Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica
En los últimos años ha sido evidente la preocupación mundial frente al manejo de los lodos generados dentro del proceso de floculación, coagulación y filtrado que tienen lugar en la depuración de aguas residuales dada la alta generación de estos. En Europa se genera un promedio 10,9 millones de tone...
- Autores:
-
Linares Fajardo, Daniel Santiago
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/28585
- Acceso en línea:
- http://hdl.handle.net/11634/28585
- Palabra clave:
- Clean technologies
Biogas
Sludge
Environmental care
Energias alternativas
Tratamiento de aguas residuales
Cuidado del medio ambiente
Tecnologias limpias
Biogas
Lodos
- Rights
- openAccess
- License
- Atribución-CompartirIgual 2.5 Colombia
id |
SANTTOMAS2_a1961e8e5715da68916172441d754e0c |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/28585 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica |
title |
Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica |
spellingShingle |
Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica Clean technologies Biogas Sludge Environmental care Energias alternativas Tratamiento de aguas residuales Cuidado del medio ambiente Tecnologias limpias Biogas Lodos |
title_short |
Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica |
title_full |
Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica |
title_fullStr |
Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica |
title_full_unstemmed |
Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica |
title_sort |
Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica |
dc.creator.fl_str_mv |
Linares Fajardo, Daniel Santiago |
dc.contributor.advisor.spa.fl_str_mv |
Becerra Quiroz, Ana Paola |
dc.contributor.author.spa.fl_str_mv |
Linares Fajardo, Daniel Santiago |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0002-0238-1586 |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.es/citations?user=Eq5InnAAAAAJ&hl=es |
dc.contributor.cvlac.spa.fl_str_mv |
http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000004523 |
dc.subject.keyword.spa.fl_str_mv |
Clean technologies Biogas Sludge Environmental care |
topic |
Clean technologies Biogas Sludge Environmental care Energias alternativas Tratamiento de aguas residuales Cuidado del medio ambiente Tecnologias limpias Biogas Lodos |
dc.subject.lemb.spa.fl_str_mv |
Energias alternativas Tratamiento de aguas residuales Cuidado del medio ambiente |
dc.subject.proposal.spa.fl_str_mv |
Tecnologias limpias Biogas Lodos |
description |
En los últimos años ha sido evidente la preocupación mundial frente al manejo de los lodos generados dentro del proceso de floculación, coagulación y filtrado que tienen lugar en la depuración de aguas residuales dada la alta generación de estos. En Europa se genera un promedio 10,9 millones de toneladas al año, teniendo consigo impactos negativos relacionados con la emisión de compustos organicos volatiles (VOC), derivados de dióxido de nitrógeno (NOXs), óxidos de azufre (SOXs) y olores ofensivos, disminuyendo la calidad ambiental y deteriorando la salud humana afectando el sistema respiratorio, generación de afecciones en la piel debido a que contiene una gran variedad de elementos patógenos y sustancias tóxicas tales como: amoniaco, metano, ozono troposférico y compuestos halogenados Con base al contexto anteriormente mencionado como uno de los tantos escenarios existentes en la actualidad se han establecido y aplicado diferentes medidas para el manejo de este residuo, una de las medidas más utilizadas corresponde a la transformación de los lodos en abono y fertilizante orgánico dada la viabilidad económica del proceso y la reducción total de los lodos, los cuales son ingresados al interior de un biodigestor para finalmente ser adicionados a los cultivos. Todos las medidas, metodologías o tratamientos anteriormente mencionados conllevan impactos negativos por ende este trabajo busca plantear una alternativa con mayores beneficios ambientales, económicos y sociales. Mediante la utilización de los lodos como fuente de generación de energía eléctrica a través del biogás producido en la digestión anaerobia de los lodos. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-07-28T22:03:45Z |
