Soft-switching design for DC-DC Converters

En este documento se presenta una realidad que cada día va tomando más y más fuerza en la seguridad ambiental y como resultado un crecimiento exponencial en el mercado. Cuando las personas hablan de automóviles y movilidad, están hablando de una herramienta y una necesidad, por lo tanto algo que tod...

Full description

Autores:
Franco Rivera, Jorge Hernan
Arias Ortiz, Lina Marcela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/45655
Acceso en línea:
http://hdl.handle.net/11634/45655
Palabra clave:
DC-DC
converter
power
efficiency
energy
Ingenieria Electrónica
Energia
Potencia
potencia
eficiencia
convertidores
DC-DC
energia
Rights
openAccess
License
Atribución-NoComercial 2.5 Colombia
id SANTTOMAS2_a7b3a8457e1a01a6f3f21943857bd26d
oai_identifier_str oai:repository.usta.edu.co:11634/45655
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Soft-switching design for DC-DC Converters
title Soft-switching design for DC-DC Converters
spellingShingle Soft-switching design for DC-DC Converters
DC-DC
converter
power
efficiency
energy
Ingenieria Electrónica
Energia
Potencia
potencia
eficiencia
convertidores
DC-DC
energia
title_short Soft-switching design for DC-DC Converters
title_full Soft-switching design for DC-DC Converters
title_fullStr Soft-switching design for DC-DC Converters
title_full_unstemmed Soft-switching design for DC-DC Converters
title_sort Soft-switching design for DC-DC Converters
dc.creator.fl_str_mv Franco Rivera, Jorge Hernan
Arias Ortiz, Lina Marcela
dc.contributor.advisor.none.fl_str_mv Forero García, Edwin Francisco
dc.contributor.author.none.fl_str_mv Franco Rivera, Jorge Hernan
Arias Ortiz, Lina Marcela
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/ 0000-0002-3818-7793
https://orcid.org/ 0000-0003-2579-2844
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?hl=es&user=pv86djIAAAAJ
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000761834
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomas
dc.subject.keyword.spa.fl_str_mv DC-DC
converter
power
efficiency
energy
topic DC-DC
converter
power
efficiency
energy
Ingenieria Electrónica
Energia
Potencia
potencia
eficiencia
convertidores
DC-DC
energia
dc.subject.lemb.spa.fl_str_mv Ingenieria Electrónica
Energia
Potencia
dc.subject.proposal.spa.fl_str_mv potencia
eficiencia
convertidores
DC-DC
energia
description En este documento se presenta una realidad que cada día va tomando más y más fuerza en la seguridad ambiental y como resultado un crecimiento exponencial en el mercado. Cuando las personas hablan de automóviles y movilidad, están hablando de una herramienta y una necesidad, por lo tanto algo que todos en la población siempre buscarán. Pero ha habido una serie de problemas en el equilibrio ambiental con la existencia de automóviles, pasaron los años y con ellos, la contaminación constante, y no solo la producen los autos, pero esta es una de las máquinas más utilizadas en el mundo, y tiene un ciclo de consumo de energía que no es amigable con un planeta saludable. Los recursos para el funcionamiento del automóvil, provienen en su mayoría de la tierra, la producción de gas y gasolina para impulsar nuestros autos, aviones, bicicletas y una enorme cantidad de máquinas, es un proceso que nos cuesta salud y calidad de vida. Genera más exposición de gases nocivos para la atmósfera, contaminación del aire que respiramos y muchas otros problemáticas. Buscando ayudar con una recuperación, la existencia de vehículos eléctricos (EV) es un paso que podría ofrecer a las personas la opción de continuar con su vida normalmente, teniendo menos impacto para la contaminación del medio ambiente, según la EPA, un coche de gasolina normal produce 8.887 gramos de CO2 por galón, y uno diésel produce 10.180 gramos de CO2 por galón, en comparación con los EV que no producen estas emisiones del tubo de escape, o la celda