Duque. C. S (2020) Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tóxico sobre el Allium Cepa [Tesis de maestría] Universidad Santo Tomás. Bucaramanga,Colombia.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/21502
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Quintero Duque. C. S (2020) Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tóxico sobre el Allium Cepa [Tesis de maestría] Universidad Santo Tomás. Bucaramanga,Colombia.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/21502
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acevedo-Barrios, R. L., Severiche-Sierra, C. A., & Jaimes Morales, J. D. C. (2017). Efectos tóxicos del paracetamol en la salud humana y el ambiente. Revista de Investigación Agraria y Ambiental, 8(1), 139–149. https://doi.org/10.22490/21456453.1845
Amaro, Rosa; Gómez, Luis; Vita, R. A. M. 2013. (2008). Guía de metodos cromatográficos (1st ed.; U. C. de Venezuela, Ed.). Retrieved from http://www.ciens.ucv.ve:8080/generador/sites/LIApregrado/archivos/Guia para cromatografia.pdf
Aminoshariae, A., & Khan, A. (2015, May 1). Acetaminophen: Old Drug, New Issues. Journal of Endodontics, Vol. 41, pp. 588–593. https://doi.org/10.1016/j.joen.2015.01.024
Arias Villamizar, Carmen Alicia;Escudero de Fonseca, A. (2011). Estudio preliminar de la presencia de compuestos emergentes en las aguas residuales del Hospital Universidad del Norte. In I. 978-607-607-015-4 (Ed.), IV Simposio iberoamericano de gestion y tratamiento de residuos (pp. 275–280). Mexico: Red iberoamericana en gestion y aprovechamiento de residuos.
Arikan, O. A., Rice, C., & Codling, E. (2008). Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination, 226(1–3), 121–133. https://doi.org/10.1016/j.desal.2007.01.238
Bahnick, D. A., & Markee, T. P. (1985). Occurrence and Transport of Organic Microcontaminants in the Duluth-Superior Harbor. Journal of Great Lakes Research, 11(2), 143–155. https://doi.org/10.1016/S0380-1330(85)71753-4
Bai, Y., Meng, W., Xu, J., Zhang, Y., & Guo, C. (2014). Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China. Environmental Science: Processes & Impacts, 16(3), 586. https://doi.org/10.1039/c3em00567d
Beale, D. J. (2017). Mislabeling of Study Design and Overstatement of Findings in “rechallenging Statin Therapy in Veterans with Statin-Induced Myopathy Post Vitamin D Replenishment.” Journal of Pharmacy Practice, 30(3), 385. https://doi.org/10.1177/0897190017699760
Bennin, F., & Rother, H.-A. (2015). “But it’s just paracetamol”: Caregivers’ ability to administer over-the-counter painkillers to children with the information provided. Patient Education and Counseling, 98(3), 331–337. https://doi.org/10.1016/J.PEC.2014.11.025
Bhat, S. A., Singh, J., Singh, K., & Vig, A. P. (2018). Genotoxicity monitoring of industrial wastes using plant bioassays and management through vermitechnology: A review. Agriculture and Natural Resources, 51(5), 325–337. https://doi.org/10.1016/j.anres.2017.11.002
Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., … Hernández, F. (2018). ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater.’ Science of the Total Environment, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088
Brouwer, E. ., Kofman, S., & Brinkman, U. A. T. (1995). Selected procedures for the monitoring of polar pesticides and related microcontaminants in aquatic samples. Journal of Chromatography A, 703(1–2), 167–190. https://doi.org/10.1016/0021-9673(94)01237-9
Carballa, M., Omil, F., Lema, J. M., Llompart, M., García-Jares, C., Rodríguez, I., … Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918–2926. https://doi.org/10.1016/j.watres.2004.03.029
Castro-Suarez, J. R., Pájaro-Payares, A. A., Espinosa-Fuentes, E., & Meza-Fuentes, E. (2017). Vibrational detection of acetaminophen in commercials tablets by ATR-FTIR spectroscopy and Chemometrics. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2017-July(July), 19–21. https://doi.org/10.18687/LACCEI2017.1.1.319
Ceron, Alexandra; Quintero, Claudia Sofía; León, M. (2017). Ocurrencia y destino de contaminantes farmacéuticos en una planta de tratamiento de aguas residuales institucionales. Bucaramanga.
Colombia., M. de A. y D. S. de. Resolución_631_de_2015_vertimientos. , Pub. L. No. 0631–2015, 1 (2015).