dc.date.available.spa.fl_str_mv |
2020-07-28T22:03:45Z |
dc.date.issued.spa.fl_str_mv |
2020-07-24 |
dc.type.none.fl_str_mv |
bachelor thesis |
dc.type.local.spa.fl_str_mv |
Tesis de pregrado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Linares, D., (2020). Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/28585 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Linares, D., (2020). Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/28585 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Shiu, H., Lee, M., & Chiueh, P. (2017). Water reclamation and sludge recycling scenarios for sustainable resource management in a wastewater treatment plant in kinmen islands, taiwan. Deepnarain, N., Nasr, M., Amoah, I. D., Enitan-Folami, A. M., Reddy, P., Stenström, T. A., . . . Bux, F. (2020). Impact of sludge bulking on receiving environment using quantitative microbial risk assessment (QMRA)-based management for full-scale wastewater treatment plants. Amin, M. M., Taheri, E., Ghasemian, M., Puad, N. I. M., Dehdashti, B., & Fatehizadeh, A. (2020). Proposal of upgrading isfahan north wastewater treatment plant: An adsorption/bio-oxidation process with emphasis on excess sludge reduction and nutrient removal. Benito, M., Menacho, C., Chueca, P., Ormad, M. P., & Goñi, P. (2020). Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. Tong, J., Fang, P., Zhang, J., Wei, Y., Su, Y., & Zhang, Y. (2019). Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment. Benedetti, B., Majone, M., Cavaliere, C., Montone, C. M., Fatone, F., Frison, N., . . . Capriotti, A. L. (2020). Determination of multi-class emerging contaminants in sludge and recovery materials from waste water treatment plants: Development of a modified QuEChERS method coupled to LC–MS/MS Nie, E., Zheng, G., Gao, D., Chen, T., Yang, J., Wang, Y., & Wang, X. (2019). Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant [8] Verrelli, D. I., Dixon, D. R., & Scales, P. J. (2009). Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatment Chen, T., Yang, J., Wang, Y., & Wang, X. (2019). semisólido o líquido. La comprensión del comportamiento del flujo y las propiedades reológicas de los lodos de depuración en diferentes secciones de una planta de tratamiento de aguas residuales (EDAR) Byliński, H., Aszyk, J., Kubica, P., Szopińska, M., Fudala-Książek, S., & Namieśnik, J. (2019). Differences between selected volatile aromatic compound concentrations in sludge samples in various steps of wastewater treatment plant operations Felca, A. T. A., Barros, R. M., Tiago Filho, G. L., dos Santos, Ivan Felipe Silva, & Ribeiro, E. M. (2018). Analysis of biogas produced by the anaerobic digestion of sludge generated at wastewater treatment plants in the south of minas gerais, brazil as a potential energy source doi Praspaliauskas, M., & Pedišius, N. (2017). A review of sludge characteristics in lithuania's wastewater treatment plants and perspectives of its usage in thermal processes Pan, J., Cai, H., Zhang, Z., Liu, H., Li, R., Mao, H., . . . Zhai, L. (2018). Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reduction Bolaños-Benítez, V., McDermott, F., Gill, L., & Knappe, J. (2020). Engineered silver nanoparticle (ag-NP) behaviour in domestic on-site wastewater treatment plants and in sewage sludge amended-soils Jiménez-Silva, V. A., Santoyo-Tepole, F., Ruiz-Ordaz, N., & Galíndez-Mayer, J. (2019). Study of the ibuprofen impact on wastewater treatment mini-plants with bioaugmented sludge Martín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposal Edo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge Zhai, W., Qin, T., Li, L., Guo, T., Yin, X., Khan, M. I., . . . Xu, J. (2020). Abundance and diversity of microbial arsenic biotransformation genes in the sludge of full-scale anaerobic digesters from a municipal wastewater treatment plant Zheng, G., Wang, T., Niu, M., Chen, X., Liu, C., Wang, Y., & Chen, T. (2018). Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant Zheng, G., Yu, B., Wang, Y., Ma, C., & Chen, T. (2020). Removal of triclosan during wastewater treatment process and sewage sludge composting—A case study in the middle reaches of the yellow river Zhang, H., Rigamonti, L., Visigalli, S., Turolla, A., Gronchi, P., & Canziani, R. (2019). Environmental and economic assessment of electro-dewatering application to sewage sludge: A case study of an italian wastewater treatment plant Ruya, P. M., Purwadi, R., & Lim, S. S. (2020). Supercritical water gasification of sewage sludge for power generation– thermodynamic study on auto-thermal operation using aspen plus Olivier, J., Conrardy, J., Mahmoud, A., & Vaxelaire, J. (2015). Electro-dewatering of wastewater sludge: An investigation of the relationship between filtrate flow rate and electric current Visigalli, S., Turolla, A., Gronchi, P., & Canziani, R. (2017). Performance of electro-osmotic dewatering on different types of sewage sludge Díaz, I., Díaz-Curbelo, A., Pérez-Lemus, N., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2020). Traceability of organic contaminants in the sludge line of wastewater treatment plants: A comparison study among schemes incorporating thermal hydrolysis treatment and the conventional anaerobic digestion Li, L., Ai, J., Zhang, W., Peng, S., Dong, T., Deng, Y., . . . Wang, D. (2020). Relationship between the physicochemical properties of sludge-based carbons and the adsorption capacity of dissolved organic matter in advanced wastewater treatment: Effects of chemical conditioning Taboada-Santos, A., Lema, J. M., & Carballa, M. (2019). Energetic and economic assessment of sludge thermal hydrolysis in novel wastewater treatment plant configurations Lim, S., Jeon, W., Lee, J., Lee, K., & Kim, N. (2002). Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess Chen, L., Zhu, W., Lin, N., Mu, B., Fan, X., Wang, C., . . . Zhong, J. (2020). Mechanism of separation and removal of water from dewatered sludge using L-DME to dissolve hydrophilic organic matter Grassi, P., Drumm, F. C., Georgin, J., Franco, D. S. P., Foletto, E. L., Dotto, G. L., & Jahn, S. L. (2020). Water treatment plant sludge as iron source to catalyze a heterogeneous photo-fenton reaction Głąb, T., Żabiński, A., Sadowska, U., Gondek, K., Kopeć, M., Mierzwa-Hersztek, M., . . . Stanek-Tarkowska, J. (2020a). Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical properties Badza, T., Tesfamariam, E. H., & Cogger, C. G. (2020). Agricultural use suitability assessment and characterization of municipal liquid sludge: Based on south africa survey Zhang, W., Peng, Y., Zhang, L., Li, X., & Zhang, Q. (2020). Simultaneous partial nitritation and denitritation coupled with polished anammox for advanced nitrogen removal from low C/N domestic wastewater at low dissolved oxygen conditions Yu, Z., Yousaf, K., Ahmad, M., Yousaf, M., Gao, Q., & Chen, K. (2020). Efficient pyrolysis of ginkgo biloba leaf residue and pharmaceutical sludge (mixture) with high production of clean energy: Process optimization by particle swarm optimization and gradient boosting decision tree algorithm Zhong, R., Wang, C., Zhang, Z., Liu, Q., & Cai, Z. (2020). PCDD/F levels and phase distributions in a full-scale municipal solid waste incinerator with co-incinerating sewage sludge Zhao, J., Li, B., Wei, X., Zhang, Y., & Li, T. (2020). Slagging characteristics caused by alkali and alkaline earth metals during municipal solid waste and sewage sludge co-incineration Wang, Y., Liu, Y., Yang, W., Zhao, Q., & Dai, Y. (2020). Evaluation of combustion properties and pollutant emission characteristics of blends of sewage sludge and biomass Zha, J., Huang, Y., Clough, P. T., Dong, L., Xu, L., Liu, L., . . . Yu, M. (2020). Desulfurization using limestone during sludge incineration in a fluidized bed furnace: Increased risk of particulate matter and heavy metal emissions Hao, X., Chen, Q., van Loosdrecht, Mark C. M., Li, J., & Jiang, H. (2020). Sustainable disposal of excess sludge: Incineration without anaerobic digestion