de combustible que solo produce vapor de agua. Sin embargo, la producción, la fabricación y el consumo de energía para los vehículos eléctricos está atrasada en comparación con los años de desarrollo que las máquinas de automóviles de combustión han tenido, en un ciclo de vida útil un carro de combustión interna quemará alrededor de 17.000 litros de gasolina o 13.500 de diésel, en cambio para los EV’s el desperdicio en metales rondará los 160 kilogramos, pero al reciclar los residuos se reducirán a alrededor de 30 kilogramos. Para eso, nosotros presentamos un análisis de pequeños pasos y ajustes en la conversión de energía, tratando de mejorar la eficiencia, el ciclo de vida de los componentes y al final, los beneficios que nos podría traer como población.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-07T20:01:36Z
dc.date.available.none.fl_str_mv 2022-07-07T20:01:36Z
dc.date.issued.none.fl_str_mv 2022-07-05
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Franco Rivera, J. H. y Arias Ortiz, L. M. (2022, Julio). Soft-switching design for DC-DC Converters. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/45655
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Franco Rivera, J. H. y Arias Ortiz, L. M. (2022, Julio). Soft-switching design for DC-DC Converters. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/45655
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Rashid, M. (2006). Power Electronics Handbook : Devices, Circuits, and Applications. Elsevier Science & Technology.
Ioinovici, A., & Chung, H. (2013). Power Electronics and Energy Conversion Systems : Fundamentals and Hard-Switching Converters. John Wiley & Sons, Incorporated.
Abu-Rub, H., Malinowski, M., & Al-Haddad, K. (2014). Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications. John Wiley & Sons, Incorporated.
Liu, W. (2017). Hybrid Electric Vehicle System Modeling and Control. John Wiley & Sons, Incorporated.
Larminie, J., & Lowry, J. (2012). Electric Vehicle Technology Explained. John Wiley & Sons, Incorporated.
Chau, K. T. (2015). Electric Vehicle Machines and Drives : Design, Analysis and Application. John Wiley & Sons, Incorporated.
Hughes, A., Drury, W., & Drury, B. (2005). Electric Motors and Drives : Fundamentals, Types, and Applications. Elsevier Science & Technology.
Khajepour, A., Fallah, M. S., & Goodarzi, A. (2014). Electric and Hybrid Vehicles : Technologies, Modeling and Control - a Mechatronic Approach. John Wiley & Sons, Incorporated.
Zhang, B., & Wang, X. (2015). Chaos Analysis and Chaotic EMI Suppression of DC-DC Converters. John Wiley & Sons, Incorporated.
Beretta, J. (2010). Automotive Electricity : Electric Drive. John Wiley & Sons, Incorporated.
Mohan, N. (2014). Advanced Electric Drives : Analysis, Control, and Modeling Using MATLAB / Simulink. John Wiley & Sons, Incorporated.
Mohan, N., Undeland, T. M., & Robbins, W. P. (1995). Power Electronics Converters, Applications and Design. John Wiley & Sons, Incorporated.
Electric and Hybrid Vehicles : Power Sources, Models, Sustainability, Infrastructure and the Market. (2010). Elsevier.
Sperling, D. (1994). Future Drive : Electric Vehicles and Sustainable Transportation. Island Press.
Perdontis, M. R. (2011). Battery Manufacturing and Electric and Hybrid Vehicles. Nova Science Publishers, Incorporated.
Raines, G. B. (2009). Electric Vehicles : Technology, Research and Development. Nova Science Publishers, Incorporated.
Sales, F. J. G., Chilet, S. S., & Grau, S. O. (2011). Convertidores electrónicos: energía solar fotovoltaica, aplicaciones y diseño. Editorial de la Universidad Politécnica de Valencia.
Batarseh, I. (2004). Power Electronic Circuits. John Wiley & Sons, Incorporated.
Dhameja, S. (2002). Electric Vehicle Battery Systems. Newnes.
Ching, T. W. (2007). Soft-Switching Converters for Electric Vehicle Propulsion. Journal of Asian Electric Vehicles, 5(2), 1019–1026.
