Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión

Los modelos hidrológicos son herramientas que contribuyen a comprender, explorar y analizar los procesos de ocurrencia y obtener opciones de gestión sostenibles. Los resultados que generan estos modelos constituyen una información muy valiosa para la toma de decisiones estratégicas a futuro o en tie...

Full description

Autores:
Huertas Beltrán, Ruddy Lizette
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/45180
Acceso en línea:
http://hdl.handle.net/11634/45180
Palabra clave:
hydrological models
crop models
agriculture
Conservación de recursos naturales
Hidrometría
Agricultura Abastecimiento de agua
modelos hidrológicos
modelos de cultivos
agricultura
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_a79e7c1671c47d74827838933693cec9
oai_identifier_str oai:repository.usta.edu.co:11634/45180
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión
title Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión
spellingShingle Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión
hydrological models
crop models
agriculture
Conservación de recursos naturales
Hidrometría
Agricultura Abastecimiento de agua
modelos hidrológicos
modelos de cultivos
agricultura
title_short Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión
title_full Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión
title_fullStr Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión
title_full_unstemmed Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión
title_sort Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión
dc.creator.fl_str_mv Huertas Beltrán, Ruddy Lizette
dc.contributor.advisor.none.fl_str_mv Portela Ramírez, Albert Johan
dc.contributor.author.none.fl_str_mv Huertas Beltrán, Ruddy Lizette
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/ 0000-0001-6246-8010
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv hydrological models
crop models
agriculture
topic hydrological models
crop models
agriculture
Conservación de recursos naturales
Hidrometría
Agricultura Abastecimiento de agua
modelos hidrológicos
modelos de cultivos
agricultura
dc.subject.lemb.spa.fl_str_mv Conservación de recursos naturales
Hidrometría
Agricultura Abastecimiento de agua
dc.subject.proposal.spa.fl_str_mv modelos hidrológicos
modelos de cultivos
agricultura
description Los modelos hidrológicos son herramientas que contribuyen a comprender, explorar y analizar los procesos de ocurrencia y obtener opciones de gestión sostenibles. Los resultados que generan estos modelos constituyen una información muy valiosa para la toma de decisiones estratégicas a futuro o en tiempo real. El objetivo de esta revisión es identificar las tendencias de los modelos hidrológicos asociados al estudio y planificación de la agricultura entre los años 2011 a 2021 a escala mundial. Se utilizó un método de revisión sistemática de literatura, que incluyó un índice de frecuencia de citación mediante cuartiles (Q) (Ome y Zafra, 2018). Se evidenció a Estados Unidos a nivel mundial como país tendencia de la aplicación de los modelos hidrológicos en el estudio y planificación de la agricultura, seguido por China y México. Además, se pudo identificar que el modelo RZWQM2 fue el de mayor tendencia, debido a su integralidad al evaluar eficazmente el impacto de las prácticas de gestión agrícola en la producción de cultivos y la calidad del agua y del suelo. Finalmente, esta revisión servirá como insumo para investigaciones futuras de entes gubernamentales e instituciones ambientales para la elección de herramientas de gestión del recurso.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-16T21:54:35Z
dc.date.available.none.fl_str_mv 2022-06-16T21:54:35Z
dc.date.issued.none.fl_str_mv 2022-06-16
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Huertas Beltrán, R. (2022). Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión. [Trabajo de grado, Universidad Santo Tomás]: Repositorio institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/45180
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Huertas Beltrán, R. (2022). Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión. [Trabajo de grado, Universidad Santo Tomás]: Repositorio institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/45180
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adger, W. N. (2006). Vulnerability. Global environmental change, 16(3), 268-281.
Ahuja, L. R., Ma, L., Lascano, R. J., Saseendran, S. A., Fang, Q. X., Nielsen, D. C., ... & Colaizzi, P. D. (2014). Syntheses of the current model applications for managing water and needs for experimental data and model improvements to enhance these applications. Practical applications of agricultural system models to optimize the use of limited water, 5, 399-437.
Ahuja, L., Rojas, K. W., & Hanson, J. D. (Eds.). (2000). Root zone water quality model: modelling management effects on water quality and crop production. Water Resources Publication.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
Benjamin, J. G., Ahuja, L. R., & Allmaras, R. R. (1996). Modelling corn rooting patterns and their effects on water uptake and nitrate leaching. Plant and Soil, 179(2), 223-232.
Bowen, W., & Jaramillo, R. (2001). Modelos de dinámica de nutrientes en el suelo y en la planta. In Congreso Sociedad Ecuatoriana de la Ciencia del Suelo [CD-ROM archivo]. Sociedad Ecuatoriana de la ciencia del Suelo (7: 2000 oct. 19-20 octubre: Quito).
Brooks, N., Adger, W. N., & Kelly, P. M. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global environmental change, 15(2), 151-163.
Bruinsma, J. (2009, June). The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050. In Expert meeting on how to feed the world in (Vol. 2050, pp. 24-26).
Bruins, H. J., Bithan-Guedj, H., & Svoray, T. (2019). GIS-based hydrological modelling to assess runoff yields in ancient-agricultural terraced wadi fields (central Negev desert). Journal of arid environments, 166, 91-107.
Candelaria Martínez, B., Ruiz Rosado, O., Gallardo López, F., Pérez Hernández, P., Martínez Becerra, Á., & Vargas Villamil, L. (2011). Aplicación de modelos de simulación en el estudio y planificación de la agricultura, una revisión. Tropical and subtropical agroecosystems, 14(3), 999-1010.
Challinor, A. J., Ewert, F., Arnold, S., Simelton, E., & Fraser, E. (2009). Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. Journal of experimental botany, 60(10), 2775-2789.
Challinor, A. J., Simelton, E. S., Fraser, E. D., Hemming, D., & Collins, M. (2010). Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5(3), 034012.
Connolly, R. D. (1998). Modelling effects of soil structure on the water balance of soil–crop systems: a review. Soil and Tillage Research, 48(1-2), 1-19. crop yield, Wageningen, 189 p.
Evett, S. R., & Tolk, J. A. (2009). Introduction: Can water use efficiency be modeled well enough to impact crop management?. Agronomy Journal, 101(3), 423-425.
Fraser, E. D., Simelton, E., Termansen, M., Gosling, S. N., & South, A. (2013). “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology, 170, 195-205.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. science, 327(5967), 812-818.
Gosling, S. N., & Arnell, N. W. (2011). Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis. Hydrological Processes, 25(7), 1129-1145
Gosling, S. N., Bretherton, D., Haines, K., & Arnell, N. W. (2010). Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1926), 4005-4021.c
Gosling, S. N., Taylor, R. G., Arnell, N. W., & Todd, M. C. (2011). A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrology and Earth System Sciences, 15(1), 279-294.
Guía para el uso eficiente y ahorro del agua: Una visión colectiva para el uso sostenible y responsable del agua [recurso electrónico] / Dirección de Gestión Integral de Recurso Hídrico. Edición y textos: Moreno Barco, Diana Marcela; Callejas Moncaleano, Diana Carolina. ---- Bogotá, D. C.: Colombia. Ministerio de Ambiente y Desarrollo Sostenible, 2018.
Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., ... & Yeh, P. (2011). Multimodel estimate of the global terrestrial water balance: Setup and first results. Journal of Hydrometeorology, 12(5), 869-884.
Jaggard, K. W., Qi, A., & Ober, E. S. (2010). Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2835-2851.
Jeong, H., & Adamowski, J. (2016). A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale. Agricultural Water Management, 171, 89-107.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., ... & Ritchie, J. T. (2003). The DSSAT cropping system model. European journal of agronomy, 18(3-4), 235-265.
Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., ... & Singh, U. (1998). Decision support system for agrotechnology transfer: DSSAT v3. In Understanding options for agricultural production (pp. 157-177). Springer, Dordrecht.
Kanda, E. K., Mabhaudhi, T., & Senzanje, A. (2018). Coupling hydrological and crop models for improved agricultural water management–A review. Bulgarian Journal of Agricultural Science, 24(3), 380-390.
Krysanova, V., Müller-Wohlfeil, D. I., & Becker, A. (1998). Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological modelling, 106(2-3), 261-289.
Krysanova, V., Wechsung, F., Arnold, J., Srinivasan, R., Williams, J., 2000. SWIM - Soil and Water Integrated Model. User Manual. PIK Report 69, Potsdam Institute for D. Sietz et al. Agricultural Systems 193 (2021) 10318311 Climate Impact Research, Potsdam, Germany.
Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental research letters, 2(1), 014002.
Long, S. P., Ainsworth, E. A., Leakey, A. D., & Morgan, P. B. (2005). Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2011-2020.
Ma, L., Hoogenboom, G., Ahuja, L. R., Ascough Ii, J. C., & Saseendran, S. A. (2006). Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agricultural Systems, 87(3), 274-295.
Ministerio de Ambiente, Vivienda y Desarrollo Territorial -MAVDT. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá: Imprenta Nacional.
Nousiainen, R., Warsta, L., Turunen, M., Huitu, H., Koivusalo, H., & Pesonen, L. (2015). Analyzing subsurface drain network performance in an agricultural monitoring site with a three-dimensional hydrological model. Journal of Hydrology, 529, 82-93
Ome Barrera, Ó., & Zafra Mejía, C. (2018). Key factors in bioremediation processes for wastewater treatment. A review.. Revista UDCA Actualidad & Divulgación Científica, 21(2), 573-585.
Patt, A., Suarez, P., & Gwata, C. (2005). Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe. Proceedings of the National Academy of Sciences, 102(35), 12623-12628.
Psomas, A., Dagalaki, V., Panagopoulos, Y., Konsta, D., & Mimikou, M. (2016). Sustainable agricultural water management in Pinios River basin using remote sensing and hydrologic modeling. Procedia engineering, 162, 277-283.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3), 438-447.
Royal Society, 2008. Ground-level ozone in the 21st century: future trends, impacts and policy implications. R. Soc. Sci. Policy Rep. 15 (08), 1–148.
Salo, H., Warsta, L., Turunen, M., Paasonen-Kivekäs, M., Nurminen, J., & Koivusalo, H. (2015). Development and application of a solute transport model to describe field-scale nitrogen processes during autumn rains. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 65(sup1), 30-43.
Shaffer, M. J., & Gupta, S. C. (1981). Hydrosalinity models and field validation. In Modeling wastewater renovation (pp. 136-181). John Wiley New York, NY.
Shuttleworth, W. J., & Wallace, J. S. (1985). Evaporation from sparse crops‐an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111(469), 839-855.
Sietz, D., Conradt, T., Krysanova, V., Hattermann, F. F., & Wechsung, F. (2021). The Crop Generator: Implementing crop rotations to effectively advance eco-hydrological modelling. Agricultural Systems, 193, 103183.
Simunek, J. I. R. K. A., & Van Genuchten, M. (1994). The chain_2d code for simulating two-dimensional movement of water flow, heat, and multiple solutes in variably-saturated porous media, version 1.1 USSL research report no. 136. Laboratory publication.
Simunek, J. I. R. K. A., Van Genuchten, M. T., & Sejna, M. (2006). The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual, 1.
Simunek, J., Van Genuchten, M. T., & Sejna, M. (2005). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports, 3, 1-240.
Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448(7155), 791-794.
Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: a typology. Mitigation and adaptation strategies for global change, 7(1), 85-114.
Sun, M., Zhang, X., Huo, Z., Feng, S., Huang, G., & Mao, X. (2016). Uncertainty and sensitivity assessments of an agricultural–hydrological model (RZWQM2) using the GLUE method. Journal of hydrology, 534, 19-30.
Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822.
Thomas, D. S., Twyman, C., Osbahr, H., & Hewitson, B. (2007). Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Climatic change, 83(3), 301-322.
Todorovic, M., Albrizio, R., Zivotic, L., Saab, M. T. A., Stöckle, C., & Steduto, P. (2009). Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101(3), 509-521.
Turunen, M., Warsta, L., Paasonen-Kivekäs, M., Nurminen, J., Myllys, M., Alakukku, L., ... & Koivusalo, H. (2013). Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions. Agricultural Water Management, 121, 135-
Van Diepen, C. V., Wolf, J., Van Keulen, H., & Rappoldt, C. (1989). WOFOST: a simulation model of crop production. Soil use and management, 5(1), 16-24.
Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., ... & Young, I. M. (2016). Modeling soil processes: Review, key challenges, and new perspectives. Vadose zone journal, 15(5).
Wang, D., Yates, S. R., Simunek, J., & Genuchten, M. T. V. (1997). Solute transport in simulated conductivity fields under different irrigations. Journal of irrigation and drainage engineering, 123(5), 336-343.
Wang, X., Williams, J. R., Gassman, P. W., Baffaut, C., Izaurralde, R. C., Jeong, J., & Kiniry, J. R. (2012). EPIC and APEX: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1447-1462.
Warsta, L., Karvonen, T., Koivusalo, H., Paasonen-Kivekäs, M., & Taskinen, A. (2013). Simulation of water balance in a clayey, subsurface drained agricultural field with three-dimensional FLUSH model. Journal of hydrology, 476, 395-409.
Watts, M. J., & Bohle, H. G. (1993). The space of vulnerability: the causal structure of hunger and famine. Progress in human geography, 17(1), 43-67.
Williams, J. R., Jones, C. A., Gassman, P. W., & Hauck, L. M. (1995). Simulation of animal waste management with APEX. Innovations and New Horizons in Livestock and Poultry Manure Management, 1, 22-26.
Xi, M., Lu, D., Gui, D., Qi, Z., & Zhang, G. (2017). Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization. Journal of Hydrology, 544, 456-466.
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Duad
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Especialización Ordenamiento y Gestión Integral de Cuencas Hidrográficas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias y Tecnologías
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/45180/1/2022ruddylizettehuertasbeltran.pdf
https://repository.usta.edu.co/bitstream/11634/45180/3/Carta%20aprobaci%c3%b3n%20facultad.pdf
https://repository.usta.edu.co/bitstream/11634/45180/4/Carta%20derechos%20de%20autor.pdf
https://repository.usta.edu.co/bitstream/11634/45180/6/license.txt
https://repository.usta.edu.co/bitstream/11634/45180/5/license_rdf
https://repository.usta.edu.co/bitstream/11634/45180/7/2022ruddylizettehuertasbeltran.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/45180/8/Carta%20aprobaci%c3%b3n%20facultad.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/45180/9/Carta%20derechos%20de%20autor.pdf.jpg
bitstream.checksum.fl_str_mv b0ff5a242d951c8c278414f1d48599bc
c36c80eded4ec76ed4cfff0236cfd203
6f76619ec8afd03493220a19862f13f4
aedeaf396fcd827b537c73d23464fc27
217700a34da79ed616c2feb68d4c5e06
b8331bd4f15e8c4bd479f2a53110a485
fbc124bad19b4701c8557d97b6b4dc17
c83ecb852056c983a76b27f3eab4f742
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026240822083584
spelling Portela Ramírez, Albert JohanHuertas Beltrán, Ruddy Lizettehttps://orcid.org/ 0000-0001-6246-8010Universidad Santo Tomás2022-06-16T21:54:35Z2022-06-16T21:54:35Z2022-06-16Huertas Beltrán, R. (2022). Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisión. [Trabajo de grado, Universidad Santo Tomás]: Repositorio institucional.http://hdl.handle.net/11634/45180reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLos modelos hidrológicos son herramientas que contribuyen a comprender, explorar y analizar los procesos de ocurrencia y obtener opciones de gestión sostenibles. Los resultados que generan estos modelos constituyen una información muy valiosa para la toma de decisiones estratégicas a futuro o en tiempo real. El objetivo de esta revisión es identificar las tendencias de los modelos hidrológicos asociados al estudio y planificación de la agricultura entre los años 2011 a 2021 a escala mundial. Se utilizó un método de revisión sistemática de literatura, que incluyó un índice de frecuencia de citación mediante cuartiles (Q) (Ome y Zafra, 2018). Se evidenció a Estados Unidos a nivel mundial como país tendencia de la aplicación de los modelos hidrológicos en el estudio y planificación de la agricultura, seguido por China y México. Además, se pudo identificar que el modelo RZWQM2 fue el de mayor tendencia, debido a su integralidad al evaluar eficazmente el impacto de las prácticas de gestión agrícola en la producción de cultivos y la calidad del agua y del suelo. Finalmente, esta revisión servirá como insumo para investigaciones futuras de entes gubernamentales e instituciones ambientales para la elección de herramientas de gestión del recurso.Hydrological models are tools that help us understand, explore and analyze the processes of occurrence and obtain sustainable management options. The results generated by these models constitute very valuable information for making strategic decisions in the future or in real time. The objective of this review is to identify trends in hydrological models associated with the study and planning of agriculture between the years 2011 to 2021 on a global scale. A systematic literature review method was used, which included a citation frequency index by quartiles (Q). The United States was evidenced worldwide as a trend country for the application of hydrological models in the study and planning of agriculture, followed by China and Mexico. In addition, it was possible to identify that the RZWQM2 model was the one with the greatest trend, due to its comprehensiveness when effectively evaluating the impact of agricultural management practices on crop production and the quality of water and soil. Finally, this review will serve as input for future research by government entities and environmental institutions for the choice of resource management tools.Especialista en Ordenamiento y Gestión Integral de Cuencas HidrográficasEspecializaciónapplication/pdfspaUniversidad Santo TomásEspecialización Ordenamiento y Gestión Integral de Cuencas HidrográficasFacultad de Ciencias y TecnologíasAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tendencias mundiales en la aplicación de modelos hidrológicos en el estudio y planificación de la agricultura: una revisiónhydrological modelscrop modelsagricultureConservación de recursos naturalesHidrometríaAgricultura Abastecimiento de aguamodelos hidrológicosmodelos de cultivosagriculturaTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA DuadAdger, W. N. (2006). Vulnerability. Global environmental change, 16(3), 268-281.Ahuja, L. R., Ma, L., Lascano, R. J., Saseendran, S. A., Fang, Q. X., Nielsen, D. C., ... & Colaizzi, P. D. (2014). Syntheses of the current model applications for managing water and needs for experimental data and model improvements to enhance these applications. Practical applications of agricultural system models to optimize the use of limited water, 5, 399-437.Ahuja, L., Rojas, K. W., & Hanson, J. D. (Eds.). (2000). Root zone water quality model: modelling management effects on water quality and crop production. Water Resources Publication.Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.Benjamin, J. G., Ahuja, L. R., & Allmaras, R. R. (1996). Modelling corn rooting patterns and their effects on water uptake and nitrate leaching. Plant and Soil, 179(2), 223-232.Bowen, W., & Jaramillo, R. (2001). Modelos de dinámica de nutrientes en el suelo y en la planta. In Congreso Sociedad Ecuatoriana de la Ciencia del Suelo [CD-ROM archivo]. Sociedad Ecuatoriana de la ciencia del Suelo (7: 2000 oct. 19-20 octubre: Quito).Brooks, N., Adger, W. N., & Kelly, P. M. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global environmental change, 15(2), 151-163.Bruinsma, J. (2009, June). The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050. In Expert meeting on how to feed the world in (Vol. 2050, pp. 24-26).Bruins, H. J., Bithan-Guedj, H., & Svoray, T. (2019). GIS-based hydrological modelling to assess runoff yields in ancient-agricultural terraced wadi fields (central Negev desert). Journal of arid environments, 166, 91-107.Candelaria Martínez, B., Ruiz Rosado, O., Gallardo López, F., Pérez Hernández, P., Martínez Becerra, Á., & Vargas Villamil, L. (2011). Aplicación de modelos de simulación en el estudio y planificación de la agricultura, una revisión. Tropical and subtropical agroecosystems, 14(3), 999-1010.Challinor, A. J., Ewert, F., Arnold, S., Simelton, E., & Fraser, E. (2009). Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation. Journal of experimental botany, 60(10), 2775-2789.Challinor, A. J., Simelton, E. S., Fraser, E. D., Hemming, D., & Collins, M. (2010). Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5(3), 034012.Connolly, R. D. (1998). Modelling effects of soil structure on the water balance of soil–crop systems: a review. Soil and Tillage Research, 48(1-2), 1-19. crop yield, Wageningen, 189 p.Evett, S. R., & Tolk, J. A. (2009). Introduction: Can water use efficiency be modeled well enough to impact crop management?. Agronomy Journal, 101(3), 423-425.Fraser, E. D., Simelton, E., Termansen, M., Gosling, S. N., & South, A. (2013). “Vulnerability hotspots”: Integrating socio-economic and hydrological models to identify where cereal production may decline in the future due to climate change induced drought. Agricultural and Forest Meteorology, 170, 195-205.Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. science, 327(5967), 812-818.Gosling, S. N., & Arnell, N. W. (2011). Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis. Hydrological Processes, 25(7), 1129-1145Gosling, S. N., Bretherton, D., Haines, K., & Arnell, N. W. (2010). Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1926), 4005-4021.cGosling, S. N., Taylor, R. G., Arnell, N. W., & Todd, M. C. (2011). A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrology and Earth System Sciences, 15(1), 279-294.Guía para el uso eficiente y ahorro del agua: Una visión colectiva para el uso sostenible y responsable del agua [recurso electrónico] / Dirección de Gestión Integral de Recurso Hídrico. Edición y textos: Moreno Barco, Diana Marcela; Callejas Moncaleano, Diana Carolina. ---- Bogotá, D. C.: Colombia. Ministerio de Ambiente y Desarrollo Sostenible, 2018.Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., ... & Yeh, P. (2011). Multimodel estimate of the global terrestrial water balance: Setup and first results. Journal of Hydrometeorology, 12(5), 869-884.Jaggard, K. W., Qi, A., & Ober, E. S. (2010). Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2835-2851.Jeong, H., & Adamowski, J. (2016). A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale. Agricultural Water Management, 171, 89-107.Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., ... & Ritchie, J. T. (2003). The DSSAT cropping system model. European journal of agronomy, 18(3-4), 235-265.Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., ... & Singh, U. (1998). Decision support system for agrotechnology transfer: DSSAT v3. In Understanding options for agricultural production (pp. 157-177). Springer, Dordrecht.Kanda, E. K., Mabhaudhi, T., & Senzanje, A. (2018). Coupling hydrological and crop models for improved agricultural water management–A review. Bulgarian Journal of Agricultural Science, 24(3), 380-390.Krysanova, V., Müller-Wohlfeil, D. I., & Becker, A. (1998). Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological modelling, 106(2-3), 261-289.Krysanova, V., Wechsung, F., Arnold, J., Srinivasan, R., Williams, J., 2000. SWIM - Soil and Water Integrated Model. User Manual. PIK Report 69, Potsdam Institute for D. Sietz et al. Agricultural Systems 193 (2021) 10318311 Climate Impact Research, Potsdam, Germany.Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental research letters, 2(1), 014002.Long, S. P., Ainsworth, E. A., Leakey, A. D., & Morgan, P. B. (2005). Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1463), 2011-2020.Ma, L., Hoogenboom, G., Ahuja, L. R., Ascough Ii, J. C., & Saseendran, S. A. (2006). Evaluation of the RZWQM-CERES-Maize hybrid model for maize production. Agricultural Systems, 87(3), 274-295.Ministerio de Ambiente, Vivienda y Desarrollo Territorial -MAVDT. (2010). Política Nacional para la Gestión Integral del Recurso Hídrico. Bogotá: Imprenta Nacional.Nousiainen, R., Warsta, L., Turunen, M., Huitu, H., Koivusalo, H., & Pesonen, L. (2015). Analyzing subsurface drain network performance in an agricultural monitoring site with a three-dimensional hydrological model. Journal of Hydrology, 529, 82-93Ome Barrera, Ó., & Zafra Mejía, C. (2018). Key factors in bioremediation processes for wastewater treatment. A review.. Revista UDCA Actualidad & Divulgación Científica, 21(2), 573-585.Patt, A., Suarez, P., & Gwata, C. (2005). Effects of seasonal climate forecasts and participatory workshops among subsistence farmers in Zimbabwe. Proceedings of the National Academy of Sciences, 102(35), 12623-12628.Psomas, A., Dagalaki, V., Panagopoulos, Y., Konsta, D., & Mimikou, M. (2016). Sustainable agricultural water management in Pinios River basin using remote sensing and hydrologic modeling. Procedia engineering, 162, 277-283.Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3), 438-447.Royal Society, 2008. Ground-level ozone in the 21st century: future trends, impacts and policy implications. R. Soc. Sci. Policy Rep. 15 (08), 1–148.Salo, H., Warsta, L., Turunen, M., Paasonen-Kivekäs, M., Nurminen, J., & Koivusalo, H. (2015). Development and application of a solute transport model to describe field-scale nitrogen processes during autumn rains. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 65(sup1), 30-43.Shaffer, M. J., & Gupta, S. C. (1981). Hydrosalinity models and field validation. In Modeling wastewater renovation (pp. 136-181). John Wiley New York, NY.Shuttleworth, W. J., & Wallace, J. S. (1985). Evaporation from sparse crops‐an energy combination theory. Quarterly Journal of the Royal Meteorological Society, 111(469), 839-855.Sietz, D., Conradt, T., Krysanova, V., Hattermann, F. F., & Wechsung, F. (2021). The Crop Generator: Implementing crop rotations to effectively advance eco-hydrological modelling. Agricultural Systems, 193, 103183.Simunek, J. I. R. K. A., & Van Genuchten, M. (1994). The chain_2d code for simulating two-dimensional movement of water flow, heat, and multiple solutes in variably-saturated porous media, version 1.1 USSL research report no. 136. Laboratory publication.Simunek, J. I. R. K. A., Van Genuchten, M. T., & Sejna, M. (2006). The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual, 1.Simunek, J., Van Genuchten, M. T., & Sejna, M. (2005). The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media. University of California-Riverside Research Reports, 3, 1-240.Sitch, S., Cox, P. M., Collins, W. J., & Huntingford, C. (2007). Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature, 448(7155), 791-794.Smit, B., & Skinner, M. W. (2002). Adaptation options in agriculture to climate change: a typology. Mitigation and adaptation strategies for global change, 7(1), 85-114.Sun, M., Zhang, X., Huo, Z., Feng, S., Huang, G., & Mao, X. (2016). Uncertainty and sensitivity assessments of an agricultural–hydrological model (RZWQM2) using the GLUE method. Journal of hydrology, 534, 19-30.Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. Science, 327(5967), 818-822.Thomas, D. S., Twyman, C., Osbahr, H., & Hewitson, B. (2007). Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Climatic change, 83(3), 301-322.Todorovic, M., Albrizio, R., Zivotic, L., Saab, M. T. A., Stöckle, C., & Steduto, P. (2009). Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101(3), 509-521.Turunen, M., Warsta, L., Paasonen-Kivekäs, M., Nurminen, J., Myllys, M., Alakukku, L., ... & Koivusalo, H. (2013). Modeling water balance and effects of different subsurface drainage methods on water outflow components in a clayey agricultural field in boreal conditions. Agricultural Water Management, 121, 135-Van Diepen, C. V., Wolf, J., Van Keulen, H., & Rappoldt, C. (1989). WOFOST: a simulation model of crop production. Soil use and management, 5(1), 16-24.Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, T., ... & Young, I. M. (2016). Modeling soil processes: Review, key challenges, and new perspectives. Vadose zone journal, 15(5).Wang, D., Yates, S. R., Simunek, J., & Genuchten, M. T. V. (1997). Solute transport in simulated conductivity fields under different irrigations. Journal of irrigation and drainage engineering, 123(5), 336-343.Wang, X., Williams, J. R., Gassman, P. W., Baffaut, C., Izaurralde, R. C., Jeong, J., & Kiniry, J. R. (2012). EPIC and APEX: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1447-1462.Warsta, L., Karvonen, T., Koivusalo, H., Paasonen-Kivekäs, M., & Taskinen, A. (2013). Simulation of water balance in a clayey, subsurface drained agricultural field with three-dimensional FLUSH model. Journal of hydrology, 476, 395-409.Watts, M. J., & Bohle, H. G. (1993). The space of vulnerability: the causal structure of hunger and famine. Progress in human geography, 17(1), 43-67.Williams, J. R., Jones, C. A., Gassman, P. W., & Hauck, L. M. (1995). Simulation of animal waste management with APEX. Innovations and New Horizons in Livestock and Poultry Manure Management, 1, 22-26.Xi, M., Lu, D., Gui, D., Qi, Z., & Zhang, G. (2017). Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization. Journal of Hydrology, 544, 456-466.ORIGINAL2022ruddylizettehuertasbeltran.pdf2022ruddylizettehuertasbeltran.pdfTrabajo de Gradoapplication/pdf520268https://repository.usta.edu.co/bitstream/11634/45180/1/2022ruddylizettehuertasbeltran.pdfb0ff5a242d951c8c278414f1d48599bcMD51open accessCarta aprobación facultad.pdfCarta aprobación facultad.pdfCarta aprobación facultadapplication/pdf405564https://repository.usta.edu.co/bitstream/11634/45180/3/Carta%20aprobaci%c3%b3n%20facultad.pdfc36c80eded4ec76ed4cfff0236cfd203MD53metadata only accessCarta derechos de autor.pdfCarta derechos de autor.pdfCarta derechos de autorapplication/pdf709494https://repository.usta.edu.co/bitstream/11634/45180/4/Carta%20derechos%20de%20autor.pdf6f76619ec8afd03493220a19862f13f4MD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/45180/6/license.txtaedeaf396fcd827b537c73d23464fc27MD56open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/45180/5/license_rdf217700a34da79ed616c2feb68d4c5e06MD55open accessTHUMBNAIL2022ruddylizettehuertasbeltran.pdf.jpg2022ruddylizettehuertasbeltran.pdf.jpgIM Thumbnailimage/jpeg5081https://repository.usta.edu.co/bitstream/11634/45180/7/2022ruddylizettehuertasbeltran.pdf.jpgb8331bd4f15e8c4bd479f2a53110a485MD57open accessCarta aprobación facultad.pdf.jpgCarta aprobación facultad.pdf.jpgIM Thumbnailimage/jpeg9306https://repository.usta.edu.co/bitstream/11634/45180/8/Carta%20aprobaci%c3%b3n%20facultad.pdf.jpgfbc124bad19b4701c8557d97b6b4dc17MD58open accessCarta derechos de autor.pdf.jpgCarta derechos de autor.pdf.jpgIM Thumbnailimage/jpeg8615https://repository.usta.edu.co/bitstream/11634/45180/9/Carta%20derechos%20de%20autor.pdf.jpgc83ecb852056c983a76b27f3eab4f742MD59open access11634/45180oai:repository.usta.edu.co:11634/451802022-10-26 03:05:44.7metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K