Corrêa Martins, M. N., Souza, V. V. de, & Silva Souza, T. da. (2016). Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere, 148, 481–486. https://doi.org/10.1016/j.chemosphere.2016.01.071
Daniela Morais Leme, M. A. M.-M. (2009). Allium cepa test in environmental monitoring: A review on its applicationNo Title. Mutation Research - Reviews in Mutation Research, 682, 71–81. Retrieved from www.elsevier.com/locate/reviewsmr
Daughton, C. G. (2016). Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. Science of the Total Environment, 562, 391–426. https://doi.org/10.1016/j.scitotenv.2016.03.109
De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947–1957. https://doi.org/10.1016/J.WATRES.2012.01.014
Desbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., & Laffont-Schwob, I. (2018). Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Science of the Total Environment, 639, 1334–1348. https://doi.org/10.1016/j.scitotenv.2018.04.351
Developments in Surface Contamination and Cleaning. (2013). In Developments in Surface Contamination and Cleaning. https://doi.org/10.1016/B978-1-4377-7879-3.00001-7
Díaz, M., Sacristán, M., & Borja, C. (2011). Curso de cromatografía de líquidos de alta resolución (HPLC): Prácticas de laboratorio y cuestiones teórico-prácticas. Parte II. Práctica de laboratorio: análisis cuantitativo básico. Reduca (Biología, 4(3), 33–47. Retrieved from http://revistareduca.es/index.php/biologia/article/viewFile/842/857
E.Clesceri, L. E. A. et A. (2015). Standard Methods of water and wastewater 23th edition. Ekpeghere, K. I., Lee, J.-W., Kim, H.-Y., Shin, S.-K., & Oh, J.-E. (2017). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168, 1211–1221. https://doi.org/10.1016/j.chemosphere.2016.10.077
Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes - Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere. https://doi.org/10.1016/j.chemosphere.2011.06.082
Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009 Flores, J. R., Salcedo, A. M. C., & Fernández, L. M. (2011). Rapid HPLC Method for Monitoring Relevant Residues of Pharmaceuticals Products in Environmental Samples. American Journal of Analytical Chemistry, 02(01), 18–26. https://doi.org/10.4236/ajac.2011.21003
Golar, S. K. (2011). Use and understanding of analgesics (painkillers) by Aston university students. Bioscience Horizons, 4(1), 71–78. https://doi.org/10.1093/biohorizons/hzr009
Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. T. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.04.060
Halling-Sorensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Liitzhofl, H. C. H., & Jorgensen, S. E. (1998). Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment-A Review. In Chemosphere (Vol. 36).
Informe final IEEE proyecto emergentes upb. (n.d.).
Jean, J., Perrodin, Y., Pivot, C., Trepo, D., Perraud, M., Droguet, J., … Locher, F. (2012). Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. Journal of Environmental Management, 103, 113–121. https://doi.org/10.1016/j.jenvman.2012.03.005
Jos, A., Repetto, G., Rios, J. C., Hazen, M. J., Molero, M. L., Del Peso, A., … Cameán, A. (2003). Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17(5–6), 525–532. https://doi.org/10.1016/S0887-2333(03)00119-X
Katsoyiannis., N. R. A. C. ;Arminda A. c; A. (2012). Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. Journal of Hazardous Materials, 1(Hazardous materials), 239–240. Retrieved from https://doi.org/10.1016/j.jhazmat.2012.05.040
Kirkland, D. (1998). Chromosome aberration testing in genetic toxicology - Past, present and future. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 404(1–2), 173–185. https://doi.org/10.1016/S0027-5107(98)00111-0
Krzeminski, P., Tomei, M. C., Karaolia, P., Langenhoff, A., Almeida, C. M. R., Felis, E., … Fatta-Kassinos, D. (2019a). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.08.130
Lai, W. W. P., Lin, Y. C., Tung, H. H., Lo, S. L., & Lin, A. Y. C. (2016). Occurrence of pharmaceuticals and perfluorinated compounds and evaluation of the availability of reclaimed water in Kinmen. Emerging Contaminants, 2(3), 135–144. https://doi.org/10.1016/j.emcon.2016.05.001
Lee, W. M. (2017). Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? Journal of Hepatology, 67(6), 1324–1331. https://doi.org/10.1016/j.jhep.2017.07.005
Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research - Reviews in Mutation Research. https://doi.org/10.1016/j.mrrev.2009.06.002
Li, S. W., & Lin, A. Y. C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190–196. https://doi.org/10.1016/j.chemosphere.2015.06.010
Li, Y., Zhu, G., Ng, W. J., & Tan, S. K. (2014a). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2013.09.018
Lin, A. Y., Lin, C. A., Tung, H. H., & Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1–3), 242–250. https://doi.org/10.1016/j.jhazmat.2010.07.017
Lin, Y. C., Panchangam, S. C., Liu, L. C., & Lin, A. Y. C. (2019). The design of a sunlight-focusing and solar tracking system: A potential application for the degradation of pharmaceuticals in water. Chemosphere, 214, 452–461. https://doi.org/10.1016/j.chemosphere.2018.09.114
MacLeod, S. L., & Wong, C. S. (2010). Loadings, trends, comparisons, and fate of achiral and chiral pharmaceuticals in wastewaters from urban tertiary and rural aerated lagoon treatments. Water Research. https://doi.org/10.1016/j.watres.2009.09.056
Matamoros, V., Nguyen, L. X., Arias, C. A., Salvadó, V., & Brix, H. (2012). Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere, 88(10), 1257–1264. https://doi.org/10.1016/j.chemosphere.2012.04.004
McClellan, K., & Halden, R. U. (2010). Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Research. https://doi.org/10.1016/j.watres.2009.12.032
Mompelat, S., Le Bot, B., & Thomas, O. (2009). Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35(5), 803–814. https://doi.org/10.1016/j.envint.2008.10.008
Moreno-Ortiz, V. C., Martínez-Núñez, J. M., Kravzov-Jinich, J., Pérez-Hernández, L. A., Moreno-Bonett, C., & Altagracia-Martínez, M. (2013). Los medicamentos de receta de origen sintético y su impacto en el medio ambiente. Revista Mexicana de Ciencias Farmaceuticas, 44(4), 17–29.
Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387(4), 1225–1234. https://doi.org/10.1007/s00216-006-1035-8
Nunes, B., Antunes, S. C., Santos, J., Martins, L., & Castro, B. B. (2014). Toxic potential of paracetamol to freshwater organisms: A headache to environmental regulators? Ecotoxicology and Environmental Safety, 107, 178–185. https://doi.org/10.1016/J.ECOENV.2014.05.027
Observamed, & Colombiana, F. M. (2013). Informe SISMED 2012: Cinco años del Sistema de Información de Precios SISMED (Vol. 23). Bogotá.
Ortiz de García, S., García-Encina, P. A., & Irusta-Mata, R. (2017). The potential ecotoxicological impact of pharmaceutical and personal care products on humans and freshwater, based on USEtoxTM characterization factors. A Spanish case study of toxicity impact scores. Science of the Total Environment, 609, 429–445. https://doi.org/10.1016/j.scitotenv.2017.07.148
Pal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. https://doi.org/10.1016/j.scitotenv.2010.09.026
Papageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of The Total Environment, 543, 547–569. https://doi.org/10.1016/J.SCITOTENV.2015.11.047
Peñate, I. Q., Javier, U., Haza, J., Wilhelm, A., & Delmas, H. (2009). Contaminación de las aguas con productos farmaceuticos. Estrategias para enfrentar la problemática. Revista CENIC : Ciencias Biológicas, 40(3), 173–179.
Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. (2009). Water Research, 43(2), 351–362. https://doi.org/10.1016/J.WATRES.2008.10.039
Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. https://doi.org/10.1016/J.WATRES.2014.08.053
Phong Vo, H. N., Le, G. K., Hong Nguyen, T. M., Bui, X. T., Nguyen, K. H., Rene, E. R., … Mohan, R. (2019). Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere, 236. https://doi.org/10.1016/j.chemosphere.2019.124391
Quesada, S., Tena, A., Guillén, D., Ginebreda, A., Vericat, D., Martínez, E., … Barceló, D. (2014). Dynamics of suspended sediment borne persistent organic pollutants in a large regulated Mediterranean river (Ebro, NE Spain). The Science of the Total Environment, 473–474, 381–390. https://doi.org/10.1016/j.scitotenv.2013.11.040
Rica, U. D. C., & López, P. (2015). Prueba De Disolución “in Vitro” De Tabletas De Acetaminofén, Cuantificando En Hplc Con Detector Electroquímico. InterSedes: Revista de Las Sedes Regionales, XVI(33), 26–37.
Richardson, S. D., & Ternes, T. A. (2011, June). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, Vol. 83, pp. 4616–4648. https://doi.org/10.1021/ac200915r
Rivera-Jaimes, J. A., Postigo, C., Melgoza-Alemán, R. M., Aceña, J., Barceló, D., & López de Alda, M. (2018). Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.09.134
Rodriguez-Nogales, J. M., Roura, E., & Contreras, E. (2005). Biosynthesis of ethyl butyrate using immobilized lipase: A statistical approach. Process Biochemistry, 40(1), 63–68. https://doi.org/10.1016/j.procbio.2003.11.049
Roose, P., & Brinkman, U. A. T. (2005). Monitoring organic microcontaminants in the marine environment: principles, programmes and progress. TrAC Trends in Analytical Chemistry, 24(11), 897–926. https://doi.org/10.1016/j.trac.2005.10.007
Sanderson, H., Brain, R. A., Johnson, D. J., Wilson, C. J., & Solomon, K. R. (2004). Toxicity classification and evaluation of four pharmaceuticals classes: Antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology, 203(1–3), 27–40. https://doi.org/10.1016/j.tox.2004.05.015
Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1–3), 45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100
Snyder, L. R. (1975). Practical liquid chromatography. Journal of Chromatography A, 104(2), 480–481. https://doi.org/10.1016/s0021-9673(00)91881-8
Sun, J., Luo, Q., Wang, D., & Wang, Z. (2015). Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 117, 132–140. https://doi.org/10.1016/j.ecoenv.2015.03.032
Tejada, C., Quiñones, E., & Peña, M. (2014). Contaminantes Emergentes En Aguas: Metabolitos De Fármacos. Universidad Militar Nueva Granada, 1–48. https://doi.org/10.18359/rfcb.341
Trejos, N., & Myriam, C. (2008). Validación de una metodología analítica por HPLC para la cuantificación de sulfadiazina de plata en crema Validation of an analytical methodology by HPLC for the quantification of silver sulfadiazine in cream. 37(2), 191–199.
Vancouver Island University, U. (2008). Acetaminophen ( Tylenol ) : A Pain to the Environment. Environmental Organic Chemistry, (12), 2008.
Verma, A., Nimana, B., Olateju, B., Rahman, M. M., Radpour, S., Canter, C., … Kumar, A. (2017). A techno-economic assessment of bitumen and synthetic crude oil transport (SCO) in the Canadian oil sands industry: Oil via rail or pipeline? Energy. https://doi.org/10.1016/j.energy.2017.02.057
Walters, E., McClellan, K., & Halden, R. U. (2010). Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Research, 44(20), 6011–6020. https://doi.org/10.1016/j.watres.2010.07.051
Xiao, H., Song, H., Xie, H., Huang, W., Tan, J., & Wu, J. (2013). Transformation of acetaminophen using manganese dioxide - mediated oxidative processes: Reaction rates and pathways. Journal of Hazardous Materials, 250–251, 138–146. https://doi.org/10.1016/j.jhazmat.2013.01.070
Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., … Sekizawa, J. (2009). Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43(2), 351–362. https://doi.org/10.1016/j.watres.2008.10.039
Zhang, Y., & Zhou, J. L. (2008). Occurrence and removal of endocrine disrupting chemicals in wastewater. In Chemosphere (Vol. 73). https://doi.org/10.1016/j.chemosphere.2008.06.001
Rojas Mantilla Astrid Dayana, T. D. (2016). Estudio de la presencia, ocurrencia y destino final, de un compuesto farmacéutico (acetaminofén) en una planta de tratamiento de agua residual instituacional educativa. Bucaramanga : Universidad Pontificia Bolivariana.No Title (Universidad Pontificia Bolivariana-Seccional Bucaramanga.). https://doi.org/NA
Wolff, M. S. (2006). Endocrine Disruptors: Challenges for Environmental Research in the 21st Century. Annals of the New York Academy of Sciences, 1076(1), 228–238. https://doi.org/10.1196/annals.1371.009
dc.rights.*.fl_str_mv CC0 1.0 Universal
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bucaramanga
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Maestría Ciencias y Tecnologías Ambientales
dc.publisher.faculty.spa.fl_str_mv Facultad de Química Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/21502/6/2020QuinteroClaudia.pdf
https://repository.usta.edu.co/bitstream/11634/21502/7/2020QuinteroClaudia1.pdf
https://repository.usta.edu.co/bitstream/11634/21502/8/2020QuinteroClaudia2.pdf
https://repository.usta.edu.co/bitstream/11634/21502/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/21502/10/2020QuinteroClaudia.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/21502/11/2020QuinteroClaudia1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/21502/12/2020QuinteroClaudia2.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/21502/9/license.txt
bitstream.checksum.fl_str_mv 8f09bced21848bf8cecc1a08bd6d18a0
da65d1abbe2ca3f384f5667ad3aa223a
c77ebf81c12204ff8906e196f1b66fcc
42fd4ad1e89814f5e4a476b409eb708c
d2ff75d7c00e3cddf961554dfe63ef06
5bd2a80aafabb9a553427dfdf232b185
048ee2e2ef07cf7dc7c7c0081bfdc63f
f6b8c5608fa6b2f649b2d63e10c5fa73
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026133110259712
spelling Cerón, AlexandraCervantes Díaz, MarthaQuintero, Claudia Sofía2020-02-07T22:29:03Z2020-02-07T22:29:03Z2020-02-05Quintero Duque. C. S (2020) Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tóxico sobre el Allium Cepa [Tesis de maestría] Universidad Santo Tomás. Bucaramanga,Colombia.http://hdl.handle.net/11634/21502reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coActualmente, el acetaminofén (ACE) es el analgésico más utilizado en la prevención, diagnóstico y tratamiento de enfermedades en humanos y animales, que finalmente se dispone en el agua al ser excretado en la orina y heces fecales y que finalmente llegan a las plantas de aguas residuales (PTARs) las cuales han sido diseñadas y construidas principalmente para remover materia orgánica y en menor grado nutrientes y microorganismos. Por lo tanto, estimar la concentración la concentración del acetaminofén en la PTAR UPB, constituye un gran avance en la región, ya que la Universidad Pontificia Bolivariana, es la única institución académica que posee un sistema de tratamiento para sus aguas residuales. Adicionalmente, el efluente es vertido en un cuerpo de agua superficial (Quebrada Menzuly), por lo que es de importancia analizar la concentración efectiva del acetaminofén, con el fín de analizar con aproximación su influencia ecotoxicológica. En este estudio se evaluó la concentración del acetaminofén en la planta de tratamiento de aguas residuales de la Universidad Pontificia Bolivariana (PTAR – UPB) en las muestras procendentes del Afluente, Reactor de Flujo a Pistón y Efluente, junto con los lodos utilizando cromatografía de alta resolución (HPLC), adicionalmente se evaluó efecto tóxico empleando como bioindicador el Allium Cepa. Los resultados obtenidos de las matrices extraídas (extracción líquido-líquido) de los lodos y muestras líquidas que fueron analizadas por HPLC, arrojaron datos con un coeficiente de variación entre 0.3% en matrices líquidas y 10% en lodos, porcentajes de recuperación entre 92% -101% en matrices líquidas y y límite de detección de 20 ng/L. Las desviaciones entre los valores obtenidos son pequeños y se deben a la influencia de la matriz y pretratamiento de la muestra. Los resultados muestran concentraciones de acetaminofén entre 460 ng/L y 80 ng/L en el afluente y efluente, respectivamente. En los lodos del reactor de flujo a pistón se obtuvo una concentración 5.2 mg/Kg y en los lechos de secado de 3.4 mg/Kg. La remoción obtenida en la PTAR- UPB por degradación varía entre 88% y 91%, por sorción fue 12% y un 34.7% permaneció en el efluente final. De acuerdo con lo anterior, en la PTAR predominó el proceso de degradación del acetaminofén en la fase líquida y la adsorción en los lodos fue menor. La evaluación ecotoxicológica del acetaminofén (método Allium Cepa) evidenció que la concentración encontrada en el efluente final es menor que la concentración efectiva hallada en el patrón puro (45.34 ppm) y en la pastilla (139.5 ppm), indicando que el contenido de acetaminofén en el efluente no es potencialmente tóxico.At the end of XX century, scientists have been worried about increase of acetaminophen (ACE)consumption, that increase its concentration and toxic effects, due to concentration in sewage and rivers, springs. Aditionally, its frequency of disposal in urine and stool make to acetaminophen increase its presence in sewage of waste wáter treatment plants whose desing is based on organic matter remotion and solids, otherwise microorganisms and other nutrients in low grade, This investigation takes into account two stages: First, to be know (ACE) concentration, its relevant results are related to new knowledge, because PTAR UPB just only treatment system build in academyc institution in Floridablanca-Santader. Aditionally, final effluent is pourted in a Menzuly spring, for that reason to know is very important to know ecotoxicological influence. The methodology based on High Performance Liquid Chromatography was used for the characterization of acetaminophen showed a precision with coefficient of variation between 0.3% -10%, recovery percentages between 92% -101%, detection limit of 20 ng /, the deviations between the low obtained values could be related to the influence of the matrix and pretreatment of the sample. The results showed acetaminophen concentrations between 460 ng / L and 80 ng / L in the tributary and effluent respectively. In the case of Reactor sludge, 5.2 mg / kg and Drying Beds of 3.4 mg / kg were obtained. The removal obtained in the plant by degradation varied between 88% and 91%, per 12% sore and 34.7% remain in the final effluent. Thus, drug removal processes are favored in the liquid phase and the solid phase adsorption phenomenon. The ecotoxicological evaluation of acetaminophen (Allium cepa method) threw values in the pure standard (45.34 ppm) and tablet (139.5 ppm), this indicates that the content of acetaminophen in the Effluent is not potentially toxic.Magister en Ciencias y Tecnologías Ambientaleshttp://www.ustabuca.edu.co/ustabmanga/presentacionMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ciencias y Tecnologías AmbientalesFacultad de Química AmbientalCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Evaluación de las concentraciones de acetaminofén presentes en la Planta de Tratamiento de Aguas Residuales de la Universidad Pontificia Bolivariana-Seccional Bucaramanga y su efecto tòxico sobre el Allium CepaAcetaminophenWaste water treatmentHPLCAllium Cepa testEffective ConcentrationMosquitos-controlSalud públicaEpidemiologíaAgentes antibacterialesAcetaminofénPlanta de Aguas ResidualesHPLCconcentración efectivaMétodo Allium CepaTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisCRAI-USTA BucaramangaAcevedo-Barrios, R. L., Severiche-Sierra, C. A., & Jaimes Morales, J. D. C. (2017). Efectos tóxicos del paracetamol en la salud humana y el ambiente. Revista de Investigación Agraria y Ambiental, 8(1), 139–149. https://doi.org/10.22490/21456453.1845Amaro, Rosa; Gómez, Luis; Vita, R. A. M. 2013. (2008). Guía de metodos cromatográficos (1st ed.; U. C. de Venezuela, Ed.). Retrieved from http://www.ciens.ucv.ve:8080/generador/sites/LIApregrado/archivos/Guia para cromatografia.pdfAminoshariae, A., & Khan, A. (2015, May 1). Acetaminophen: Old Drug, New Issues. Journal of Endodontics, Vol. 41, pp. 588–593. https://doi.org/10.1016/j.joen.2015.01.024Arias Villamizar, Carmen Alicia;Escudero de Fonseca, A. (2011). Estudio preliminar de la presencia de compuestos emergentes en las aguas residuales del Hospital Universidad del Norte. In I. 978-607-607-015-4 (Ed.), IV Simposio iberoamericano de gestion y tratamiento de residuos (pp. 275–280). Mexico: Red iberoamericana en gestion y aprovechamiento de residuos.Arikan, O. A., Rice, C., & Codling, E. (2008). Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination, 226(1–3), 121–133. https://doi.org/10.1016/j.desal.2007.01.238Bahnick, D. A., & Markee, T. P. (1985). Occurrence and Transport of Organic Microcontaminants in the Duluth-Superior Harbor. Journal of Great Lakes Research, 11(2), 143–155. https://doi.org/10.1016/S0380-1330(85)71753-4Bai, Y., Meng, W., Xu, J., Zhang, Y., & Guo, C. (2014). Occurrence, distribution and bioaccumulation of antibiotics in the Liao River Basin in China. Environmental Science: Processes & Impacts, 16(3), 586. https://doi.org/10.1039/c3em00567dBeale, D. J. (2017). Mislabeling of Study Design and Overstatement of Findings in “rechallenging Statin Therapy in Veterans with Statin-Induced Myopathy Post Vitamin D Replenishment.” Journal of Pharmacy Practice, 30(3), 385. https://doi.org/10.1177/0897190017699760Bennin, F., & Rother, H.-A. (2015). “But it’s just paracetamol”: Caregivers’ ability to administer over-the-counter painkillers to children with the information provided. Patient Education and Counseling, 98(3), 331–337. https://doi.org/10.1016/J.PEC.2014.11.025Bhat, S. A., Singh, J., Singh, K., & Vig, A. P. (2018). Genotoxicity monitoring of industrial wastes using plant bioassays and management through vermitechnology: A review. Agriculture and Natural Resources, 51(5), 325–337. https://doi.org/10.1016/j.anres.2017.11.002Botero-Coy, A. M., Martínez-Pachón, D., Boix, C., Rincón, R. J., Castillo, N., Arias-Marín, L. P., … Hernández, F. (2018). ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater.’ Science of the Total Environment, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088Brouwer, E. ., Kofman, S., & Brinkman, U. A. T. (1995). Selected procedures for the monitoring of polar pesticides and related microcontaminants in aquatic samples. Journal of Chromatography A, 703(1–2), 167–190. https://doi.org/10.1016/0021-9673(94)01237-9Carballa, M., Omil, F., Lema, J. M., Llompart, M., García-Jares, C., Rodríguez, I., … Ternes, T. (2004). Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research, 38(12), 2918–2926. https://doi.org/10.1016/j.watres.2004.03.029Castro-Suarez, J. R., Pájaro-Payares, A. A., Espinosa-Fuentes, E., & Meza-Fuentes, E. (2017). Vibrational detection of acetaminophen in commercials tablets by ATR-FTIR spectroscopy and Chemometrics. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, 2017-July(July), 19–21. https://doi.org/10.18687/LACCEI2017.1.1.319Ceron, Alexandra; Quintero, Claudia Sofía; León, M. (2017). Ocurrencia y destino de contaminantes farmacéuticos en una planta de tratamiento de aguas residuales institucionales. Bucaramanga.Colombia., M. de A. y D. S. de. Resolución_631_de_2015_vertimientos. , Pub. L. No. 0631–2015, 1 (2015).Corrêa Martins, M. N., Souza, V. V. de, & Silva Souza, T. da. (2016). Cytotoxic, genotoxic and mutagenic effects of sewage sludge on Allium cepa. Chemosphere, 148, 481–486. https://doi.org/10.1016/j.chemosphere.2016.01.071Daniela Morais Leme, M. A. M.-M. (2009). Allium cepa test in environmental monitoring: A review on its applicationNo Title. Mutation Research - Reviews in Mutation Research, 682, 71–81. Retrieved from www.elsevier.com/locate/reviewsmrDaughton, C. G. (2016). Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis. Science of the Total Environment, 562, 391–426. https://doi.org/10.1016/j.scitotenv.2016.03.109De la Cruz, N., Giménez, J., Esplugas, S., Grandjean, D., de Alencastro, L. F., & Pulgarín, C. (2012). Degradation of 32 emergent contaminants by UV and neutral photo-fenton in domestic wastewater effluent previously treated by activated sludge. Water Research, 46(6), 1947–1957. https://doi.org/10.1016/J.WATRES.2012.01.014Desbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., & Laffont-Schwob, I. (2018). Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Science of the Total Environment, 639, 1334–1348. https://doi.org/10.1016/j.scitotenv.2018.04.351Developments in Surface Contamination and Cleaning. (2013). In Developments in Surface Contamination and Cleaning. https://doi.org/10.1016/B978-1-4377-7879-3.00001-7Díaz, M., Sacristán, M., & Borja, C. (2011). Curso de cromatografía de líquidos de alta resolución (HPLC): Prácticas de laboratorio y cuestiones teórico-prácticas. Parte II. Práctica de laboratorio: análisis cuantitativo básico. Reduca (Biología, 4(3), 33–47. Retrieved from http://revistareduca.es/index.php/biologia/article/viewFile/842/857E.Clesceri, L. E. A. et A. (2015). Standard Methods of water and wastewater 23th edition. Ekpeghere, K. I., Lee, J.-W., Kim, H.-Y., Shin, S.-K., & Oh, J.-E. (2017). Determination and characterization of pharmaceuticals in sludge from municipal and livestock wastewater treatment plants. Chemosphere, 168, 1211–1221. https://doi.org/10.1016/j.chemosphere.2016.10.077Fatta-Kassinos, D., Vasquez, M. I., & Kümmerer, K. (2011). Transformation products of pharmaceuticals in surface waters and wastewater formed during photolysis and advanced oxidation processes - Degradation, elucidation of byproducts and assessment of their biological potency. Chemosphere. https://doi.org/10.1016/j.chemosphere.2011.06.082Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009 Flores, J. R., Salcedo, A. M. C., & Fernández, L. M. (2011). Rapid HPLC Method for Monitoring Relevant Residues of Pharmaceuticals Products in Environmental Samples. American Journal of Analytical Chemistry, 02(01), 18–26. https://doi.org/10.4236/ajac.2011.21003Golar, S. K. (2011). Use and understanding of analgesics (painkillers) by Aston university students. Bioscience Horizons, 4(1), 71–78. https://doi.org/10.1093/biohorizons/hzr009Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. T. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution. https://doi.org/10.1016/j.envpol.2017.04.060Halling-Sorensen, B., Nielsen, S. N., Lanzky, P. F., Ingerslev, F., Liitzhofl, H. C. H., & Jorgensen, S. E. (1998). Occurrence, Fate and Effects of Pharmaceutical Substances in the Environment-A Review. In Chemosphere (Vol. 36).Informe final IEEE proyecto emergentes upb. (n.d.).Jean, J., Perrodin, Y., Pivot, C., Trepo, D., Perraud, M., Droguet, J., … Locher, F. (2012). Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. Journal of Environmental Management, 103, 113–121. https://doi.org/10.1016/j.jenvman.2012.03.005Jos, A., Repetto, G., Rios, J. C., Hazen, M. J., Molero, M. L., Del Peso, A., … Cameán, A. (2003). Ecotoxicological evaluation of carbamazepine using six different model systems with eighteen endpoints. Toxicology in Vitro, 17(5–6), 525–532. https://doi.org/10.1016/S0887-2333(03)00119-XKatsoyiannis., N. R. A. C. ;Arminda A. c; A. (2012). Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. Journal of Hazardous Materials, 1(Hazardous materials), 239–240. Retrieved from https://doi.org/10.1016/j.jhazmat.2012.05.040Kirkland, D. (1998). Chromosome aberration testing in genetic toxicology - Past, present and future. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 404(1–2), 173–185. https://doi.org/10.1016/S0027-5107(98)00111-0Krzeminski, P., Tomei, M. C., Karaolia, P., Langenhoff, A., Almeida, C. M. R., Felis, E., … Fatta-Kassinos, D. (2019a). Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.08.130Lai, W. W. P., Lin, Y. C., Tung, H. H., Lo, S. L., & Lin, A. Y. C. (2016). Occurrence of pharmaceuticals and perfluorinated compounds and evaluation of the availability of reclaimed water in Kinmen. Emerging Contaminants, 2(3), 135–144. https://doi.org/10.1016/j.emcon.2016.05.001Lee, W. M. (2017). Acetaminophen (APAP) hepatotoxicity—Isn’t it time for APAP to go away? Journal of Hepatology, 67(6), 1324–1331. https://doi.org/10.1016/j.jhep.2017.07.005Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research - Reviews in Mutation Research. https://doi.org/10.1016/j.mrrev.2009.06.002Li, S. W., & Lin, A. Y. C. (2015). Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere, 139, 190–196. https://doi.org/10.1016/j.chemosphere.2015.06.010Li, Y., Zhu, G., Ng, W. J., & Tan, S. K. (2014a). A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: Design, performance and mechanism. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2013.09.018Lin, A. Y., Lin, C. A., Tung, H. H., & Chary, N. S. (2010). Potential for biodegradation and sorption of acetaminophen, caffeine, propranolol and acebutolol in lab-scale aqueous environments. Journal of Hazardous Materials, 183(1–3), 242–250. https://doi.org/10.1016/j.jhazmat.2010.07.017Lin, Y. C., Panchangam, S. C., Liu, L. C., & Lin, A. Y. C. (2019). The design of a sunlight-focusing and solar tracking system: A potential application for the degradation of pharmaceuticals in water. Chemosphere, 214, 452–461. https://doi.org/10.1016/j.chemosphere.2018.09.114MacLeod, S. L., & Wong, C. S. (2010). Loadings, trends, comparisons, and fate of achiral and chiral pharmaceuticals in wastewaters from urban tertiary and rural aerated lagoon treatments. Water Research. https://doi.org/10.1016/j.watres.2009.09.056Matamoros, V., Nguyen, L. X., Arias, C. A., Salvadó, V., & Brix, H. (2012). Evaluation of aquatic plants for removing polar microcontaminants: a microcosm experiment. Chemosphere, 88(10), 1257–1264. https://doi.org/10.1016/j.chemosphere.2012.04.004McClellan, K., & Halden, R. U. (2010). Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Research. https://doi.org/10.1016/j.watres.2009.12.032Mompelat, S., Le Bot, B., & Thomas, O. (2009). Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35(5), 803–814. https://doi.org/10.1016/j.envint.2008.10.008Moreno-Ortiz, V. C., Martínez-Núñez, J. M., Kravzov-Jinich, J., Pérez-Hernández, L. A., Moreno-Bonett, C., & Altagracia-Martínez, M. (2013). Los medicamentos de receta de origen sintético y su impacto en el medio ambiente. Revista Mexicana de Ciencias Farmaceuticas, 44(4), 17–29.Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387(4), 1225–1234. https://doi.org/10.1007/s00216-006-1035-8Nunes, B., Antunes, S. C., Santos, J., Martins, L., & Castro, B. B. (2014). Toxic potential of paracetamol to freshwater organisms: A headache to environmental regulators? Ecotoxicology and Environmental Safety, 107, 178–185. https://doi.org/10.1016/J.ECOENV.2014.05.027Observamed, & Colombiana, F. M. (2013). Informe SISMED 2012: Cinco años del Sistema de Información de Precios SISMED (Vol. 23). Bogotá.Ortiz de García, S., García-Encina, P. A., & Irusta-Mata, R. (2017). The potential ecotoxicological impact of pharmaceutical and personal care products on humans and freshwater, based on USEtoxTM characterization factors. A Spanish case study of toxicity impact scores. Science of the Total Environment, 609, 429–445. https://doi.org/10.1016/j.scitotenv.2017.07.148Pal, A., Gin, K. Y. H., Lin, A. Y. C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. https://doi.org/10.1016/j.scitotenv.2010.09.026Papageorgiou, M., Kosma, C., & Lambropoulou, D. (2016). Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Science of The Total Environment, 543, 547–569. https://doi.org/10.1016/J.SCITOTENV.2015.11.047Peñate, I. Q., Javier, U., Haza, J., Wilhelm, A., & Delmas, H. (2009). Contaminación de las aguas con productos farmaceuticos. Estrategias para enfrentar la problemática. Revista CENIC : Ciencias Biológicas, 40(3), 173–179.Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. (2009). Water Research, 43(2), 351–362. https://doi.org/10.1016/J.WATRES.2008.10.039Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27. https://doi.org/10.1016/J.WATRES.2014.08.053Phong Vo, H. N., Le, G. K., Hong Nguyen, T. M., Bui, X. T., Nguyen, K. H., Rene, E. R., … Mohan, R. (2019). Acetaminophen micropollutant: Historical and current occurrences, toxicity, removal strategies and transformation pathways in different environments. Chemosphere, 236. https://doi.org/10.1016/j.chemosphere.2019.124391Quesada, S., Tena, A., Guillén, D., Ginebreda, A., Vericat, D., Martínez, E., … Barceló, D. (2014). Dynamics of suspended sediment borne persistent organic pollutants in a large regulated Mediterranean river (Ebro, NE Spain). The Science of the Total Environment, 473–474, 381–390. https://doi.org/10.1016/j.scitotenv.2013.11.040Rica, U. D. C., & López, P. (2015). Prueba De Disolución “in Vitro” De Tabletas De Acetaminofén, Cuantificando En Hplc Con Detector Electroquímico. InterSedes: Revista de Las Sedes Regionales, XVI(33), 26–37.Richardson, S. D., & Ternes, T. A. (2011, June). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, Vol. 83, pp. 4616–4648. https://doi.org/10.1021/ac200915rRivera-Jaimes, J. A., Postigo, C., Melgoza-Alemán, R. M., Aceña, J., Barceló, D., & López de Alda, M. (2018). Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.09.134Rodriguez-Nogales, J. M., Roura, E., & Contreras, E. (2005). Biosynthesis of ethyl butyrate using immobilized lipase: A statistical approach. Process Biochemistry, 40(1), 63–68. https://doi.org/10.1016/j.procbio.2003.11.049Roose, P., & Brinkman, U. A. T. (2005). Monitoring organic microcontaminants in the marine environment: principles, programmes and progress. TrAC Trends in Analytical Chemistry, 24(11), 897–926. https://doi.org/10.1016/j.trac.2005.10.007Sanderson, H., Brain, R. A., Johnson, D. J., Wilson, C. J., & Solomon, K. R. (2004). Toxicity classification and evaluation of four pharmaceuticals classes: Antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicology, 203(1–3), 27–40. https://doi.org/10.1016/j.tox.2004.05.015Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175(1–3), 45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100Snyder, L. R. (1975). Practical liquid chromatography. Journal of Chromatography A, 104(2), 480–481. https://doi.org/10.1016/s0021-9673(00)91881-8Sun, J., Luo, Q., Wang, D., & Wang, Z. (2015). Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety, 117, 132–140. https://doi.org/10.1016/j.ecoenv.2015.03.032Tejada, C., Quiñones, E., & Peña, M. (2014). Contaminantes Emergentes En Aguas: Metabolitos De Fármacos. Universidad Militar Nueva Granada, 1–48. https://doi.org/10.18359/rfcb.341Trejos, N., & Myriam, C. (2008). Validación de una metodología analítica por HPLC para la cuantificación de sulfadiazina de plata en crema Validation of an analytical methodology by HPLC for the quantification of silver sulfadiazine in cream. 37(2), 191–199.Vancouver Island University, U. (2008). Acetaminophen ( Tylenol ) : A Pain to the Environment. Environmental Organic Chemistry, (12), 2008.Verma, A., Nimana, B., Olateju, B., Rahman, M. M., Radpour, S., Canter, C., … Kumar, A. (2017). A techno-economic assessment of bitumen and synthetic crude oil transport (SCO) in the Canadian oil sands industry: Oil via rail or pipeline? Energy. https://doi.org/10.1016/j.energy.2017.02.057Walters, E., McClellan, K., & Halden, R. U. (2010). Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Research, 44(20), 6011–6020. https://doi.org/10.1016/j.watres.2010.07.051Xiao, H., Song, H., Xie, H., Huang, W., Tan, J., & Wu, J. (2013). Transformation of acetaminophen using manganese dioxide - mediated oxidative processes: Reaction rates and pathways. Journal of Hazardous Materials, 250–251, 138–146. https://doi.org/10.1016/j.jhazmat.2013.01.070Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., … Sekizawa, J. (2009). Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: laboratory photolysis, biodegradation, and sorption experiments. Water Research, 43(2), 351–362. https://doi.org/10.1016/j.watres.2008.10.039Zhang, Y., & Zhou, J. L. (2008). Occurrence and removal of endocrine disrupting chemicals in wastewater. In Chemosphere (Vol. 73). https://doi.org/10.1016/j.chemosphere.2008.06.001Rojas Mantilla Astrid Dayana, T. D. (2016). Estudio de la presencia, ocurrencia y destino final, de un compuesto farmacéutico (acetaminofén) en una planta de tratamiento de agua residual instituacional educativa. Bucaramanga : Universidad Pontificia Bolivariana.No Title (Universidad Pontificia Bolivariana-Seccional Bucaramanga.). https://doi.org/NAWolff, M. S. (2006). Endocrine Disruptors: Challenges for Environmental Research in the 21st Century. Annals of the New York Academy of Sciences, 1076(1), 228–238. https://doi.org/10.1196/annals.1371.009ORIGINAL2020QuinteroClaudia.pdf2020QuinteroClaudia.pdfTrabajo de gradoapplication/pdf2599379https://repository.usta.edu.co/bitstream/11634/21502/6/2020QuinteroClaudia.pdf8f09bced21848bf8cecc1a08bd6d18a0MD56open access2020QuinteroClaudia1.pdf2020QuinteroClaudia1.pdfCarta de aprobaciónapplication/pdf193434https://repository.usta.edu.co/bitstream/11634/21502/7/2020QuinteroClaudia1.pdfda65d1abbe2ca3f384f5667ad3aa223aMD57metadata only access2020QuinteroClaudia2.pdf2020QuinteroClaudia2.pdfCarta de autorización.application/pdf610883https://repository.usta.edu.co/bitstream/11634/21502/8/2020QuinteroClaudia2.pdfc77ebf81c12204ff8906e196f1b66fccMD58metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repository.usta.edu.co/bitstream/11634/21502/4/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD54open accessTHUMBNAIL2020QuinteroClaudia.pdf.jpg2020QuinteroClaudia.pdf.jpgIM Thumbnailimage/jpeg6523https://repository.usta.edu.co/bitstream/11634/21502/10/2020QuinteroClaudia.pdf.jpgd2ff75d7c00e3cddf961554dfe63ef06MD510open access2020QuinteroClaudia1.pdf.jpg2020QuinteroClaudia1.pdf.jpgIM Thumbnailimage/jpeg6529https://repository.usta.edu.co/bitstream/11634/21502/11/2020QuinteroClaudia1.pdf.jpg5bd2a80aafabb9a553427dfdf232b185MD511open access2020QuinteroClaudia2.pdf.jpg2020QuinteroClaudia2.pdf.jpgIM Thumbnailimage/jpeg9719https://repository.usta.edu.co/bitstream/11634/21502/12/2020QuinteroClaudia2.pdf.jpg048ee2e2ef07cf7dc7c7c0081bfdc63fMD512open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/21502/9/license.txtf6b8c5608fa6b2f649b2d63e10c5fa73MD59open access11634/21502oai:repository.usta.edu.co:11634/215022022-10-10 16:22:19.75open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBIGRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhIGluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uIGZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlIHRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZSBncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEgTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zIG1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbiBpcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K