Sousa, L. D., Silvestre, B., & Bouchez, B. (2010). A Combined Multiphase Electric Drive and Fast Battery Charger for Electric Vehicles. IEEE Vehicle Power and Propulsion Conference, 1–6.
Bellur, Dakshina M., & Kazimierczuk, M. K. (2007). DC-DC converters for electric vehicle applications. Electrical Insulation Conference and Electrical Manufacturing Expo, 1–8.
Mishima, T., Akamatsu, K., & Nakaoka, M. (2013). A High Frequency-Link Secondary-Side Phase-Shifted Full-Range Soft-Switching PWM DC–DC Converter With ZCS Active Rectifier for EV Battery Chargers. IEEE Transactions on Power Electronics, 28(12), 5758–5773.
Li, R., Wu, X., Yang, S., & Sheng, K. (2019). Dynamic on-State Resistance Test and Evaluation of GaN Power Devices Under Hard- and Soft-Switching Conditions by Double and Multiple Pulses. IEEE Transactions on Power Electronics, 34(2), 1044–1053.
Forouzesh, M., Siwakoti, Y., Gorji, S. A., Blaabjerg, F., & Lehman, B. (2017). Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics, 32(12), 9143–9178.
Williams, B. W. (2013). DC-to-DC Converters With Continuous Input and Output Power. IEEE Transactions on Power Electronics, 28(5), 2307–2316.
Chung, H., Hui, S. Y. R., & Tse, K. K. (1998). Reduction of power converter EMI emission using soft-switching technique. IEEE Transactions on Electromagnetic Compatibility, 40(3), 282–287.
Jovanovic, M. M. (1998). A technique for reducing rectifier reverse-recovery-related losses in high-power boost converters. IEEE Transactions on Power Electronics, 13(5), 932–941.
Salo, M., & Tuusa, H. (2000). A vector controlled current-source PWM rectifier with a novel current damping method. IEEE Transactions on Power Electronics, 15(3), 464–470.
Yilmaz, M., & Krein, P. T. (2013). Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Transactions on Power Electronics, 28(5), 2151–2169.
Liu, K., & Lee, F. C. Y. (1990). Zero-voltage switching technique in DC/DC converters. IEEE Transactions on Power Electronics, 5(3), 293–304.
Li, H., Peng, F. Z., & Lawler, J. S. (2003). A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices. IEEE Transactions on Industry Applications, 39(2), 525–535.
Emadi, A., Williamson, S. S., & Khaligh, A. (2006). Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems. IEEE Transactions on Power Electronics, 21(3), 567–577.
Lu, X., & Wang, H. (2019). A Highly Efficient Multifunctional Power Electronic Interface for PEV Hybrid Energy Management Systems. IEEE Access, 7, 8964–8974.
Zhang, Y., Cheng, X.-F., Yin, C., & Cheng, S. (2018). A Soft-Switching Bidirectional DC–DC Converter for the Battery Super-Capacitor Hybrid Energy Storage System. IEEE Transactions on Industrial Electronics, 65(10), 7856–7865.
Ruíz, M. G. (2015). Pasado, presente y futuro de vehiculos Electricos (σσ. 1–68). Universidad Tecnológica de Pereira.
Hagedorn, J. (2018). Basic Calculations of a 4 Switch Buck-Boost Power Stage. Texas Instruments Incorporated.
Nations, U. (1998). Kyoto Protocol to the United Nations Framework Convention on climate change. United Nations.
Nations, U. (2015). Paris Agreement, United Nations Framework Convention on Climate Change. United Nations.
Climate Change: How Do We Know?,NASA. (χ.χ.). Ανακτήθηκε από https://climate.nasa.gov/evidence
Erickson, R. W. (2007). DC–DC Power Converters.
Tofoli, F. L., de Castro Pereira, D., de Paula, W. J., & de Sousa Oliveira Júnior, D. (2015). Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter (τ. 8, σ. 2057). τ. 8, σ. 2057.
