Selección de características usando el algoritmo LEM para la clasificación de señales EMG

In medical applications, the amputation of an arm or the lack of a limb of the body inspires the technological advances in the area of robotics for the creation of intelligent prosthesis replaces and recovers a percentage of the functionality of the absent limb of a person. One of the most important...

Full description

Autores:
Londoño Lopera, Juan Camilo
González Alzate, Juan Pablo
Lage Cano, Esteban Camilo
Vallejo Velasquez, Mónica Ayde
Ramírez Patiño, Juan Fernando
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/26845
Acceso en línea:
http://revistas.ustatunja.edu.co/index.php/ingeniomagno/article/view/1896
http://hdl.handle.net/11634/26845
Palabra clave:
Electromyography
classifier
gesture recognition
evolutionary algorithm
prosthesis
robotic hand
Electromiografía
clasificador
reconocimiento de gestos
algoritmo evolutivo
prótesis
mano robótica
Eletromiografia
classificador
reconhecimento de gestos
algoritmo evolutivo
prótese
mão robótica
Rights
License
Derechos de autor 2020 Ingenio Magno
Description
Summary:In medical applications, the amputation of an arm or the lack of a limb of the body inspires the technological advances in the area of robotics for the creation of intelligent prosthesis replaces and recovers a percentage of the functionality of the absent limb of a person. One of the most important bases for the development of robotic limbs is the analysis and study of EMG signals (surface electromyographic signals). EMG signals rovide information on the dynamics of a muscle in its different states and provide amplitude and frequency values that describes the movement, contraction and rest of a muscle. For an EMG signal, there are representative characteristics like the RMS value, Histogram, standard deviation, among other functions that allow characterizing a given signal in the time domain and frequency. The objective is to compare the most commonly used approaches and characteristics of EMG signals to differentiate between different signals that represent gestures or movements of the hand.