Schnell, M., Horst, T., & Quicker, P. (2020a). Thermal treatment of sewage sludge in germany: A review Bohórquez González, K., Pacheco, E., Guzmán, A., Avila Pereira, Y., Cano Cuadro, H., & Valencia, J. A. F. (2020). Use of sludge ash from drinking water treatment plant in hydraulic mortars Godoy, Luis Gabriel Graupner de, Rohden, A. B., Garcez, M. R., Costa, E. B. d., Da Dalt, S., & Andrade, Jairo José de Oliveira. (2019). Valorization of water treatment sludge waste by application as supplementary cementitious material Liu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Li, D., Pham, P. N., . . . Siddique, R. (2020). Properties and microstructure of concrete blocks incorporating drinking water treatment sludge exposed to early-age carbonation curing Liu, X., Shi, J., Zhao, Y., Li, Z., & Zhang, J. (2012). Experimental research on lime drying process of mechanical dewatered sludge from a wastewater treatment plant in beijing Di Maria, F., & Micale, C. (2017). Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an italian province Bedoya, K., Hoyos, O., Zurek, E., Cabarcas, F., & Alzate, J. F. (2020). Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in colombia Wang, Y., Feng, S., Bai, X., Zhao, J., & Xia, S. (2016). Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plants Di Fraia, S., Macaluso, A., Massarotti, N., & Vanoli, L. (2019). Energy, exergy and economic analysis of a novel geothermal energy system for wastewater and sludge treatment Lam, C. M., Hsu, S., Alvarado, V., & Li, W. M. (2020). Integrated life-cycle data envelopment analysis for techno-environmental performance evaluation on sludge-to-energy systems Bakshi, M., Liné, C., Bedolla, D. E., Stein, R. J., Kaegi, R., Sarret, G., . . . Larue, C. (2019). Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle study Mohammadi, A., Sandberg, M., Venkatesh, G., Eskandari, S., Dalgaard, T., Joseph, S., & Granström, K. (2019). Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar production Blanco, G., Santalla, E., Cordoba, V., Levy, A., (2017).Generacion de electricidada partir del bios capturado de residuos urbanos; Bonco interoamericano del desarrollo. Serrato, C., Cepeda, V. (2016)Metodologia para el calculo de energía extraida a partir de la biomasa en el departamento de cundinamarca; universidad distrital francisco jose de caldas |
dc.rights.*.fl_str_mv |
Atribución-CompartirIgual 2.5 Colombia Atribución-CompartirIgual 2.5 Colombia Atribución-CompartirIgual 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-sa/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-CompartirIgual 2.5 Colombia http://creativecommons.org/licenses/by-sa/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado de Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/28585/12/2020danillinares.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28585/13/carta%20derechos%20de%20autor.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28585/14/Carta_aprobacion_facultad_autoarchivo%20-%20Daniel%20Santiago%20Linares.pdf.jpg https://repository.usta.edu.co/bitstream/11634/28585/6/2020danillinares.pdf https://repository.usta.edu.co/bitstream/11634/28585/9/carta%20derechos%20de%20autor.pdf https://repository.usta.edu.co/bitstream/11634/28585/11/Carta_aprobacion_facultad_autoarchivo%20-%20Daniel%20Santiago%20Linares.pdf https://repository.usta.edu.co/bitstream/11634/28585/7/license_rdf https://repository.usta.edu.co/bitstream/11634/28585/10/license.txt |
bitstream.checksum.fl_str_mv |
5cd21b032b991dd58ab2642c7fdb90f1 b39745305c4f7132d5092de54f5ce684 f28c0c10032aeac54e6d63f23310b120 2c164ef5d50e4a0ee54a71095fab256d fd642ece293683a6bf914731335045a6 2a338342502d66cdb2639d3cd63ee0c7 2dbb03a7196739f552f6d7a82c5d4109 aedeaf396fcd827b537c73d23464fc27 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
noreply@usta.edu.co |
_version_ |
1782026100601257984 |
spelling |