Liu, K., Oruganti, R., & Lee, F. C. (1985). Resonant switches - Topologies and characteristics. 1985 IEEE Power Electronics Specialists Conference, 106–116.
Liu, K., & Lee, F. C. (1984). Resonant Switches - A Unified Approach to Improve Performances of Switching Converters. INTELEC ’84 - International Telecommunications Energy Conference, 344–351.
Liu, C., Chen, L., Li, B. Z., & Huang, Z. P. (2009). The implementation of a full-bridge phase-shifted zero-voltage-switching power converter. 2009 International Conference on Power Electronics and Drive Systems (PEDS), 1173–1177.
Bellur, D. M., & Kazimierczuk, M. K. (2007). DC-DC converters for electric vehicle applications. 2007 Electrical Insulation Conference and Electrical Manufacturing Expo, 286–293.
Kim, B., Kim, H., Jin, C., & Huh, D. (2011). A digital controlled DC-DC converter for electric vehicle applications. 2011 International Conference on Electrical Machines and Systems, 1–5.
Varghese, J. M., & Shahin, D. (2014). SEPIC/ZETA Bidirectional Dc-Dc Converter for Battery Fed Electric Vehicle System. International Conference on Advanced Trends in Engineering and Technology 2014 FORSCHUNG, 189–193.
Epa, U., of Transportation, O., Quality, A., & Division, C. (χ.χ.). Greenhouse Gas Emissions from a Typical Passenger Vehicle (EPA-420-F-18-008, April 2018). Obtenido de https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100U8YT.pdf
Mathieu, L., & Mattea, C. (2021). From dirty oil to clean batteries. Obtenido de https://www.transportenvironment.org/wp-content/uploads/2021/07/2021_02_Battery_raw_materials_report_final.pdf
United Nations Environment Programme (UNEP). (2021). Emissions Gap Report 2021: The Heat Is On. Obtenido de https://www.unep.org/emissions-gap-report-2021
Transport & Environment, BloombergNEF. (5 2022). Determine MOSFET Junction Temperature And Switching Losses For Various Package Types. Obtenido de https://www.electronicdesign.com/power-management/article/21796301/determine-mosfet-junction-temperature-and-switching-losses-for-various-package-types
Venkit, S. M., & Athira, P. C. (8 2016). Solar powered ZCS bidirectional buck-boost converter used in battery energy storage systems. doi:10.1109/ICCPCT.2016.7530306
dc.rights.*.fl_str_mv Atribución-NoComercial 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial 2.5 Colombia
http://creativecommons.org/licenses/by-nc/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Electrónica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Electrónica
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/45655/1/2022AriasLina.pdf
https://repository.usta.edu.co/bitstream/11634/45655/2/2022AriasLina1.pdf
https://repository.usta.edu.co/bitstream/11634/45655/3/2022AriasLina2.pdf
https://repository.usta.edu.co/bitstream/11634/45655/4/license_rdf
https://repository.usta.edu.co/bitstream/11634/45655/5/license.txt
https://repository.usta.edu.co/bitstream/11634/45655/6/2022AriasLina.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/45655/7/2022AriasLina1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/45655/8/2022AriasLina2.pdf.jpg
bitstream.checksum.fl_str_mv 42054189cda5ea94f86cf33378478101
8bee6de371a975f44ff196d5492035d6
a406a4d2f28ebc9c1525fc5e7146d041
40513e59b5d1327fcca263d3c2a2e44a
aedeaf396fcd827b537c73d23464fc27
6821e4fc19e8ca3e672fcc44976c658d
54805079a59a76e1b590e47e31dba9d1
450d74916c5f168f12744add70dcec88
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026155559223296
spelling Forero García, Edwin Franciscowill be generated::orcid::0000-0002-3818-7793600Franco Rivera, Jorge HernanArias Ortiz, Lina Marcelahttps://orcid.org/ 0000-0002-3818-7793https://orcid.org/ 0000-0003-2579-2844https://scholar.google.com/citations?hl=es&user=pv86djIAAAAJhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000761834Universidad Santo Tomas2022-07-07T20:01:36Z2022-07-07T20:01:36Z2022-07-05Franco Rivera, J. H. y Arias Ortiz, L. M. (2022, Julio). Soft-switching design for DC-DC Converters. [Trabajo de Grado, Universidad Santo Tomás]. Repositorio Institucional.http://hdl.handle.net/11634/45655reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn este documento se presenta una realidad que cada día va tomando más y más fuerza en la seguridad ambiental y como resultado un crecimiento exponencial en el mercado. Cuando las personas hablan de automóviles y movilidad, están hablando de una herramienta y una necesidad, por lo tanto algo que todos en la población siempre buscarán. Pero ha habido una serie de problemas en el equilibrio ambiental con la existencia de automóviles, pasaron los años y con ellos, la contaminación constante, y no solo la producen los autos, pero esta es una de las máquinas más utilizadas en el mundo, y tiene un ciclo de consumo de energía que no es amigable con un planeta saludable. Los recursos para el funcionamiento del automóvil, provienen en su mayoría de la tierra, la producción de gas y gasolina para impulsar nuestros autos, aviones, bicicletas y una enorme cantidad de máquinas, es un proceso que nos cuesta salud y calidad de vida. Genera más exposición de gases nocivos para la atmósfera, contaminación del aire que respiramos y muchas otros problemáticas. Buscando ayudar con una recuperación, la existencia de vehículos eléctricos (EV) es un paso que podría ofrecer a las personas la opción de continuar con su vida normalmente, teniendo menos impacto para la contaminación del medio ambiente, según la EPA, un coche de gasolina normal produce 8.887 gramos de CO2 por galón, y uno diésel produce 10.180 gramos de CO2 por galón, en comparación con los EV que no producen estas emisiones del tubo de escape, o la celda de combustible que solo produce vapor de agua. Sin embargo, la producción, la fabricación y el consumo de energía para los vehículos eléctricos está atrasada en comparación con los años de desarrollo que las máquinas de automóviles de combustión han tenido, en un ciclo de vida útil un carro de combustión interna quemará alrededor de 17.000 litros de gasolina o 13.500 de diésel, en cambio para los EV’s el desperdicio en metales rondará los 160 kilogramos, pero al reciclar los residuos se reducirán a alrededor de 30 kilogramos. Para eso, nosotros presentamos un análisis de pequeños pasos y ajustes en la conversión de energía, tratando de mejorar la eficiencia, el ciclo de vida de los componentes y al final, los beneficios que nos podría traer como población.In this document is presented a reality that each day is taking more and more strength in the in the environmental safety and as a result a exponential growing in the market. When people talk about cars and mobility, they’re talking about a tool and a necessity, thus something that everyone in the population will always look. But, there has been a series of problems in the environmental balance with the existence of cars, years passed and with them, the constant contamination, and it is produced not only by cars, but this is one of the machines most used in the world, and has a cycle of energy consumption that isn’t any friendly with a healthy planet. The resources for the car functioning, are mostly given from the earth, the production of gas and gasoline to impulse our cars, airplanes, bikes and an enormous number of machines, is a process that cost us health and quality of life. It generates more exposure of damaging gases to the atmosphere, contamination of the air we breathe and many other problematics. Looking to help with a recovery, the existence of Electric Vehicles (EV) is one step