Becerra Quiroz, Ana PaolaLinares Fajardo, Daniel Santiagohttps://orcid.org/0000-0002-0238-1586https://scholar.google.es/citations?user=Eq5InnAAAAAJ&hl=eshttp://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00000045232020-07-28T22:03:45Z2020-07-28T22:03:45Z2020-07-24Linares, D., (2020). Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctrica.http://hdl.handle.net/11634/28585reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn los últimos años ha sido evidente la preocupación mundial frente al manejo de los lodos generados dentro del proceso de floculación, coagulación y filtrado que tienen lugar en la depuración de aguas residuales dada la alta generación de estos. En Europa se genera un promedio 10,9 millones de toneladas al año, teniendo consigo impactos negativos relacionados con la emisión de compustos organicos volatiles (VOC), derivados de dióxido de nitrógeno (NOXs), óxidos de azufre (SOXs) y olores ofensivos, disminuyendo la calidad ambiental y deteriorando la salud humana afectando el sistema respiratorio, generación de afecciones en la piel debido a que contiene una gran variedad de elementos patógenos y sustancias tóxicas tales como: amoniaco, metano, ozono troposférico y compuestos halogenados Con base al contexto anteriormente mencionado como uno de los tantos escenarios existentes en la actualidad se han establecido y aplicado diferentes medidas para el manejo de este residuo, una de las medidas más utilizadas corresponde a la transformación de los lodos en abono y fertilizante orgánico dada la viabilidad económica del proceso y la reducción total de los lodos, los cuales son ingresados al interior de un biodigestor para finalmente ser adicionados a los cultivos. Todos las medidas, metodologías o tratamientos anteriormente mencionados conllevan impactos negativos por ende este trabajo busca plantear una alternativa con mayores beneficios ambientales, económicos y sociales. Mediante la utilización de los lodos como fuente de generación de energía eléctrica a través del biogás producido en la digestión anaerobia de los lodos.In recent years there has been a clear global concern about the management of sludge generated in the flocculation, coagulation and filtering process that takes place in the purification of wastewater due to the high generation of these. An average of 10.9 million tonnes per year is generated in Europe, resulting in negative impacts related to the emission of volatile organic compounds (VOCs), nitrogen dioxide (NOXs) derivatives, sulphur oxides (SOXs) and offensive odors, diminishing environmental quality and deteriorating human health affecting the respiratory system, generating skin conditions due to it containing a wide variety of pathogens and toxic substances such as: ammonia, methane, tropospheric ozone and halogenated compounds. Based on the aforementioned context as one of the many existing scenarios, different measures for the management of this waste have been established and implemented, one of the most widely used measures relates to the processing of sludge into fertiliser and organic fertiliser, given the economic viability of the process and the total reduction of sludge, which are fed into a biodigester and finally added to the crops. All the measures, methodologies or treatments mentioned above have negative impacts, therefore this paper seeks to propose an alternative with greater environmental, economic and social benefits. By using the sludge as a source of electricity generation through the biogas produced.Ingeniero Ambientalhttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAtribución-CompartirIgual 2.5 ColombiaAtribución-CompartirIgual 2.5 ColombiaAtribución-CompartirIgual 2.5 Colombiahttp://creativecommons.org/licenses/by-sa/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Aprovechamiento de lodos residuales de una planta de tratamiento de aguas residuales (PTAR) para la generación de energía eléctricabachelor thesisTesis de pregradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisClean technologiesBiogasSludgeEnvironmental careEnergias alternativasTratamiento de aguas residualesCuidado del medio ambienteTecnologias limpiasBiogasLodosCRAI-USTA BogotáShiu, H., Lee, M., & Chiueh, P. (2017). Water reclamation and sludge recycling scenarios for sustainable resource management in a