that could offer people the option to continue with their lives normally, having less impact to contaminating the environment, according to the EPA, a regular gasoline car produces 8,887 grams of CO2 per gallon, and a diesel one produces 10,180 grams of CO2 per gallon, in comparison to EV’s that don’t produce this tailpipe emissions, or Fuel cell which only produce water vapor. However, the production, the fabrication and the consumption of energy for the EV’s, is kind of delayed in comparison with the years of development that the combustion car machines have had, in a lifetime an internal combustion car will burn around 17, 000 liters of petrol or 13, 500 of diesel, on the other hand for EV’s the waste in metals will be around 160 kilograms, but by recycling the waste will reduce to around 30 kilograms. For that, we present an analysis of little steps and adjusts in the conversion of energy, trying to improve the efficiency, the life cycle of components and at the end, the benefits it could bring to us as a population.Ingeniero ElectronicoPregradoapplication/pdfspaUniversidad Santo TomásPregrado Ingeniería ElectrónicaFacultad de Ingeniería ElectrónicaAtribución-NoComercial 2.5 Colombiahttp://creativecommons.org/licenses/by-nc/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Soft-switching design for DC-DC ConvertersDC-DCconverterpowerefficiencyenergyIngenieria ElectrónicaEnergiaPotenciapotenciaeficienciaconvertidoresDC-DCenergiaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáRashid, M. (2006). Power Electronics Handbook : Devices, Circuits, and Applications. Elsevier Science & Technology.Ioinovici, A., & Chung, H. (2013). Power Electronics and Energy Conversion Systems : Fundamentals and Hard-Switching Converters. John Wiley & Sons, Incorporated.Abu-Rub, H., Malinowski, M., & Al-Haddad, K. (2014). Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications. John Wiley & Sons, Incorporated.Liu, W. (2017). Hybrid Electric Vehicle System Modeling and Control. John Wiley & Sons, Incorporated.Larminie, J., & Lowry, J. (2012). Electric Vehicle Technology Explained. John Wiley & Sons, Incorporated.Chau, K. T. (2015). Electric Vehicle Machines and Drives : Design, Analysis and Application. John Wiley & Sons, Incorporated.Hughes, A., Drury, W., & Drury, B. (2005). Electric Motors and Drives : Fundamentals, Types, and Applications. Elsevier Science & Technology.Khajepour, A., Fallah, M. S., & Goodarzi, A. (2014). Electric and Hybrid Vehicles : Technologies, Modeling and Control - a Mechatronic Approach. John Wiley & Sons, Incorporated.Zhang, B., & Wang, X. (2015). Chaos Analysis and Chaotic EMI Suppression of DC-DC Converters. John Wiley & Sons, Incorporated.Beretta, J. (2010). Automotive Electricity : Electric Drive. John Wiley & Sons, Incorporated.Mohan, N. (2014). Advanced Electric Drives : Analysis, Control, and Modeling Using MATLAB / Simulink. John Wiley & Sons, Incorporated.Mohan, N., Undeland, T. M., & Robbins, W. P. (1995). Power Electronics Converters, Applications and Design. John Wiley & Sons, Incorporated.Electric and Hybrid Vehicles : Power Sources, Models, Sustainability, Infrastructure and the Market. (2010). Elsevier.Sperling, D. (1994). Future Drive : Electric Vehicles and Sustainable Transportation. Island Press.Perdontis, M. R. (2011). Battery Manufacturing and Electric and Hybrid Vehicles. Nova Science Publishers, Incorporated.Raines, G. B. (2009). Electric Vehicles : Technology, Research and Development. Nova Science Publishers, Incorporated.Sales, F. J. G., Chilet, S. S., & Grau, S. O. (2011). Convertidores electrónicos: energía solar fotovoltaica, aplicaciones y diseño. Editorial de la Universidad Politécnica de Valencia.Batarseh, I. (2004). Power Electronic Circuits. John Wiley & Sons, Incorporated.Dhameja, S. (2002). Electric Vehicle Battery Systems. Newnes.Ching, T. W. (2007). Soft-Switching Converters for Electric Vehicle Propulsion. Journal of Asian Electric Vehicles, 5(2), 1019–1026.Sousa, L. D., Silvestre, B., & Bouchez, B. (2010). A Combined Multiphase Electric Drive and Fast Battery Charger for Electric Vehicles. IEEE Vehicle Power and Propulsion Conference, 1–6.Bellur, Dakshina M., & Kazimierczuk, M. K. (2007). DC-DC converters for electric vehicle applications. Electrical Insulation Conference and Electrical Manufacturing Expo, 1–8.Mishima, T., Akamatsu, K., & Nakaoka, M. (2013). A High Frequency-Link Secondary-Side Phase-Shifted Full-Range Soft-Switching PWM DC–DC Converter With ZCS Active Rectifier for EV Battery Chargers. IEEE Transactions on Power Electronics, 28(12), 5758–5773.Li, R., Wu, X., Yang, S., & Sheng, K. (2019). Dynamic on-State Resistance Test and Evaluation of GaN Power Devices Under Hard- and Soft-Switching Conditions by Double and Multiple Pulses. IEEE Transactions on Power Electronics, 34(2), 1044–1053.Forouzesh, M., Siwakoti, Y., Gorji, S. A., Blaabjerg, F., & Lehman, B. (2017). Step-Up DC–DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Transactions on Power Electronics, 32(12), 9143–9178.Williams, B. W. (2013). DC-to-DC Converters With Continuous Input and Output Power. IEEE Transactions on Power Electronics, 28(5), 2307–2316.Chung, H., Hui, S. Y. R., & Tse, K. K. (1998). Reduction of power converter EMI emission using soft-switching technique. IEEE Transactions on Electromagnetic Compatibility, 40(3), 282–287.Jovanovic, M. M. (1998). A technique for reducing rectifier reverse-recovery-related losses in high-power boost converters. IEEE Transactions on Power Electronics, 13(5), 932–941.Salo, M., & Tuusa, H. (2000). A vector controlled current-source PWM rectifier with a novel current damping method. IEEE Transactions on Power Electronics, 15(3), 464–470.Yilmaz, M., & Krein, P. T. (2013). Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles. IEEE Transactions on Power Electronics, 28(5), 2151–2169.Liu, K., & Lee, F. C. Y. (1990). Zero-voltage switching technique in DC/DC converters. IEEE Transactions on Power Electronics, 5(3), 293–304.Li, H., Peng, F. Z., & Lawler, J. S. (2003). A natural ZVS medium-power bidirectional DC-DC converter with minimum number of devices. IEEE Transactions on Industry Applications, 39(2), 525–535.Emadi, A., Williamson, S. S., & Khaligh, A. (2006). Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems. IEEE Transactions on Power Electronics, 21(3), 567–577.Lu, X., & Wang, H. (2019). A Highly Efficient Multifunctional Power Electronic Interface for PEV Hybrid Energy Management Systems. IEEE Access, 7, 8964–8974.Zhang, Y., Cheng, X.-F., Yin, C., & Cheng, S. (2018). A Soft-Switching Bidirectional DC–DC Converter for the Battery Super-Capacitor Hybrid Energy Storage System. IEEE Transactions on Industrial Electronics, 65(10), 7856–7865.Ruíz, M. G. (2015). Pasado, presente y futuro de vehiculos Electricos (σσ. 1–68). Universidad Tecnológica de Pereira.Hagedorn, J. (2018). Basic Calculations of a 4 Switch Buck-Boost Power Stage. Texas Instruments Incorporated.Nations, U. (1998). Kyoto Protocol to the United Nations Framework Convention on climate change. United Nations.Nations, U. (2015). Paris Agreement, United Nations Framework Convention on Climate Change. United Nations.Climate Change: How Do We Know?,NASA. (χ.χ.). Ανακτήθηκε από https://climate.nasa.gov/evidenceErickson, R. W. (2007). DC–DC Power Converters.Tofoli, F. L., de Castro Pereira, D., de Paula, W. J., & de Sousa Oliveira Júnior, D. (2015). Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter (τ. 8, σ. 2057). τ. 8, σ. 2057.Liu, K., Oruganti, R., & Lee, F. C. (1985). Resonant switches - Topologies and characteristics. 1985 IEEE Power Electronics Specialists Conference, 106–116.Liu, K., & Lee, F. C. (1984). Resonant Switches - A Unified Approach to Improve Performances of Switching Converters. INTELEC ’84 - International Telecommunications Energy Conference, 344–351.Liu, C., Chen, L., Li, B. Z., & Huang, Z. P. (2009). The implementation of a full-bridge phase-shifted zero-voltage-switching power converter. 2009 International Conference on Power Electronics and Drive Systems (PEDS), 1173–1177.Bellur, D. M., & Kazimierczuk, M. K. (2007). DC-DC converters for electric vehicle applications. 2007 Electrical Insulation Conference and Electrical Manufacturing Expo, 286–293.Kim, B., Kim, H., Jin, C., & Huh, D. (2011). A digital controlled DC-DC converter for electric vehicle applications. 2011 International Conference on Electrical Machines and Systems, 1–5.Varghese, J. M., & Shahin, D. (2014). SEPIC/ZETA Bidirectional Dc-Dc Converter for Battery Fed Electric Vehicle System. International Conference on Advanced Trends in Engineering and Technology 2014 FORSCHUNG, 189–193.Epa, U., of Transportation, O., Quality, A., & Division, C. (χ.χ.). Greenhouse Gas Emissions from a Typical Passenger Vehicle (EPA-420-F-18-008, April 2018). Obtenido de https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100U8YT.pdfMathieu, L., & Mattea, C. (2021). From dirty oil to clean batteries. Obtenido de https://www.transportenvironment.org/wp-content/uploads/2021/07/2021_02_Battery_raw_materials_report_final.pdfUnited Nations Environment Programme (UNEP). (2021). Emissions Gap Report 2021: The Heat Is On. Obtenido de https://www.unep.org/emissions-gap-report-2021Transport & Environment, BloombergNEF. (5 2022). Determine MOSFET Junction Temperature And Switching Losses For Various Package Types. Obtenido de https://www.electronicdesign.com/power-management/article/21796301/determine-mosfet-junction-temperature-and-switching-losses-for-various-package-typesVenkit, S. M., & Athira, P. C. (8 2016). Solar powered ZCS bidirectional buck-boost converter used in battery energy storage systems. doi:10.1109/ICCPCT.2016.7530306ORIGINAL2022AriasLina.pdf2022AriasLina.pdfTrabajo de gradoapplication/pdf1445536https://repository.usta.edu.co/bitstream/11634/45655/1/2022AriasLina.pdf42054189cda5ea94f86cf33378478101MD51open access2022AriasLina1.pdf2022AriasLina1.pdfAprobación de facultadapplication/pdf336169https://repository.usta.edu.co/bitstream/11634/45655/2/2022AriasLina1.pdf8bee6de371a975f44ff196d5492035d6MD52metadata only access2022AriasLina2.pdf2022AriasLina2.pdfAcuerdo de publicaciónapplication/pdf702282https://repository.usta.edu.co/bitstream/11634/45655/3/2022AriasLina2.pdfa406a4d2f28ebc9c1525fc5e7146d041MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://repository.usta.edu.co/bitstream/11634/45655/4/license_rdf40513e59b5d1327fcca263d3c2a2e44aMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/45655/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2022AriasLina.pdf.jpg2022AriasLina.pdf.jpgIM Thumbnailimage/jpeg6034https://repository.usta.edu.co/bitstream/11634/45655/6/2022AriasLina.pdf.jpg6821e4fc19e8ca3e672fcc44976c658dMD56open access2022AriasLina1.pdf.jpg2022AriasLina1.pdf.jpgIM Thumbnailimage/jpeg6862https://repository.usta.edu.co/bitstream/11634/45655/7/2022AriasLina1.pdf.jpg54805079a59a76e1b590e47e31dba9d1MD57open access2022AriasLina2.pdf.jpg2022AriasLina2.pdf.jpgIM Thumbnailimage/jpeg7758https://repository.usta.edu.co/bitstream/11634/45655/8/2022AriasLina2.pdf.jpg450d74916c5f168f12744add70dcec88MD58open access11634/45655oai:repository.usta.edu.co:11634/456552022-10-10 15:15:14.568open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K