wastewater treatment plant in kinmen islands, taiwan.Deepnarain, N., Nasr, M., Amoah, I. D., Enitan-Folami, A. M., Reddy, P., Stenström, T. A., . . . Bux, F. (2020). Impact of sludge bulking on receiving environment using quantitative microbial risk assessment (QMRA)-based management for full-scale wastewater treatment plants.Amin, M. M., Taheri, E., Ghasemian, M., Puad, N. I. M., Dehdashti, B., & Fatehizadeh, A. (2020). Proposal of upgrading isfahan north wastewater treatment plant: An adsorption/bio-oxidation process with emphasis on excess sludge reduction and nutrient removal.Benito, M., Menacho, C., Chueca, P., Ormad, M. P., & Goñi, P. (2020). Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs.Tong, J., Fang, P., Zhang, J., Wei, Y., Su, Y., & Zhang, Y. (2019). Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment.Benedetti, B., Majone, M., Cavaliere, C., Montone, C. M., Fatone, F., Frison, N., . . . Capriotti, A. L. (2020). Determination of multi-class emerging contaminants in sludge and recovery materials from waste water treatment plants: Development of a modified QuEChERS method coupled to LC–MS/MSNie, E., Zheng, G., Gao, D., Chen, T., Yang, J., Wang, Y., & Wang, X. (2019). Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant [8] Verrelli, D. I., Dixon, D. R., & Scales, P. J. (2009). Effect of coagulation conditions on the dewatering properties of sludges produced in drinking water treatmentChen, T., Yang, J., Wang, Y., & Wang, X. (2019). semisólido o líquido. La comprensión del comportamiento del flujo y las propiedades reológicas de los lodos de depuración en diferentes secciones de una planta de tratamiento de aguas residuales (EDAR)Byliński, H., Aszyk, J., Kubica, P., Szopińska, M., Fudala-Książek, S., & Namieśnik, J. (2019). Differences between selected volatile aromatic compound concentrations in sludge samples in various steps of wastewater treatment plant operationsFelca, A. T. A., Barros, R. M., Tiago Filho, G. L., dos Santos, Ivan Felipe Silva, & Ribeiro, E. M. (2018). Analysis of biogas produced by the anaerobic digestion of sludge generated at wastewater treatment plants in the south of minas gerais, brazil as a potential energy source doiPraspaliauskas, M., & Pedišius, N. (2017). A review of sludge characteristics in lithuania's wastewater treatment plants and perspectives of its usage in thermal processesPan, J., Cai, H., Zhang, Z., Liu, H., Li, R., Mao, H., . . . Zhai, L. (2018). Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement, nitrogen conservation, and greenhouse gas reductionBolaños-Benítez, V., McDermott, F., Gill, L., & Knappe, J. (2020). Engineered silver nanoparticle (ag-NP) behaviour in domestic on-site wastewater treatment plants and in sewage sludge amended-soilsJiménez-Silva, V. A., Santoyo-Tepole, F., Ruiz-Ordaz, N., & Galíndez-Mayer, J. (2019). Study of the ibuprofen impact on wastewater treatment mini-plants with bioaugmented sludgeMartín, J., Camacho-Muñoz, D., Santos, J. L., Aparicio, I., & Alonso, E. (2012). Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: Removal and ecotoxicological impact of wastewater discharges and sludge disposalEdo, C., González-Pleiter, M., Leganés, F., Fernández-Piñas, F., & Rosal, R. (2020). Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludgeZhai, W., Qin, T., Li, L., Guo, T., Yin, X., Khan, M. I., . . . Xu, J. (2020). Abundance and diversity of microbial arsenic biotransformation genes in the sludge of full-scale anaerobic digesters from a municipal wastewater treatment plantZheng, G., Wang, T., Niu, M., Chen, X., Liu, C., Wang, Y., & Chen, T. (2018). Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plantZheng, G., Yu, B., Wang, Y., Ma, C., & Chen, T. (2020). Removal of triclosan during wastewater treatment process and sewage sludge composting—A case study in the middle reaches of the yellow riverZhang, H., Rigamonti, L., Visigalli, S., Turolla, A., Gronchi, P., & Canziani, R. (2019). Environmental and economic assessment of electro-dewatering application to sewage sludge: A case study of an italian wastewater treatment plantRuya, P. M., Purwadi, R., & Lim, S. S. (2020). Supercritical water gasification of sewage sludge for power generation– thermodynamic study on auto-thermal operation using aspen plusOlivier, J., Conrardy, J., Mahmoud, A., & Vaxelaire, J. (2015). Electro-dewatering of wastewater sludge: An investigation of the relationship between filtrate flow rate and electric currentVisigalli, S., Turolla, A., Gronchi, P., & Canziani, R. (2017). Performance of electro-osmotic dewatering on different types of sewage sludgeDíaz, I., Díaz-Curbelo, A., Pérez-Lemus, N., Fdz-Polanco, F., & Pérez-Elvira, S. I. (2020). Traceability of organic contaminants in the sludge line of wastewater treatment plants: A comparison study among schemes incorporating thermal hydrolysis treatment and the conventional anaerobic digestionLi, L., Ai, J., Zhang, W., Peng, S., Dong, T., Deng, Y., . . . Wang, D. (2020). Relationship between the physicochemical properties of sludge-based carbons and the adsorption capacity of dissolved organic matter in advanced wastewater treatment: Effects of chemical conditioningTaboada-Santos, A., Lema, J. M., & Carballa, M. (2019). Energetic and economic assessment of sludge thermal hydrolysis in novel wastewater treatment plant configurationsLim, S., Jeon, W., Lee, J., Lee, K., & Kim, N. (2002). Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loessChen, L., Zhu, W., Lin, N., Mu, B., Fan, X., Wang, C., . . . Zhong, J. (2020). Mechanism of separation and removal of water from dewatered sludge using L-DME to dissolve hydrophilic organic matterGrassi, P., Drumm, F. C., Georgin, J., Franco, D. S. P., Foletto, E. L., Dotto, G. L., & Jahn, S. L. (2020). Water treatment plant sludge as iron source to catalyze a heterogeneous photo-fenton reactionGłąb, T., Żabiński, A., Sadowska, U., Gondek, K., Kopeć, M., Mierzwa-Hersztek, M., . . . Stanek-Tarkowska, J. (2020a). Fertilization effects of compost produced from maize, sewage sludge and biochar on soil water retention and chemical propertiesBadza, T., Tesfamariam, E. H., & Cogger, C. G. (2020). Agricultural use suitability assessment and characterization of municipal liquid sludge: Based on south africa surveyZhang, W., Peng, Y., Zhang, L., Li, X., & Zhang, Q. (2020). Simultaneous partial nitritation and denitritation coupled with polished anammox for advanced nitrogen removal from low C/N domestic wastewater at low dissolved oxygen conditionsYu, Z., Yousaf, K., Ahmad, M., Yousaf, M., Gao, Q., & Chen, K. (2020). Efficient pyrolysis of ginkgo biloba leaf residue and pharmaceutical sludge (mixture) with high production of clean energy: Process optimization by particle swarm optimization and gradient boosting decision tree algorithmZhong, R., Wang, C., Zhang, Z., Liu, Q., & Cai, Z. (2020). PCDD/F levels and phase distributions in a full-scale municipal solid waste incinerator with co-incinerating sewage sludgeZhao, J., Li, B., Wei, X., Zhang, Y., & Li, T. (2020). Slagging characteristics caused by alkali and alkaline earth metals during municipal solid waste and sewage sludge co-incinerationWang, Y., Liu, Y., Yang, W., Zhao, Q., & Dai, Y. (2020). Evaluation of combustion properties and pollutant emission characteristics of blends of sewage sludge and biomassZha, J., Huang, Y., Clough, P. T., Dong, L., Xu, L., Liu, L., . . . Yu, M. (2020). Desulfurization using limestone during sludge incineration in a fluidized bed furnace: Increased risk of particulate matter and heavy metal emissionsHao, X., Chen, Q., van Loosdrecht, Mark C. M., Li, J., & Jiang, H. (2020). Sustainable disposal of excess sludge: Incineration without anaerobic digestionSchnell, M., Horst, T., & Quicker, P. (2020a). Thermal treatment of sewage sludge in germany: A reviewBohórquez González, K., Pacheco, E., Guzmán, A., Avila Pereira, Y., Cano Cuadro, H., & Valencia, J. A. F. (2020). Use of sludge ash from drinking water treatment plant in hydraulic mortarsGodoy, Luis Gabriel Graupner de, Rohden, A. B., Garcez, M. R., Costa, E. B. d., Da Dalt, S., & Andrade, Jairo José de Oliveira. (2019). Valorization of water treatment sludge waste by application as supplementary cementitious materialLiu, Y., Zhuge, Y., Chow, C. W. K., Keegan, A., Li, D., Pham, P. N., . . . Siddique, R. (2020). Properties and microstructure of concrete blocks incorporating drinking water treatment sludge exposed to early-age carbonation curingLiu, X., Shi, J., Zhao, Y., Li, Z., & Zhang, J. (2012). Experimental research on lime drying process of mechanical dewatered sludge from a wastewater treatment plant in beijingDi Maria, F., & Micale, C. (2017). Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an italian provinceBedoya, K., Hoyos, O., Zurek, E., Cabarcas, F., & Alzate, J. F. (2020). Annual microbial community dynamics in a full-scale anaerobic sludge digester from a wastewater treatment plant in colombiaWang, Y., Feng, S., Bai, X., Zhao, J., & Xia, S. (2016). Scum sludge as a potential feedstock for biodiesel production from wastewater treatment plantsDi Fraia, S., Macaluso, A., Massarotti, N., & Vanoli, L. (2019). Energy, exergy and economic analysis of a novel geothermal energy system for wastewater and sludge treatmentLam, C. M., Hsu, S., Alvarado, V., & Li, W. M. (2020). Integrated life-cycle data envelopment analysis for techno-environmental performance evaluation on sludge-to-energy systemsBakshi, M., Liné, C., Bedolla, D. E., Stein, R. J., Kaegi, R., Sarret, G., . . . Larue, C. (2019). Assessing the impacts of sewage sludge amendment containing nano-TiO2 on tomato plants: A life cycle studyMohammadi, A., Sandberg, M., Venkatesh, G., Eskandari, S., Dalgaard, T., Joseph, S., & Granström, K. (2019). Environmental performance of end-of-life handling alternatives for paper-and-pulp-mill sludge: Using digestate as a source of energy or for biochar productionBlanco, G., Santalla, E., Cordoba, V., Levy, A., (2017).Generacion de electricidada partir del bios capturado de residuos urbanos; Bonco interoamericano del desarrollo.Serrato, C., Cepeda, V. (2016)Metodologia para el calculo de energía extraida a partir de la biomasa en el departamento de cundinamarca; universidad distrital francisco jose de caldasTHUMBNAIL2020danillinares.pdf.jpg2020danillinares.pdf.jpgGenerated Thumbnailimage/jpeg2834https://repository.usta.edu.co/bitstream/11634/28585/12/2020danillinares.pdf.jpg5cd21b032b991dd58ab2642c7fdb90f1MD512open accesscarta derechos de autor.pdf.jpgcarta derechos de autor.pdf.jpgGenerated Thumbnailimage/jpeg4308https://repository.usta.edu.co/bitstream/11634/28585/13/carta%20derechos%20de%20autor.pdf.jpgb39745305c4f7132d5092de54f5ce684MD513metadata only accessCarta_aprobacion_facultad_autoarchivo - Daniel Santiago Linares.pdf.jpgCarta_aprobacion_facultad_autoarchivo - Daniel Santiago Linares.pdf.jpgGenerated Thumbnailimage/jpeg3284https://repository.usta.edu.co/bitstream/11634/28585/14/Carta_aprobacion_facultad_autoarchivo%20-%20Daniel%20Santiago%20Linares.pdf.jpgf28c0c10032aeac54e6d63f23310b120MD514metadata only accessORIGINAL2020danillinares.pdf2020danillinares.pdfapplication/pdf1515627https://repository.usta.edu.co/bitstream/11634/28585/6/2020danillinares.pdf2c164ef5d50e4a0ee54a71095fab256dMD56open accesscarta derechos de autor.pdfcarta derechos de autor.pdfapplication/pdf237803https://repository.usta.edu.co/bitstream/11634/28585/9/carta%20derechos%20de%20autor.pdffd642ece293683a6bf914731335045a6MD59metadata only accessCarta_aprobacion_facultad_autoarchivo - Daniel Santiago Linares.pdfCarta_aprobacion_facultad_autoarchivo - Daniel Santiago Linares.pdfapplication/pdf308199https://repository.usta.edu.co/bitstream/11634/28585/11/Carta_aprobacion_facultad_autoarchivo%20-%20Daniel%20Santiago%20Linares.pdf2a338342502d66cdb2639d3cd63ee0c7MD511metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repository.usta.edu.co/bitstream/11634/28585/7/license_rdf2dbb03a7196739f552f6d7a82c5d4109MD57open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/28585/10/license.txtaedeaf396fcd827b537c73d23464fc27MD510open access11634/28585oai:repository.usta.edu.co:11634/285852023-07-19 18:32:32.515open accessRepositorio Universidad Santo Tomásnoreply@usta.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |