Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti
Los productos naturales han tomado un nuevo impulso en la búsqueda de compuestos capaces de controlar el Aedes aegypti. En esta investigación, los aceites esenciales (AEs) del genero Citrus y sus metabolitos mayoritarios, R-(+) y S-(-)-limoneno, se evaluaron como agentes larvicidas. El S-(-)-limonen...
- Autores:
-
Jaramillo Pérez, Víctor Mario
- Tipo de recurso:
- Masters Thesis
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/32507
- Acceso en línea:
- http://hdl.handle.net/11634/32507
- Palabra clave:
- Acetylcholinesterase
Aedes aegypti
Danio rerio
Larvicidal activity
R-(+)-limonene
S-(-)-limonene
Emulsion
Larvas de insectos
Insecticidas
Mosquitos
Insectos vectores
Monoterpenos
Emulsiones
Acetilcolinesterasa
Acetilcolinesterasa
Actividad larvicida
Aedes aegypti
Danio rerio
Aedes aegypti
Danio rerio
R-(+)-limoneno
S-(-)-limoneno
R-(+)-limoneno
Actividad larvicida
S-(-)-limoneno
Emulsión
- Rights
- closedAccess
- License
- Acceso cerrado
id |
SANTTOMAS2_9bf85acfa625b9eb47c6ad884a505011 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/32507 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti |
title |
Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti |
spellingShingle |
Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti Acetylcholinesterase Aedes aegypti Danio rerio Larvicidal activity R-(+)-limonene S-(-)-limonene Emulsion Larvas de insectos Insecticidas Mosquitos Insectos vectores Monoterpenos Emulsiones Acetilcolinesterasa Acetilcolinesterasa Actividad larvicida Aedes aegypti Danio rerio Aedes aegypti Danio rerio R-(+)-limoneno S-(-)-limoneno R-(+)-limoneno Actividad larvicida S-(-)-limoneno Emulsión |
title_short |
Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti |
title_full |
Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti |
title_fullStr |
Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti |
title_full_unstemmed |
Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti |
title_sort |
Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti |
dc.creator.fl_str_mv |
Jaramillo Pérez, Víctor Mario |
dc.contributor.advisor.spa.fl_str_mv |
Vargas Méndez, Leonor Yamile |
dc.contributor.author.spa.fl_str_mv |
Jaramillo Pérez, Víctor Mario |
dc.subject.keyword.spa.fl_str_mv |
Acetylcholinesterase Aedes aegypti Danio rerio Larvicidal activity R-(+)-limonene S-(-)-limonene Emulsion |
topic |
Acetylcholinesterase Aedes aegypti Danio rerio Larvicidal activity R-(+)-limonene S-(-)-limonene Emulsion Larvas de insectos Insecticidas Mosquitos Insectos vectores Monoterpenos Emulsiones Acetilcolinesterasa Acetilcolinesterasa Actividad larvicida Aedes aegypti Danio rerio Aedes aegypti Danio rerio R-(+)-limoneno S-(-)-limoneno R-(+)-limoneno Actividad larvicida S-(-)-limoneno Emulsión |
dc.subject.lemb.spa.fl_str_mv |
Larvas de insectos Insecticidas Mosquitos Insectos vectores Monoterpenos Emulsiones |
dc.subject.proposal.spa.fl_str_mv |
Acetilcolinesterasa Acetilcolinesterasa Actividad larvicida Aedes aegypti Danio rerio Aedes aegypti Danio rerio R-(+)-limoneno S-(-)-limoneno R-(+)-limoneno Actividad larvicida S-(-)-limoneno Emulsión |
description |
Los productos naturales han tomado un nuevo impulso en la búsqueda de compuestos capaces de controlar el Aedes aegypti. En esta investigación, los aceites esenciales (AEs) del genero Citrus y sus metabolitos mayoritarios, R-(+) y S-(-)-limoneno, se evaluaron como agentes larvicidas. El S-(-)-limoneno, fue el larvicida más activo con CL50 de 13.34; 15.97 y 19.22 ppm sobre las cepas Rockefeller, Piedecuesta y Bucaramanga respectivamente; fue encapsulado con Tween 80 y propilenglicol, formando micelas de tamaño nanométrico, inferior a 10 nm. La evaluación de la emulsión como larvicida dio una CL100 de 30 ppm. Los AEs y los metabolitos fueron capaces de inhibir la acetilcolinesterasa con valores entre 144.5 µg/mL y 256.0 µg/mL. El R-(+)-limoneno fue moderadamente tóxico sobre el organismo no objetivo Danio rerio con CL50 de 22.44 µg/mL. |
publishDate |
2021 |
dc.date.accessioned.spa.fl_str_mv |
2021-03-16T21:19:59Z |
dc.date.available.spa.fl_str_mv |
2021-03-16T21:19:59Z |
dc.date.issued.spa.fl_str_mv |
2021-03-13 |
dc.type.local.spa.fl_str_mv |
Tesis de maestría |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Maestría |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_bdcc |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
http://purl.org/coar/resource_type/c_bdcc |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Jaramillo-Pérez, V. M. (2021). Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombia |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/32507 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Jaramillo-Pérez, V. M. (2021). Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombia reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/32507 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Agilent Technologies. (2007). Guía de selección de columnas Agilent ZORBAX para HPLC. (pp. 33). Alavanja, M. C. R., Ross, M. K., & Bonner, M. R. (2013). Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA: A Cancer Journal for Clinicians 63(2), 120–142. https://doi.org/10.3322/caac.21170. Allaby, M. & Park, C. (2016). A Dictionary of Environment and Conservation (2nd ed.). Oxford, Reino Unido: Oxford University Press (pp 29). ISBN 0199641668. Alvarez, L. C., Ponce, G., Oviedo, M., Lopez, B., & Flores, A. E. (2014). Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Venezuela. Pest Management Science 70(8), 1262–1266. https://doi.org/10.1002/ps.3688. Anez, G., Chancey, C., Grinev, A., & Rios, M. (2012). Dengue virus and other arboviruses: a global view of risks. ISBT Science Series 7(1), 274–282. https://doi.org/10.1111/j.1751-2824.2012.01602.x. Anjali, C., Sharma, Y., Mukherjee, A., & Chandrasekaran, N. (2012). Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Management Science 68(2), 158–163. https://doi.org/10.1002/ps.2233. Assis, C. R. D., Guedes, A., Melo, V., Cristina, R., França, P., Carvalho, E. V. M. M., Bezerra, R.S., Carvalho Jr, L. B. (2012). Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Science of the Total Environment 441(1), 141–150. https://doi.org/10.1016/j. scitotenv.2012.09.058. ATSDR. (2003). Resumen de salud pública malatión. Consultado el 14 de julio de 2020, disponible en http://www.atsdr.cdc.gov/es/phs/es_phs154.pdf Attar, N. (2016). ZIKA virus circulates in new regions. Nature Reviews Microbiology 14(62), 1. https://doi.org/10.1038/nrmicro.2015.28 Bandyopadhyay, S., Lum, L. C. S., & Kroeger, A. (2006). Classifying dengue: A review of the difficulties in using the WHO case classification for dengue haemorrhagic fever. Tropical Medicine and International Health 11(8), 1238–1255. https://doi.org/10.1111/j.1365-3156.2006.01678.x Baraban, S. C., Taylor, M. R., Castro, P. A., & Baier, H. (2005). Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3), 759–768. https://doi.org/10.1016/j.neuroscience.2004.11.031. Barba, C., Toledano, R. M., Santa-María, G., Herraiz, M., & Martínez, R. M. (2013). Enantiomeric analysis of limonene and carvone by direct introduction of aromatic plants into multidimensional gas chromatography. Talanta 106(1), 97–103. https://doi.org/10.1016/j.talanta.2012.11.050. Barnard, E. A. (1974). Neuromuscular Transmission - Enzymatic Destruction of Acetylcholine. En Hubbard, John (Ed.) The peripheral nervous system. New York, Estados Unidos: Plenum (pp. 201-224). ISBN 978-1-4615-8699-9. Barrett, A. D. T. (2018). Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation perspective. npj Vaccines 3(1), 1–4. https://doi.org/10.1038/s41541-018-0061-9. Barrett, R., Chappell, C., Quick, M., & Fleming, A. (2006). A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnology Journal 1(6), 651–655. https://doi.org/10.1002/ biot.200600043. Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M. B., Dahl, C., & Kaiser, A. (2010). Mosquitoes and their control (2 ed.). Berlin, Alemania: Springer. (p. 509). ISBN 978-3-540-92874-4 Behiry, S. I., Nasser, R. A., El-Kareem, M. S. M. A., Ali, H. M., & Salem, M. Z. M. (2020). Mass spectroscopic analysis, MNDO quantum chemical studies and antifungal activity of essential and recovered oil constituents of lemon-scented gum against three common molds. Processes 8(3), 1 – 25. https://doi.org/10.3390/pr8030275. Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release 235(1), 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017. Bisset, J. A., Rodríguez, M. M., Ricardo, Y., Ranson, H., Pérez, O., Moya, M., & Vázquez, A. (2011). Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. Medical and Veterinary Entomology 25(3), 233–239. https://doi.org/10.1111/j.1365-2915.2011.00959.x. Bloomquist, J. R. (2003). Chloride channels as tools for developing selective insecticides. Archives of Insect Biochemistry and Physiology 54(4), 145–156. https://doi.org/10.1002/arch.10112. Bourne, Y., Grassi, J., Bougis, P. E., & Marchot, P. (1999). Conformational flexibility of the acetylcholinesterase tetramer suggested by x-ray crystallography. Journal of Biological Chemistry 274(43), 30370–30376. https://doi.org/10.1074/jbc.274.43.30370. Callaway, E., Cyranoski, D., Mallapaty, S., Stoye, E., & Tollefson, J. (2020). The coronavirus by the numbers. Nature 579(1), 482–483. https://doi.org/10.1038/d41586-020-00758-2. Campolo, O., Romeo, F. V., Algeri, G. M., Laudani, F., Malacrinó, A., Timpanaro, N., & Palmeri, V. (2016). Larvicidal effects of four citrus peel essential oils against the arbovirus vector Aedes albopictus (Diptera: Culicidae). Journal of Economic Entomology 109(1), 360–365. https://doi.org/10.1093/jee/tov270 Cao-Lormeau, V. M., Roche, C., Teissier, A., Robin, E., Berry, A. L., Mallet, H. P., Sall, A.A, & Musso, D. (2014). Zika virus, French Polynesia, South Pacific, 2013. Emerging Infectious Diseases 20(6), 1085–1086. https://doi.org/10.3201/eid2006.140138. Carreño, A.L., Vargas, L.Y., Duque, J.E. & Kouznetsov, V.V. (2014). Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever. European Journal of Medicinal Chemistry 78(1), 392–400. https://doi.org/10.1016/j.ejmech.2014.03.067 Carson, R. L. (1962). La primavera silenciosa (1 ed.). En Ros, J. (Ed.). Barcelona, España: Editorial Crítica. (pp. 5-14). ISBN 978-84-08-11924-1 CDC. (2013). Flaviviridae. Consultado el 22 de julio de 2020, disponible en https://www.cdc.gov/vhf/virus-families/flaviviridae.html#:~:text=The Flaviviridae are a family, and mortality throughout the world. Charcosset, C. (2016). Electrophoretic Mobility. En Drioli, E. & Giorno, L. (Eds.), Encyclopedia of Membranes. Berlin, Alemania: Springer Berlin Heidelberg. (p. 658). https://doi.org/10.1007/978-3-662-44324-8_208 Chávez, J., Córdova, O., & Vargas, F. (2005). Niveles de susceptibilidad a temefos en el vector del dengue en Trujillo, Perú. Anales de La Facultad de Medicina Lima 66(1), 53–56. https://doi.org/10.15381/anales.v66i1.1350 Chemical Book (2021a) Heptakis(2,6-di-o-methyl-3-o-''pentyl)-beta-cyclodextrin*. Consultado el 17 de febrero de 2021, disponible en https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3521650.htm Chemical Book (2021b) Heptakis(2,3-di-O-Methyl-6-O-tert-butyldiMethylsilyl)-β-cyclodextrin. Consultado el 17 de febrero de 2021, disponible en https://www.chemicalbook.com/ChemicalProductProperty_EN_CB82545174.htm Chen, W., & Yang, Q. (2020). Development of Novel Pesticides Targeting Insect Chitinases: A Minireview and Perspective. Journal of Agricultural and Food Chemistry 68(16), 4559–4565. https://doi.org/10.1021/acs.jafc.0c00888 Christie, W. W., & Han, X. (2012). Chromatographic analysis of lipids: general principles. En Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis (4 ed.) Filadelfia, Estados Unidos: Woodhead Publishing Limited (pp. 21–54). https://doi.org/10.1533/ 9780857097866.21 Chutia, M., Deka Bhuyan, P., Pathak, M. G., Sarma, T. C., & Boruah, P. (2009). Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT - Food Science and Technology 42(3), 777–780. https://doi.org/ 10.1016/j.lwt.2008.09.015. Clogston, J. D., & Patri, A. K. (2011). Zeta Potential Measurement. En Mc Neil, S.E. (Ed.), Characterization of Nanoparticles Intended for Drug Delivery (1 ed.). Nueva York, Estados Unidos: Springer. (pp. 63–70). https://doi.org/10.1007/978-1-60327-198-1. Co, I. N., & Gunnerson, K. J. (2019). Iatrogenic and Poison-Derived Acid Base Disorders. En Ronco, C., Bellomo, R., Kellum, J, A. & Ricci, Z (Eds.) Critical Care Nephrology (3 ed.) Filadelfia, Estados Unidos: Elsevier (pp. 417-423). https://doi.org/10.1016/B978-0-323-44942-7.00071-6 Cohn, C. D. (2018). Control Biológico de Plagas de la Agricultura (Tesis de pregrado en Agronomía). Universidad del Salvador, San Salvador, Salvador (pp. 7). Colegate, S. M., & Molyneux, R. J. (2007). Bioactive Natural Products: Detection, Isolation, and Structural Determination. (2 ed.) Boca ratón, Estados Unidos CRC Press (pp. 195-215). https://doi.org/10.1201/9781420006889 Čolović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology 11(3), 315–335. https://doi.org/10.2174/1570159x11311030006 Conti-Tronconi, B. M., Hunkapiller, M. W., Lindstrom, J. M., & Raftery, M. A. (1982). Subunit structure of the acetyicholine receptor from Electrophorus electricus. Proceedings of the National Academy of Sciences 79(21), 6489–6493. https://doi.org/10.1073/pnas.79.21.6489. Conti, B., Leonardi, M., Pistelli, L., Profeti, R., Ouerghemmi, I., & Benelli, G. (2013). Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector. Cordell, G. A. (2000). Biodiversity and drug discovery - A symbiotic relationship. Phytochemistry 55(6), 463–480. https://doi.org/10.1016/S0031-9422(00)00230-2. Crossthwaite, A. J., Bigot, A., Camblin, P., Goodchild, J., Lind, R. J., Slater, R., & Maienfisch, P. (2017). The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. Journal of Pesticide Science 42(3), 67–83. https://doi.org/10.1584/jpestics.D17-019 Da Botas, G. S., Cruz, R. A. S., De Almeida, F. B., Duarte, J. L., Araújo, R. S., Souto, R. N. P., Carvalho, J.C.T., Santos, M.G., Rocha, L., Pererira, V.L.P., & Fernandes, C. P. (2017). Baccharis reticularia DC. and limonene nanoemulsions: promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) control. Molecules 22(11), 1–14. https://doi.org/10.3390/molecules22111990. Darwish, M., Hoogstraal, H., Roberts, T., Ahmed, I., & Omar, F. (1983). A sero-epidemiological survey for certain in Pakistan arboviruses (Togaviridae). Transactions of the Royal Society of Tropical Medicine and Hygiene 77(4), 442–445. https://doi.org/10.1016/0035-9203(83)90106-2. Di, S., Liu, R., Tian, Z., Cheng, C., Chen, L., & Zhang, W. (2017). Assessment of tissue- specific accumulation, elimination and toxic effects of dichlorodiphenyltrichloroethanes (DDTs) in carp through aquatic food web. Scientific Reports 7(1), 1-15. https://doi.org/10.1038/s41598-017-02612-4 Diagne, C. T., Diallo, D., Faye, O., Ba, Y., Faye, O., Gaye, A., Dia, I., Faye, O., Weaver, S.C., Sall, A.A., & Diallo, M. (2015). Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infectious Diseases 15(1), 2–7. https://doi.org/10.1186/s12879-015-1231-2 Dias, C. N., & Moraes, D. F. C. (2014). Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: Review. Parasitology Research 113(2), 565–592. https://doi.org/ 10.1007/s00436-013-3687-6. Dick, G. W. A., Kitchen, S. F., & Haddow, A. J. (1952). Zika virus. I. Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene 46(5), 509–520. https://doi.org/10.1016/0035-9203(52)90042-4. Ditsuwan, T., Liabsuetrakul, T., Ditsuwan, V., & Thammapalo, S. (2012). Cost of standard indoor ultra-low-volume space spraying as a method to control adult dengue vectors. Tropical Medicine and International Health 17(6), 767–774. https://doi.org/10.1111/j.1365-3156.2012.02997.x. Djordjevic, D., Cercaci, L., Alamed, J., Mc Clements, D. J., & Decker, E. A. (2007). Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions. Journal of Agricultural and Food Chemistry 55(9), 3585–3591. https://doi.org/10.1021/jf063472r Duffy, M. R., Chen, T.-H., Hancock, W. T., Powers, A. M., Kool, J. L., Lanciotti, R. S., Pretrick, M., Marfel, M., Holzbauer, M.S., Dubray, C., Guillaumot, L., Griggs, A., Bel, M., Lambert, A., Laven, J., Kosoy, O., Panella, A., Biggerstaff, B.J., Fischer, M., & Hayes, E. B. (2009). Zika virus outbreak on Yap Island, Federated States of Micronesia. The New England Journal of Medicine 360(1), 2536–2543. https://doi.org/10.1056/NEJMoa0805715. Dulo, F., & Pal, M. (2017). Emerging viral zoonoses and their implications on public health. World Applied Sciences Journal 35(2), 188–198. https://doi.org/10.5829/idosi.wasj.2017.188.198. El-akhal, F., Lalami Abdelhakim, E. O., & Guemmouh, R. (2015). Larvicidal activity of essential oils of Citrus sinensis and Citrus aurantium (Rutaceae) cultivated in Morocco against the malaria vector Anopheles labranchiae (Diptera: Culicidae). Asian Pacific Journal of Tropical Disease 5(6), 458–462. https://doi.org/10.1016/S2222-1808(15)60815-5 Eliel, E. L., Wilen, S. H., & Mander, L. N. (1994). Stereoselective synthesis. En S. H. Wilen, & L. N. Mander (Eds.), Stereochemistry of organic compounds. Estados Unidos: Wiley Interscience (pp. 1191-1210). ISBN: 978-0-471-01670-0 Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9 Espinosa-Andrews, H. (2017). Encapsulación por coacervación compleja. En Espinosa-Andrews, H. & García-Márquez, E.(Eds.), Tecnologías de nano/microencapsulación de compuestos bioactivos. Guadalajara, México: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (p. 90). ISBN: 978-607-97548-3-9 Esser, H. J., Mögling, R., Cleton, N. B., Van Der Jeugd, H., Sprong, H., Stroo, A., Koopmans, M.P.G., de Boer, W. F., Reusken, C. B. E. M. (2019). Risk factors associated with sustained circulation of six zoonotic arboviruses: A systematic review for selection of surveillance sites in non-endemic areas. Parasites and Vectors 12(265), 1–17. https://doi.org/10.1186/s13071-019-3515-7. Esu, E., Lenhart, A., Smith, L., & Horstick, O. (2010). Effectiveness of peridomestic space spraying with insecticide on dengue transmission; Systematic review. Tropical Medicine and International Health 15(5), 619–631. https://doi.org/10.1111/j.1365-3156.2010.02489.x. Express. (2020). Terrifying new Zika virus strain could cause another epidemic in Brazil. Consultado del 5 de julio de 2020, diponible en https://www.express.co.uk/news/world/1301128/Zika-virus-Brazil-epidemic-faculty-of-sciences-and-technology-disease-news. Fagbami, A. H. (1979). Zika virus infections in Nigeria: Virological and seroepidemiological investigations in Oyo State. Journal of Hygiene 83(2), 213–219. https://doi.org/ 10.1017/S0022172400025997. Faye, O., Freire, C. C. M., Iamarino, A., Faye, O., de Oliveira, J. V. C., Diallo, M., Zanotto, P.M.A., & Sall, A. A. (2014). Molecular evolution of zika virus during its emergence in the 20th century. PLoS Neglected Tropical Diseases 8(1), e2636.1 - e2636.10. https://doi.org/10.1371/journal.pntd.0002636 FDA. (2020). CFR-Code of Federal Regulations Title 21, synthetic flavoring substances and adjuvants. Consultado del 7 de enero de 2021, disponible en https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.60&SearchTerm=limonene. Feng, J., Zhang, Q., Liu, Q., Zhu, Z., Mcclements, D. J., & Jafari, S. M. (2018). Application of Nanoemulsions in Formulation of Pesticides. En. Jafari, S. M. & McClements, D. J (Eds.), Nanoemulsions, Formulation, Applications, and Characterization Londres, Reino Unido: Academic Press (pp. 379–413). https://doi.org/10.1016/B978-0-12-811838-2.00012-6. Ferhat, M. A., Boukhatem, M. N., Hazzit, M., Meklati, B. Y., & Chemat, F. (2016). Cold pressing hydrodistillation and microwave dry distillation of Citrus essential oil from Algeria: A Comparative Study. Electronic Journal of Biology 12(S1) 30–41. ISSN 1860-3122. Field, L. M., Emyr Davies, T. G., O’Reilly, A. O., Williamson, M. S., & Wallace, B. A. (2017). Voltage-gated sodium channels as targets for pyrethroid insecticides. European Biophysics Journal 46(7), 675–679. https://doi.org/10.1007/s00249-016-1195-1. Finefield, J. M., Sherman, D. H., Kreitman, M., & Williams, R. M. (2012). Enantiomeric natural products: Occurrence and biogenesis. Angewandte Chemie 51(20), 4802–4836. https://doi.org/10.1002/anie.201107204. Fleming, A., Sato, M., & Goldsmith, P. (2005). High-throughput in vivo screening for bone anabolic compounds with zebrafish. Journal of Biomolecular Screening 10(8), 823–831. https://doi.org/ 10.1177/1087057105279952 Fonseca-González, I., Quiñones, M. L., Lenhart, A., & Brogdon, W. G. (2011). Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Management Science 67(4), 430–437. https://doi.org/10.1002/ps.2081 Forney, R. D. (1999). Importance of Pesticides in Integrated Pest Management. En Ragsdale. N.N. & Seiber, J. N. (Eds) Pesticides: Managing Risks and Optimizing Benefits Washington, Estados Unidos: American Chemical Society (pp. 174–197). https://doi.org/ 10.1021/bk-1999-0734.ch013 x Galanakis, C. (2015). Conventional extraction. En Galanakis, C. (Ed.), Food Waste Recovery: Processing Technologies and Industrial Techniques (1 ed.) Londres, Reino Unido: Academic Press (pp. 136–138). https://doi.org/10.1016/B978-0-12-800351-0.00006-7. Gao, J., Naughton, S. X., Beck, W. D., Hernandez, C. M., Wu, G., Yang, X., Bartlett, M.G., & Terry Jr, A. V. (2017). Chlorpyrifos and chlorpyrifos oxon impair the transport of membrane bound organelles in rat cortical axons. Neurotoxicology 62(1), 111–123. https://doi.org/10.1016/ j.neuro.2017.06.003.Chlorpyrifos. Garrison, A. W. (2006). Probing the enantioselectivity of chiral pesticides. Environmental Science & Technology 40(1), 16–23. https://doi.org/10.1584/jpestics.R08-03. Geetha, C. K., Shetty, N. J., & Harini, B. P. (2019). Larvicidal susceptibility studies of a few strains of Aedes vectors of Bengaluru, Karnataka, India. Journal of Communicable Diseases 51(1), 34–42. https://doi.org/10.24321/0019.5138.201905 Gómez-Biedma, S., Vivó, M., & Soria, E. (2001). Pruebas de significación en Bioestadística. Revista de Diagnóstico Biológico 50(4), 207–218. ISSN 0034-7973. Graca, M., Bongaerts, J. H. H., Stokes, J. R., & Granick, S. (2007). Friction and adsorption of aqueous polyoxyethylene (Tween) surfactants at hydrophobic surfaces. Journal of Colloid and Interface Science 315(2), 662–670. https://doi.org/10.1016/j.jcis.2007.06.057. Greay, S. J., & Hammer, K. A. (2015). Recent developments in the bioactivity of mono- and diterpenes: anticancer and antimicrobial activity. Phytochemistry Reviews 14(1), 1-6. https://doi.org/10.1007/s11101-011-9212-6. Grobuschek, N., Sriphong, L., Schmid, M. G., Lorànd, T., Aboul-Enein, H. Y., & Gübitz, G. (2002). Chiral separation of bioactive cyclic Mannich ketones by HPLC and CE using cellulose derivatives and cyclodextrins as chiral selectors. Journal of Biochemical and Biophysical Methods 53(1–3), 25–36. https://doi.org/10.1016/S0165-022X(02)00089-1. Guarín, O. D., & Barajas-Solano, A. F. (2015). Hidrodestilación asistida con microondas (MWHD) para la extracción de hidrolatos de plantas aromáticas. Revista Politecnica 11(21), 51–55. ISSN 2256-5353. Guemmouh, R., Greche, H., & Lalami, A. E. O. (2014). Valorisation en tant que bioinsecticide de deux huiles essentielles de Citrus sinensis et Citrus aurantium cultivées au centre du Maroc (Valorization as a bio-insecticide of essential oils of Citrus sinensis and Citrus aurantium cultivated in center of Morocco. Journal of Materials and Environmental Science 5(S1), 2319–2324. ISSN : 2028-2508. Hackley, V. A., & Clogston, J. D. (2015). Measuring the size of nanoparticles in aqueous media using batch-mode Dynamic Light Scattering. En NIST Special Publication (Ed) Estados Unidos: NIST. (pp. 17). https://doi.org/10.1007/978-1-60327-198-1_4. Hage, D. S. (2018). Chromatography. En Rifai, N., Horvath, A.R. & Wittwer, C.T (Eds.). Principles and Applications of Clinical Mass Spectrometry: Small Molecules, Peptides, and Pathogens Amsterdam, Netherlands: Elsevier (pp. 1-32). https://doi.org/10.1016/B978-0-12-816063-3.00001-3. Hategekimana, J., Chamba, M. V. M., Shoemaker, C. F., Majeed, H., & Zhong, F. (2015). Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids and Surfaces A: Physicochemical and Engineering Aspects 483(1), 70–80. https://doi.org/10.1016/j.colsurfa.2015.03.020. Hayes, E. B. (2009). Zika virus outside Africa. Emerging Infectious Diseases 15(9), 1347–1350. https://doi.org/10.3201/eid1509.090442. He, Z. J., Song, H., Zhang, Y. W., Wang, D. C., & Yao, S. (2015). Chiral stationary phases and their relationship with enantiomer structures in enantioseparation research of analytical laboratory. Journal of the Mexican Chemical Society 59(1), 43–49. https://doi.org/10.29356/jmcs.v59i1.13. Hener, U., Kreis, P., & Mosandl, A. (1991). Enantiomeric distribution of α-pinene, β-pinene and limonene in essential oils and extracts. part 3. oils for alcoholic beverages and seasonings. Flavour and Fragrance Journal 6(2), 109–111. https://doi.org/10.1002/ffj.2730060202. Higgs, S. (2016). Zika Virus: Emergence and Emergency. Vector-Borne and Zoonotic Diseases 16(2), 75–76. https://doi.org/10.1089/vbz.2016.29001.hig. Hodgson, E. (2012). Biotransformation of Individual Pesticides: Some Examples. En Hodgson, E (Ed.), Pesticide Biotransformation and Disposition (1 ed. Vol. 1) Londres, Reino Unido: Academic Press (pp. 195–208). https://doi.org/10.1016/B978-0-12-385481-0.00009-5. Hong, J. H., Khan, N., Jamila, N., Hong, Y. S., Nho, E. Y., Choi, J. Y., Lee, C. M., & Kim, K. S. (2017). Determination of Volatile Flavour Profiles of Citrus spp. Fruits by SDE-GC–MS and Enantiomeric Composition of Chiral Compounds by MDGC–MS. Phytochemical Analysis, 28(5), 392–403. https://doi.org/10.1002/pca.2686 Houghton, P. J., Ren, Y., & Howes, M. J. (2006). Acetylcholinesterase inhibitors from plants and fungi. Natural Product Reports 23(2), 181–199. https://doi.org/10.1039/b508966m. Hurtado, C. M., & Gutiérrez, M. (2005). Enfoque del paciente con intoxicación aguda por plaguicidas organofosforados. Revista de La Facultad de Medicina de La Universidad Nacional de Colombia 53(4), 244–258. ISSN 2357-3848. Ilisz, I., Pataj, Z., Berkecz, R., Szatmári, I., Fülöp, F., & Péter, A. (2009). Comparison of separation performances of cellulose-based chiral stationary phases in LC enantioseparation of aminonaphthol analogues. Chromatographia 70(5–6), 723–729. https://doi.org/10.1365/s10337-009-1262-1. INS (2015). Boletin Epidemiologico Semanal: Semana epidemiológica 52 de 2015 del 27 de dicimbre al 02 de enero. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2015%20Boletin%20 epidemiologico%20Semana%2052.pdf INS (2016). Boletin Epidemiologico Semanal: Semana epidemiológica número 52 del 2016 del 25 al 31 de diciembre. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2016%20Bolet%C3% ADn% 20epidemiol%C3%B3gico%20semana%2052%20-.pdf. INS (2017). Boletin epidemiologo semanal: Semana epidemiológica 52 de 2017 del 24 al 30 de diciembre. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2017%20Bolet%C3% ADn%20epidemiol%C3%B3gico%20semana%2052.pdf. INS. (2018). Boletin epidemiologico Semanal: Semana epidemiológica 52 de 2018 23 al 29 de diciembre. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2018%20Bolet%C3% ADn%20epidemiol%C3%B3gico%20semana%2052.pdf. INS. (2019). Boletin Epidemiologico Semanal: Semana epidemiológica número 52 de 2019 del 22 al 28 de diciembre. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2019_Boletin_epidemiologico_ semana_52.pdf. INS. (2020). Boletín Epidemiológico Semanal, Semana epidemiológica 53 de 2020 del 27 de diciembre al 02 de enero de 2021. Consultado el 7 de enero de 2021, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_ semana_53.pdf. Ioos, S., Mallet, H. P., Leparc Goffart, I., Gauthier, V., Cardoso, T., & Herida, M. (2014). Current Zika virus epidemiology and recent epidemics. Medecine et Maladies Infectieuses 44(7), 302–307. https://doi.org/10.1016/j.medmal.2014.04.008. Jaeger, A. S., Murrieta, R. A., Goren, L. R., Crooks, C. M., Moriarty, R. V., Weiler, A. M., Rybarczyk, S., Semler, M.R., Huffman, C., Mejia, M., Simmons, H.A., Fritsch M., Osorio, J.E., Eickhoff, J.C., O'Connor, S.L., Ebel, G.D., Friedrich, T.C., & Aliota, M. T. (2019). Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS Neglected Tropical Diseases 13(4), 1–18. https://doi.org/10.1371/journal.pntd.0007343 Jafari, S. M., Beheshti, P., & Assadpoor, E. (2012). Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum. Journal of Food Engineering 109(1), 1–8. https://doi.org/10.1016/j.jfoodeng.2011.10.016. Jia-Xu. (2014). Diagnóstico. Guías de Estudio de Medicina China (2da ed,), Madrid, España. Fundación Europea de MTC (pp. 29), ISBN: 711713500X, 9787117135009. Jirakanjanakit, N., Rongnoparut, P., Chareonviriyaphap, T., Duchon, S., & Yoksan, S. (2007). Insecticide Susceptible / Resistance Status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Díptera: Culicidae) in Thailand During 2003 – 2005. Journal of Economic Entomology 100(2), 545–550. https://doi.org/10.1603/0022-0493(2007)100[545:irsias]2.0.co;2. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451(1), 990–993. https://doi.org/10.1038/nature06536. Kai Seng, K., & Loong, W. V. (2019). Introductory Chapter: From Microemulsions to Nanoemulsions. En Kai Seng, K. & Loong, W. V. (Eds.), Nanoemulsions: Properties, Fabrications and Applications (pp. 1–7). https://doi.org/10.5772/intechopen.87104. Kaleka, A. S., Kaur, N., & Kour Bali, G. (2019). Larval Development and Molting. En Mikkola, H.J. (Ed.), Edible Insects (pp. 1–20). IntechOpen. https://doi.org/10.5772/intechopen.85530. Karlberg, A., Magnusson, K., & Nilsson, U. (1992). Air oxidation of D-limonene (the citrus solvent) creates potent allergens. Contact Dermatitis 26(5), 332–340. https://doi.org/10.1111/j.1600-0536.1992.tb00129.x. Kavitha, P., & Rao, J. V. (2008). Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish Gambusia affinis. Environmental Toxicology and Pharmacology 16(1), 192–198. https://doi.org/10.1016/j.etap.2008.03.010. Kawasaki, T., & Soai, K. (2010). Amplification of chirality as a pathway to biological homochirality. Journal of Fluorine Chemistry 131(4), 525–534. https://doi.org/10.1016/j.jfluchem.2009.12.014. Kim, J. H., & Scialli, A. R. (2011). Thalidomide: The tragedy of birth defects and the effective treatment of disease. Toxicological Sciences 122(1), 1–6. https://doi.org/10.1093/toxsci/kfr088 Kobayashi, H., Ito, Y., Komanoya, T., Hosaka, Y., Dhepe, P. L., Kasai, K., Haraa, K., & Fukuoka, A. (2011). Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry 13(2), 326–333. https://doi.org/10.1039/c0gc00666a. Komaiko, J. S., & Mc Clements, D. J. (2016). Formation of Food-Grade Nanoemulsions Using Low-Energy Preparation Methods: A Review of Available Methods. Comprehensive Reviews in Food Science and Food Safety 15(2), 331–352. https://doi.org/10.1111/1541-4337.12189. Konieczka, P. (2012). Validation and regulatory issues for sample preparation. En Pawliszyn, J (Ed.), Comprehensive Sampling and Sample Preparation. Analytical Techniques for Scientists (Vol. 2). Elsevier (pp. 699–711). https://doi.org/10.1016/B978-0-12-381373-2.00064-8. Kouznetsov, V. V. (2014). Conexión de Biología y Química vía Síntesis Orgánica dirigida a la Diversidad molecular. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 38(S1), 129-141. https://doi.org/10.18257/raccefyn.159. Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A. Q. N., Shearer, F. M., Barker, C. M., Moore, C.G., Carvalho R.G., Coelho, G.E., Van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I.R.F., Teng, H.T., Brady, O.J., Messina, J.P., Pigott, D.M., Scott, T.W., Smith, D.L., Wint, G.R., Golding, N., & Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. ELife 4(1), 1–18. https://doi.org/10.7554/eLife.08347. Kramer, V., Schnell, D., & Nickerson, K. (1983). Relative toxicity of organic solvents to Aedes aegypti larvae. Journal of Invertebrate Pathology 42(2), 285–287. https://doi.org/10.1016/0022-2011 (83)90076-9. Kromasil (2021) Kromasil 5-CelluCoat column. Consultado el 17 de febrero de 2021, disponible en https://www.kromasil.com/products/info.php?C05CCP25 Kularatne, S. A. M. (2015). Dengue fever. The BMJ - British Medical Journal 351, 1–10. https://doi.org/10.1136/bmj.h4661. Kuno, G. (2007). Research on dengue and dengue-like illness in East Asia and the Western Pacific during the first half of the 20th century. Reviews in Medical Virology 17(5), 327–341. https://doi.org/10.1002/rmv. Kuss, H. J., & Kromidas, S. (2009). Quantification in LC and GC. Weinheim, Germany: Wiley-VCH (p. 376). ISBN: 978-3-527-32301-2. Lalthazuali, & Mathew, N. (2017). Mosquito repellent activity of volatile oils from selected aromatic plants. Parasitology Research 116(2), 821–825. https://doi.org/10.1007/s00436-016-5351-4. Li, P. H., & Chiang, B. H. (2012). Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry 19(1), 192–197. https://doi.org/10.1016/j.ultsonch.2011.05.017. Li, P. H., & Lu, W. C. (2016). Effects of storage conditions on the physical stability of D-limonene nanoemulsion. Food Hydrocolloids 53(1), 218–224. https://doi.org/10.1016/j.foodhyd.2015.01.031. Lin, T., Cai, Z., Wu, H., & Luo, L. (2016). Changes in midgut gene expression following Bacillus thuringiensis (Bacillales: Bacillaceae) Infection in Monochamus alternatus (Coleoptera: Cerambycidae). BioOne 99(1), 60–66. https://doi.org/10.1653/024.099.0111. Little, T. (2015). Method Validation Essentials, Limit of Blank, Limit of Detection, and Limit of Quantitation. BioPharm International 28(4), 48–51. PMID 18852857. Liu, N. (2015). Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review of Entomology 60(1), 537–559. https://doi.org/10.1146/annurev-ento-010814-020828. London, L., Flisher, A. J., Wesseling, C., Mergler, D., & Kromhout, H. (2005). Suicide and exposure to organophosphate insecticides: Cause or effect? American Journal of Industrial Medicine 47(4), 308–321. https://doi.org/10.1002/ajim.20147. Loukotková, L., Rambousková, M., Bosáková, Z., & Tesařová, E. (2008). Cellulose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phases as effective tools for enantioselective HPLC separation of structurally different disubstituted binaphthyls. Chirality 20(8), 900–909. https://doi.org/10.1002/chir.20585. Maestre, R. S., Rey, G. V., De Las A. Salas, J., Vergara, C. S., Santacoloma, L. V., Goenaga, S. O., & Carrasquilla, M. C. F. (2009). Susceptibilidad de Aedes aegypti (Díptera: Culicidae) a temefos en Atlántico-Colombia. Revista Colombiana de Entomologia 35(2), 202–205. ISSN 2665-4385. Mahdavi, S. A., Jafari, S. M., Ghorbani, M., & Assadpoor, E. (2014). Spray-Drying microencapsulation of anthocyanins by natural biopolymers: A review. Drying Technology 32(5), 509–518. https://doi.org/10.1080/07373937.2013.839562. Maia, A. S., Ribeiro, A. R., Castro, P. M. L., & Tiritan, M. E. (2017). Chiral analysis of pesticides and drugs of environmental concern: Biodegradation and enantiomeric fraction. Symmetry 9(9), 1–25. https://doi.org/10.3390/sym9090196. Malvern Instruments. (2004). Zetasizer Nano Series User Manual (pp 2.1 - 2.3). Malvern Panalytical. (2020). Dispersión de luz electroforética (ELS). Consultado el 24 septimbre de 2020, disponible en: https://www.malvernpanalytical.com/es/products/technology/light-scattering/ electrophoretic-light-scattering Malvern Panalytical. (2021). Dispersión de luz dinámica (DLS). Consultado el 21 de enero de 2021, disponible en https://www.malvernpanalytical.com/es/products/technology/light-scattering/dynamic-light-scattering Marcondes, C. B., & Ximenes, M. de F. F. de M. (2016). Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical 49(1), 4–10. https://doi.org/10.1590/0037-8682-0220-2015. Marine, S. S., Clemons, J. (2003). Determination of limonene oxidation products using SPME and GC-MS. Journal of Chromatographic Science 41(1), 31–35. https://doi.org/10.1093/chromsci/41.1.31 Martins, A. J., Lins, R. M. M. D. A., Linss, J. G. B., Peixoto, A. A., & Valle, D. (2009). Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil. American Journal of Tropical Medicine and Hygiene 81(1), 108–115. https://doi.org/ 10.4269/ajtmh.2009.81.108. Massoulié, J., Bacou, F., Barnard, E., Chatonnet, A., Doctor, B. P., & Quinn, D. M. (1991). Cholinesterases. Structure, function, mechanism, genetics and cell biology. In ACS Conference proceedings series. Washington: Estados Unidos (pp. 2–398). Massoulié, J., & Bon, S. (1982). The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annual Review of Neuroscience 5(1), 57–106. https://doi.org/10.1146/annurev.ne. 05.030182.000421 Méndez-Jérez, K., & Jaramillo-Pérez, V. (2017). Evaluación de la susceptibilidad y resistencia de larvas de Aedes aegypti a metabolitos secundarios de plantas aromáticas y medicinales (Tesis de pregrado en Química Ambiental). Universidad Santo Tomás. Bucaramanga, Colombia (pp. 46 - 48). Menichini, F., Tundis, R., Loizzo, M. R., Bonesi, M., Marrelli, M., Statti, G. A., Menichini, F., & Conforti, F. (2009). Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia 80(5), 297–300. https://doi.org/10.1016/j.fitote.2009.03.008. Min. Agricultura. (2019). Cadena de Citricos; Indicadores e instrumentos. Consultado el 6 de julio de 2020. Disponible en: https://sioc.minagricultura.gov.co/Citricos/Documentos/2019-06-30Cifras Sectoriales.pdf Moldoveanu, S. C., & David, V. (2013). Parameters that Characterize HPLC Analysis. En: Moldoveanu S. C. & David V. (Eds.), Essentials in Modern HPLC SeparationsWaltham, Estados Unidos: Elsevier. (pp. 53–83) https://doi.org/10.1016/b978-0-12-385013-3.00002-1. Möllenbeck, S., König, T., Schreier, P., Schwab, W., Rajaonarivony, J., & Ranarivelo, L. (1997). Chemical composition and analyses of enantiomers of essential oils from Madagascar. Flavour and Fragrance Journal 12(2), 63–69. https://doi.org/10.1002/(sici)1099-1026(199703)12:2<63aid-ffj614>3.3.co;2-q. Mordor Intelligence. (2020). Limonene Market - Growth, Trends and Forecasts (2020 - 2025). Consultado del 17 de julio de 2020, disponible en https://www.mordorintelligence.com/industry-reports/limonene-market. Morehouse, B. R., Kumar, R. P., Matos, J. O., Olsen, S. N., Entova, S., & Oprian, D. D. (2017). Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis. Biochemistry 56(12), 1706–1715. https://doi.org/10.1016/j.physbeh.2017.03.040. Mostafalou, S., & Abdollahi, M. (2017). Pesticides: an update of human exposure and toxicity. Archives of Toxicology 91(2), 549–599. https://doi.org/10.1007/s00204-016-1849-x. Murphey, R. D., & Zon, L. I. (2006). Small molecule screening in the zebrafish. Methods 39(3), 255–261. https://doi.org/10.1016/j.ymeth.2005.09.019. Musso, D. (2015). Zika virus transmission from French Polynesia to Brazil. Emerging Infectious Diseases 21(10), 1887–1889. https://doi.org/10.3201/eid2110.151125. Nabel, G. J., & Zerhouni, E. A. (2016). Once and future epidemics: Zika virus emerging. Science Translational Medicine 8(330), 1–3. https://doi.org/10.1126/scitranslmed.aaf4548. Nan, A. (2015). Miscellaneous Drugs, Materials, Medical Devices and Techniques. En Ray, S.D (Ed.) Side Effects of Drugs Annual (1ra ed., Vol. 37) Ámsterdam, Holanda: Elsevier (pp. 603–619). https://doi.org/10.1016/bs.seda.2015.06.007 National Institute of Neurological Disorders and Stroke. (2019). Encephalopathy Information Page. Consultado el 2 de junio de 2020, disponible en https://www.ninds.nih.gov/Disorders/All-Disorders/Encephalopathy-Information-Page. National Pesticide Information Center. (2009). Chlorpyrifos. Consultado el 6 de enero de 2021, disponible en http://npic.orst.edu/factsheets/archive/chlorptech.html#references Noisakran, S., Chokephaibulkit, K., Songprakhon, P., Onlamoon, N., Hsiao, H. M., Villinger, F., Ansari, A., & Perng, G. C. (2009). A re-evaluation of the mechanisms leading to dengue hemorrhagic fever. Annals of the New York Academy of Sciences 1171(S1), E24–E25. https://doi.org/10.1111/j.1749-6632.2009.05050.x. Ocampo, C. B., Salazar-Terreros, M. J., Mina, N. J., McAllister, J., & Brogdon, W. (2011). Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica 118(1), 37–44. https://doi.org/10.1016/j.actatropica.2011.01.007. Oliveira, A. E. M. F. M., Duarte, J. L., Cruz, R. A. S., Souto, R. N. P., Ferreira, R. M. A., Peniche, T., da Conceição, E.C., de Oliveira, L.A.R., Faustino, S. M.M., Florentino, A.C., Carvalho, J.C.T. & Fernandes, C. P. (2017). Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. Journal of Nanobiotechnology 15(1), 1–11. https://doi.org/10.1186/s12951-016-0234-5 OMS. (2020). Dengue y dengue grave. Consultado el 26 de mazco de 2020, disponible en http://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue. OPS. (2010). Aedes Aegypti: medidas para el control del vector. Consultado el 26 de marzo de 2020, disponible en https://www.paho.org/hq/index.php?option=com_content&view=article&id=4503: 2010-aedes-aaegypti-medidas-control-vector&Itemid=40264&lang=es. OPS. (2019). Epidemiological Update Dengue. Consultado el 26 de mazco de 2020, disponible en https://www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=dengue-2217&alias=50963-11-november-2019-dengue-epidemiological-update-1&Itemid=270&lang=en Padhan, D., Pattnaik, S., & Behera, A. (2017). Growth-arresting activity of acmella essential oil and its isolated component D-limonene (1,8-p-menthadiene) against Trichophyton rubrum (microbial type culture collection 296). Pharmacognosy Magazine 13(51), 555–560. https://doi.org/10.4103/ pm.pm_65_17 Palmer, T., & Bonner, P. L. (2011). Enzyme Inhibition. En Enzymes: Biochemistry, Biotechnology, Clinical Chemistry (2 ed.) Cambridge, Reino Unido: Woodhead Publishing Limited (pp. 126–152). https://doi.org/10.1533/9780857099921.2.126. Pasquali, R. C., Taurozzi, M. P., & Bregni, C. (2008). Some considerations about the hydrophilic-lipophilic balance system. International Journal of Pharmaceutics 356(1–2), 44–51. https://doi.org/ 10.1016/j.ijpharm.2007.12.034. Patel, S., & Goyal, A. (2017). Chitin and chitinase: Role in pathogenicity, allergenicity and health. International Journal of Biological Macromolecules 97, 331–338. https://doi.org/10.1016/j. ijbiomac.2017.01.042. Pavela, R., Maggi, F., Lupidi, G., Cianfaglione, K., Dauvergne, X., Bruno, M., & Benelli, G. (2017). Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus say and Spodoptera littoralis (Boisd.). Industrial Crops and Products 109(15), 603–610. https://doi.org/10.1016/j.indcrop.2017.09.013. Peng, W., & Ding, F. (2017). Enantioselective recognition of an isomeric ligand by a biomolecule: Mechanistic insights into static and dynamic enantiomeric behavior and structural flexibility. Molecular BioSystems 13(11), 2226-2234. https://doi.org/10.1039/c7mb00378a. Peniche, T., Duarte, J. L., Amaral, F. A. S., Sarquis, I. R., Sarquis, R., Cruz, R. A. S., Oliveira, A.E.F.M., Ferreira, R.M.A., Rocha, L., Tietbohl, L.A.C., Florentino, A.C., Carvalho, J.C.T., Souto, R.N.P., & Fernandes, C. P. (2019). Hyptis suaveolens (L.) Poit. essential oil: a raw material for a larvicidal nano-emulsion. Latin American Journal of Pharmacy 38(5), 938–944. ISSN 2362-3853. Peterson, R. T., Link, B. A., Dowling, J. E., & Schreiber, S. L. (2000). Small molecule developmental screens reveal the logic and timing of vertebrate development. Proceedings of the National Academy of Sciences 97(24), 12965–12969. https://doi.org/10.1073/pnas.97.24.12965. Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. Journal of Colloid and Interface Science 352(1), 128–135. https://doi.org/10.1016/j.jcis.2010.08.021. Poland, G. A., Ovsyannikova, I. G., & Kennedy, R. B. (2019). Zika Vaccine Development: Current Status. Mayo Clinic Proceedings 94(12), 2572–2586. https://doi.org/10.1016/j.mayocp.2019.05.016. Polo-Díez, L. M. (2015). Fundamentos de Cromatografía. Madrid, España: Dexrea Editorial (pp. 90). ISBN: 9788416277575 Rai, V. K., Mishra, N., Yadav, K. S., & Yadav, N. P. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. Journal of Controlled Release 270(1), 203–225. https://doi.org/10.1016/j.jconrel.2017.11.049. Rajashekar, Y., & Shivanandappa, T. (2017). Mode of action of the natural insecticide, decaleside involves sodium pump inhibition. PLoS ONE 12(1), 1–15. https://doi.org/10.1371/ journal.pone.0170836. Ramírez-Sánchez, K., Alvarado-Hidalgo, F., Ardao, I., & Starbird-Pérez, R. (2018). Enzymatic inhibition constant of acetylcholinesterase for the electrochemical detection and sensing of chlorpyrifos. Journal of Natural Resources and Development 8(1), 9–14. https://doi.org/ 10.5027/jnrd.v8i0.02 Rao, J. V., Pavan, Y. S., & Madhavendra, S. S. (2003). Toxic effects of chlorpyrifos on morphology and acetylcholinesterase activity in the earthworm, Eisenia foetida. Ecotoxicology and Environmental Safety 54(3), 296–301. https://doi.org/10.1016/s0147-6513(02)00013-1. Rawlins, S. C. (1998). Spatial distribution of insecticide resistance in caribbean populations of Aedes aegypti and its significance. Revista Panamericana de Salud Publica 4(4), 243–251. https://doi.org/10.1590/s1020-49891998001000004. Ríos, J. L. (2016). Essential oils: What they are and how the terms are used and defined. En Preedy, V.R. (ED) Essential Oils in Food Preservation, Flavor and Safety. Londres, Reino Unido: Academic (pp. 3 - 10)Press https://doi.org/10.1016/B978-0-12-416641-7.00001-8. Rosado-Solano, D. N., Jaramillo-Pérez, V. M., Kouznetsov, V. V., Restrepo-Manrique, R., Puerto-Galvis, C. E., & Vargas-Méndez, L. Y. (2018). Actividad larvicida de aceites esenciales y extractos de plantas colombianas frente a Culex quinquefasciatus (Díptera: Culicidae). ITECKNE 15(2), 79–87. https://doi.org/10.15332/iteckne.v15i2.2069. Rosenberg, R. (2015). Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cellular and Molecular Life Sciences 72(6), 1115–1125. https://doi.org/10.1007/s00018-014-1785-y.Detecting. Rubinstein, A. (2003). Zebrafish: from disease modeling to drug discovery. Current Opinion in Drug Discovery & Development 6(2), 218–223. ISSN 13676733. Ruiz-López, F., González-Mazo, A., Vélez-Mira, A., Gómez, G. F., Zuleta, L., Uribe, S., & Vélez-Bernal, I. D. (2016). Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. Biomédica 36(2), 303-308. https://doi.org/10.7705/biomedica.v36i2.3301 Ruppert, E., & Barnes, R. (2000). Insectos. Zoología de los Invertebrados. (6 ed.). Mexico, Mexico: McGraw-Hill (p. 1001). ISBN 968-25-2452-0. Saberi, A. H., Fang, Y., & McClements, D. J. (2013). Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: Effect of propylene glycol and ethanol on formation, stability, and properties. Food Research International 54(1), 812–820. https://doi.org/10.1016/j.foodres. 2013.08.028 Saelim, V., Brogdon, W. G., Rojanapremsuk, J., Suvannadabba, S., Pandii, W., Jones, J. W., & Sithiprasasna, R. (2005). Bottle and biochemical assays on temephos resistance in Aedes aegypti in Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health 36(2), 417–425. PMID15916049 Santacoloma, L., Chaves, B., & Brochero, H. L. (2012). Estado de la susceptibilidad de poblaciones naturales del vector del dengue a insecticidas en 13 localidades de Colombia. Biomédica 32(3), 333–343. https://doi.org/10.7705/biomedica.v32i3.680. Santos, S. R. L., Melo, M. A., Valença, A., Santos, R. L. C., Sousa, D. P. De, & Cavalcanti, S. C. H. (2011). Structure – activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 84(1), 150–153. https://doi.org/10.1016/j.chemosphere.2011.02.018. Sattelle, D. B., Cordova, D., & Cheek, T. R. (2008). Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invertebrate Neuroscience 8(3), 107–119. https://doi.org/10.1007/ s10158-008-0076-4. Shafaati, A. (2007). Chiral Drugs: Current Status of the Industry and the Market. Iranian Journal of Pharmaceutical Research 6(2), 73–74. https://doi.org/10.22037/ijpr.2010.702. Shan, C., Xie, X., Barrett, A. D. T., Garcia-Blanco, M. A., Tesh, R. B., Vasconcelos, P. F. D. C., Vasilakis, N., Weaver, S.C., & Shi, P. Y. (2016). Zika Virus: Diagnosis, therapeutics, and vaccine. ACS Infectious Diseases 2(3), 170–172. https://doi.org/10.1021/acsinfecdis.6b00030. Shetty, V., Sanil, D., & Shetty, N. J. (2013). Insecticide susceptibility status in three medically important species of mosquitoes, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, from Bruhat Bengaluru Mahanagara Palike, Karnataka, India. Pest Management Science 69(2), 257–267. https://doi.org/10.1002/ps.3383. Shivanandappa, T., & Rajashekar, Y. (2014). Mode of action of plant-derived natural insecticides. En Singh, D. (Ed.), Advances in Plant Biopesticides. Nueva Delhi, India: Springer India (pp. 323–346). https://doi.org/10.1007/978-81-322-2006-0. Shrivastava, A., & Gupta, V. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists 2(1), 21-25. https://doi.org/ 10.4103/2229-5186.79345. Shutava, H. G., Kavalenka, N. A., Supichenka, H. N., Leontiev, V. N., & Shutava, T. G. (2014). Essential oils of Lamiaceae with high content of α-, β-pinene and limonene enantiomers. Journal of Essential Oil-Bearing Plants 17(1), 18–25. https://doi.org/10.1080/0972060X.2014.884816. Silva, E. K., Gomes, M. T. M. S., Hubinger, M. D., Cunha, R. L., & Meireles, M. A. A. (2015). Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids 47(1), 1–13. https://doi.org/10.1016/j.foodhyd.2015.01.001. Sigma-Aldrich (2021a) Tween 20. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sial/p1379?lang=en®ion=CO Sigma-Aldrich (2021b) Tween 40. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sigma/p1504?lang=en®ion=CO Sigma-Aldrich (2021c) Tween 80. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sial/p1754?lang=en®ion=CO Sigma-Aldrich (2021d) Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sigma/h4645?lang=en®ion=CO Sigma-Aldrich (2021e) Acetylcholine iodide. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sigma/a7000?lang=en®ion=CO Smith, L. B., Kasai, S., & Scott, J. G. (2016). Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology 133(1), 1–12. https://doi.org/10.1016/j.pestbp.2016.03.005. Smith, S. W. (2009). Chiral toxicology: It’s the same thing only different. Toxicological Sciences 110(1), 4–30. https://doi.org/10.1093/toxsci/kfp097. Smith, W., & Rybczynski, R. (2012). Prothoracicotropic Hormone. En Gilbert, L. I.(Ed.), Insect Endocrinology. Londres: Reino Unido: Academic Press (pp. 1–62). https://doi.org/10.1016/B978-0-12-384749-2.10001-9. Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid and Interface Science 10(3–4), 102–110. https://doi.org/10.1016/ j.cocis.2005.06.004. Song, M., Cho, S., & Kim, J. (2002). Novel evaluation method for the water-in-oil (W/O) emulsion stability by turbidity ratio measurements. Korean Journal of Chemical Engineering 19(3), 425–430. https://doi.org/10.1007/BF02697151 Sonneville-Aubrun, O., Simonnet, J. T., & L’Alloret, F. (2004). Nanoemulsions: a new vehicle for skincare products. Advances in Colloid and Interface Science 108-109(1), 145–149. https://doi.org/10.1016/s0001-8686(03)00146-5. Souza, J. M., Caldas, A. L., Tohidi, S. D., Molina, J., Souto, A. P., Fangueiro, R., & Zille, A. (2014). Properties and controlled release of chitosan microencapsulated limonene oil. Brazilian Journal of Pharmacognosy 24(6), 691–698. https://doi.org/10.1016/j.bjp.2014.11.007. Stern, H. M., & Zon, L. I. (2003). Cancer genetics and drug discovery in the zebrafish. Nature Reviews Cancer 3(7), 533–539. https://doi.org/10.1038/nrc1126. Stevens, J., Breckenridge, C. B., & Wright, J. (2010). The Role of P-glycoprotein in Preventing Developmental and Neurotoxicity: Avermectins - A Case Study. En Krieger, R (Ed.), Hayes’ Handbook of Pesticide Toxicology (3 ed) Londres: Reino Unido: Academic Pres (pp 2093-2110). https://doi.org/10.1016/B978-0-12-374367-1.00097-5. Suárez, M. F., & Nelson, M. J. (1981). Registro de altitud del Aedes Aegypti en Colombia. Biomédica 1(4), 225. https://doi.org/10.7705/biomedica.v1i4.1809. Tabashnik, B. E., Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M., & Carrière, Y. (2014). Defining terms for proactive management of resistance to Bt Crops and Pesticides. Journal of Economic Entomology 107(2), 496–507. https://doi.org/10.1603/EC13458. Tang, H., Hammack, C., Ogden, S. C., Wen, Z., Qian, X., Li, Y., Ya, B., Shin, J., Zhang, F., Lee, E.M., Christian, K.M., Didier, R.A., Jin, P., Song, H., & Ming, G.L. (2016). Zika virus infect human cortical neural precursors and attenuates their growth. Cell Stem Cell 18(5), 587–590. https://doi.org/10.1016/j.stem.2016.02.016.Zika. Tapiero, J., Salamanca, G., & Marín, C. (2019). Analysis of volatile compounds and antioxidant activity of the essential oil of oregano (Origanum vulgare L.). Advancement in Medicinal Plant Research 7(2), 54–60. https://doi.org/10.30918/ampr.72.19.022. Tardos, T. (2014). An introduction to surfractants. Boston, Estados Unidos: De Gruyter (pp. 1- 15.) ISBN 978-3-11-031212-6. Tardos, T. (2016). Emulsions: Formation, Stability, Industrial Applications. Boston, Estados Unidos: De Gruyter. (pp. 1-5) ISBN ISBN 978-3-11-045217-4. Testai, E., Buratti, F. M., & Consiglio, E. Di. (2010). Chlorpyrifos En Krieger, R (Ed.), Hayes’ Handbook of Pesticide Toxicology (3 ed) Londres: Reino Unido: Academic Pres (pp. 1505-1526). https://doi.org/10.1016/B978-0-12-374367-1.00097-5. Trathnigg, B., & Abrar, S. (2009). Characterization of commercial polysorbates using different chromatographic techniques. Tenside, Surfactants, Detergents 46(5), 280–288. https://doi.org/ 10.3139/113.110032. Vargesson, N. (2015). Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Research (Part C) Embryo Today: Reviews 105(2), 140–156. https://doi.org/10.1002/bdrc.21096. Verri, W. A., Vicentini, F. T. M. C., Baracat, M. M., Georgetti, S. R., Cardoso, R. D. R., Cunha, T. M., Fonseca, J.V. & Casagrande, R. (2012). Flavonoids as anti-inflammatory and analgesic drugs: Mechanisms of action and perspectives in the development of pharmaceutical forms. En Rahman, A (Ed) Studies in Natural Products Chemistry (1st ed., Vol. 36) Amsterdam, Netherlands: Elsevier. (pp. 297-330) https://doi.org/10.1016/B978-0-444-53836-9.00026-8. Vincent, J. F. V. (2001). Cuticle. En. CahnJürgen Buschow K. H, Lemings, M. C., Kramer, E. J., Veyssière, P., Cahn, R. W., Ilschner,B., & Mahajan S. (Eds.), Encyclopedia of Materials: Science and Technology (2 ed) Amsterdam, Netherlands: Elsevier ( pp. 1924–1928) . ISBN 978-0-08-043152-9. Vivanco, J., Cosio, E., Loyola -Vargas, V., & Flores, H. (2005). Mecanismos químicos de defensa en las plantas. Investigación y Ciencia 341(1), 68–75 ISSN 0210-136X. Walker, S. I. (2014). Homochirality. In Gargaud, M., Amils R., Cernicharo Quintanilla, J., Cleaves, H.J., Irvine, W.M., Pinti, D., Viso, M. (Eds), Encyclopedia of Astrobiology. Berlin, Alemania: Springer. (pp 44) https://doi.org/10.1007/978-3-642-27833-4_731-2. Weiss, S. A., Kavecansky, J., & Pavlick, A. C. (2016). Management of Melanoma Therapy-Associated Toxicities. En Hayat, M.A. (Ed) Brain Metastases from Primary Tumors: Epidemiology, Biology, and Therapy of Melanoma and Other Cancers (Vol. 3). Londres, Reino Unido: Academic Press (pp. 299-319). https://doi.org/10.1016/B978-0-12-803508-5.00020-2. Wen, C., Yuan, Q., Liang, H., & Vriesekoop, F. (2014). Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals. Carbohydrate Polymers 112(1), 695–700. https://doi.org/10.1016/j.carbpol.2014.06.051. WHO. (1957). Expert Committee on Insecticide Seventh Report Conultado el 25 de julio de 2018 disponible en https://apps.who.int/iris/bitstream/handle/10665/40380/WHO_TRS_125.pdf? sequence=1&isAllowed=y. WHO. (2005). Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization, 1–41. https://doi.org/Ref: WHO/CDS/WHOPES/GCDPP/2005.11. WHO. (2011). Global Insecticide Use for Vector-Borne Disease Control: A 10-Year assessment (2000–2009) (5th ed.). https://doi.org/10.1086/523153. WHO. (2016). Monitoring and managing insecticide resistance in Aedes mosquito populations. Consultado el 20 de octubre de 2018, disponible en http://apps.who.int/iris/bitstream/10665/ 204588/2/ WHO_ZIKV_VC_16.1_eng.pdf 7. WHO. (2020). Prioritizing diseases for research and development in emergency contexts. Consultado el 20 de Junio de 2020, disponible en https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts. Wilder-Smith, A., Gubler, D. J., Weaver, S. C., Monath, T. P., Heymann, D. L., & Scott, T. W. (2017). Epidemic arboviral diseases: priorities for research and public health. The Lancet Infectious Diseases 17(3), e101–e106. https://doi.org/10.1016/S1473-3099(16)30518-7. Woolhouse, M., Scott, F., Hudson, Z., Howey, R., & Chase-Topping, M. (2012). Human viruses: Discovery and emergence. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1), 2864–2871. https://doi.org/10.1098/rstb.2011.0354. Zahran, H. E. M., & Abdelgaleil, S. A. M. (2011). Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae). Journal of Asia-Pacific Entomology 14(1), 46–51. https://doi.org/10.1016/j.aspen.2010.11.013. Zahran, H. E. M., Abou-Taleb, H. K., & Abdelgaleil, S. A. M. (2017). Adulticidal, larvicidal and biochemical properties of essential oils against Culex pipiens L. Journal of Asia-Pacific Entomology 20(1), 133–139. https://doi.org/10.1016/j.aspen.2016.12.006. Zanluca, C., De Melo, V. C. A., Mosimann, A. L. P., Dos Santos, G. I. V., dos Santos, C. N. D., & Luz, K. (2015). First report of autochthonous transmission of Zika virus in Brazil. Memorias do Instituto Oswaldo Cruz 110(4), 569–572. https://doi.org/10.1590/0074-02760150192. Zarrad, K., Hamouda, A. Ben, Chaieb, I., Laarif, A., & Jemâa, J. M. Ben. (2015). Chemical composition, fumigant and anti-acetylcholinesterase activity of the Tunisian Citrus aurantium L. essential oils. Industrial Crops and Products 76(1), 121–127. https://doi.org/10.1016/ j.indcrop.2015.06.039. Zhang, J., Liu, L., Ren, L., Feng, W., Lv, P., Wu, W., & Yan, Y. (2017). The single and joint toxicity effects of chlorpyrifos and beta- cypermethrin in zebrafish (Danio rerio) early life stages. Journal of Hazardous Materials 334(15), 121–131. https://doi.org/10.1016/j.jhazmat.2017.03.055. Zorro-González, A. F. (2018). Evaluación de la susceptibilidad y la resistencia de mosquitos colectados en Bucaramanga al limoneno y a aceites esenciales de cítricos (Tesis de pregrado en Química Ambiental). Universidad Santo Tómas; Bucaramanga, Colombia (pp. 67 - 68). |
dc.rights.local.spa.fl_str_mv |
Acceso cerrado |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Acceso cerrado http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bucaramanga |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Maestría Ciencias y Tecnologías Ambientales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Química Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/32507/1/2021JaramilloVictor.pdf https://repository.usta.edu.co/bitstream/11634/32507/2/2021JaramilloVictor1.pdf https://repository.usta.edu.co/bitstream/11634/32507/3/2021JaramilloVictor2.pdf https://repository.usta.edu.co/bitstream/11634/32507/4/2021JaramilloVictor3.pdf https://repository.usta.edu.co/bitstream/11634/32507/5/license.txt https://repository.usta.edu.co/bitstream/11634/32507/6/2021JaramilloVictor.pdf.jpg https://repository.usta.edu.co/bitstream/11634/32507/7/2021JaramilloVictor1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/32507/8/2021JaramilloVictor2.pdf.jpg https://repository.usta.edu.co/bitstream/11634/32507/9/2021JaramilloVictor3.pdf.jpg |
bitstream.checksum.fl_str_mv |
8cb9305a7c2eb5c1a783f34b7cc1edb6 ea8b58a4b15071bd3a40bb37a56efbcc 65a529d64190cb00028720678a861230 33be76fcd5609d1ac6ee811e84d042c8 aedeaf396fcd827b537c73d23464fc27 80339174fdcbc4c2fed1f4f871524c4d 396149b70b2115698871adc9b4f1bcf4 5139affdce2197202a62b68256f705bd a112400fd3960522299202a92f48b862 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026164269744128 |
spelling |
Vargas Méndez, Leonor YamileJaramillo Pérez, Víctor Mario2021-03-16T21:19:59Z2021-03-16T21:19:59Z2021-03-13Jaramillo-Pérez, V. M. (2021). Desarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegypti [Tesis de maestría]. Universidad Santo Tomás, Bucaramanga, Colombiahttp://hdl.handle.net/11634/32507reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLos productos naturales han tomado un nuevo impulso en la búsqueda de compuestos capaces de controlar el Aedes aegypti. En esta investigación, los aceites esenciales (AEs) del genero Citrus y sus metabolitos mayoritarios, R-(+) y S-(-)-limoneno, se evaluaron como agentes larvicidas. El S-(-)-limoneno, fue el larvicida más activo con CL50 de 13.34; 15.97 y 19.22 ppm sobre las cepas Rockefeller, Piedecuesta y Bucaramanga respectivamente; fue encapsulado con Tween 80 y propilenglicol, formando micelas de tamaño nanométrico, inferior a 10 nm. La evaluación de la emulsión como larvicida dio una CL100 de 30 ppm. Los AEs y los metabolitos fueron capaces de inhibir la acetilcolinesterasa con valores entre 144.5 µg/mL y 256.0 µg/mL. El R-(+)-limoneno fue moderadamente tóxico sobre el organismo no objetivo Danio rerio con CL50 de 22.44 µg/mL.Botanical products have gained significant momentum in the quest of compounds capable of controlling Aedes aegypti. In this research, essential oils (EOs) from the genus Citrus and their major secondary metabolites, R-(+) and S-(-)-limonene, were evaluated as larvicide agents. S-(-)-limonene was the most active larvicide as it showed LC50 of 13.34; 15.97 and 19.22 ppm over the Rockefeller, Piedecuesta and Bucaramanga Strains, respectively. It was encapsulated with both Tween 80 and Propylene glycol, and as a result, it developed nanometric-scaled emulsions of less than 10 nm. The assessment of the emulsion as a larvicide displayed an LC100 of 30 ppm. The EOs and the secondary metabolites were capable of inhibiting acetylcholinesterase by using values between 144.5 µg/mL and 256.0 µg/mL. R-(+)-limonene had a moderate toxicity of LC50 22.44 µg/mL over the non-target organism Danio rerio.Magister en Ciencias y Tecnologías Ambientaleshttp://www.ustabuca.edu.co/ustabmanga/presentacionMaestríaapplication/pdfspaUniversidad Santo TomásMaestría Ciencias y Tecnologías AmbientalesFacultad de Química AmbientalDesarrollo de emulsiones de limoneno como productos larvicidas para el control de las larvas de mosquitos Aedes aegyptiAcetylcholinesteraseAedes aegyptiDanio rerioLarvicidal activityR-(+)-limoneneS-(-)-limoneneEmulsionLarvas de insectosInsecticidasMosquitosInsectos vectoresMonoterpenosEmulsionesAcetilcolinesterasaAcetilcolinesterasaActividad larvicidaAedes aegyptiDanio rerioAedes aegyptiDanio rerioR-(+)-limonenoS-(-)-limonenoR-(+)-limonenoActividad larvicidaS-(-)-limonenoEmulsiónTesis de maestríainfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Maestríahttp://purl.org/coar/resource_type/c_bdccinfo:eu-repo/semantics/masterThesisAcceso cerradoinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCRAI-USTA BucaramangaAgilent Technologies. (2007). Guía de selección de columnas Agilent ZORBAX para HPLC. (pp. 33).Alavanja, M. C. R., Ross, M. K., & Bonner, M. R. (2013). Increased cancer burden among pesticide applicators and others due to pesticide exposure. CA: A Cancer Journal for Clinicians 63(2), 120–142. https://doi.org/10.3322/caac.21170.Allaby, M. & Park, C. (2016). A Dictionary of Environment and Conservation (2nd ed.). Oxford, Reino Unido: Oxford University Press (pp 29). ISBN 0199641668.Alvarez, L. C., Ponce, G., Oviedo, M., Lopez, B., & Flores, A. E. (2014). Susceptibility status of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Venezuela. Pest Management Science 70(8), 1262–1266. https://doi.org/10.1002/ps.3688.Anez, G., Chancey, C., Grinev, A., & Rios, M. (2012). Dengue virus and other arboviruses: a global view of risks. ISBT Science Series 7(1), 274–282. https://doi.org/10.1111/j.1751-2824.2012.01602.x.Anjali, C., Sharma, Y., Mukherjee, A., & Chandrasekaran, N. (2012). Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Management Science 68(2), 158–163. https://doi.org/10.1002/ps.2233.Assis, C. R. D., Guedes, A., Melo, V., Cristina, R., França, P., Carvalho, E. V. M. M., Bezerra, R.S., Carvalho Jr, L. B. (2012). Comparative effect of pesticides on brain acetylcholinesterase in tropical fish. Science of the Total Environment 441(1), 141–150. https://doi.org/10.1016/j. scitotenv.2012.09.058.ATSDR. (2003). Resumen de salud pública malatión. Consultado el 14 de julio de 2020, disponible en http://www.atsdr.cdc.gov/es/phs/es_phs154.pdfAttar, N. (2016). ZIKA virus circulates in new regions. Nature Reviews Microbiology 14(62), 1. https://doi.org/10.1038/nrmicro.2015.28Bandyopadhyay, S., Lum, L. C. S., & Kroeger, A. (2006). Classifying dengue: A review of the difficulties in using the WHO case classification for dengue haemorrhagic fever. Tropical Medicine and International Health 11(8), 1238–1255. https://doi.org/10.1111/j.1365-3156.2006.01678.xBaraban, S. C., Taylor, M. R., Castro, P. A., & Baier, H. (2005). Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neuroscience 131(3), 759–768. https://doi.org/10.1016/j.neuroscience.2004.11.031.Barba, C., Toledano, R. M., Santa-María, G., Herraiz, M., & Martínez, R. M. (2013). Enantiomeric analysis of limonene and carvone by direct introduction of aromatic plants into multidimensional gas chromatography. Talanta 106(1), 97–103. https://doi.org/10.1016/j.talanta.2012.11.050.Barnard, E. A. (1974). Neuromuscular Transmission - Enzymatic Destruction of Acetylcholine. En Hubbard, John (Ed.) The peripheral nervous system. New York, Estados Unidos: Plenum (pp. 201-224). ISBN 978-1-4615-8699-9.Barrett, A. D. T. (2018). Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation perspective. npj Vaccines 3(1), 1–4. https://doi.org/10.1038/s41541-018-0061-9.Barrett, R., Chappell, C., Quick, M., & Fleming, A. (2006). A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnology Journal 1(6), 651–655. https://doi.org/10.1002/ biot.200600043.Becker, N., Petric, D., Zgomba, M., Boase, C., Madon, M. B., Dahl, C., & Kaiser, A. (2010). Mosquitoes and their control (2 ed.). Berlin, Alemania: Springer. (p. 509). ISBN 978-3-540-92874-4Behiry, S. I., Nasser, R. A., El-Kareem, M. S. M. A., Ali, H. M., & Salem, M. Z. M. (2020). Mass spectroscopic analysis, MNDO quantum chemical studies and antifungal activity of essential and recovered oil constituents of lemon-scented gum against three common molds. Processes 8(3), 1 – 25. https://doi.org/10.3390/pr8030275.Bhattacharjee, S. (2016). DLS and zeta potential - What they are and what they are not? Journal of Controlled Release 235(1), 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017.Bisset, J. A., Rodríguez, M. M., Ricardo, Y., Ranson, H., Pérez, O., Moya, M., & Vázquez, A. (2011). Temephos resistance and esterase activity in the mosquito Aedes aegypti in Havana, Cuba increased dramatically between 2006 and 2008. Medical and Veterinary Entomology 25(3), 233–239. https://doi.org/10.1111/j.1365-2915.2011.00959.x.Bloomquist, J. R. (2003). Chloride channels as tools for developing selective insecticides. Archives of Insect Biochemistry and Physiology 54(4), 145–156. https://doi.org/10.1002/arch.10112.Bourne, Y., Grassi, J., Bougis, P. E., & Marchot, P. (1999). Conformational flexibility of the acetylcholinesterase tetramer suggested by x-ray crystallography. Journal of Biological Chemistry 274(43), 30370–30376. https://doi.org/10.1074/jbc.274.43.30370.Callaway, E., Cyranoski, D., Mallapaty, S., Stoye, E., & Tollefson, J. (2020). The coronavirus by the numbers. Nature 579(1), 482–483. https://doi.org/10.1038/d41586-020-00758-2.Campolo, O., Romeo, F. V., Algeri, G. M., Laudani, F., Malacrinó, A., Timpanaro, N., & Palmeri, V. (2016). Larvicidal effects of four citrus peel essential oils against the arbovirus vector Aedes albopictus (Diptera: Culicidae). Journal of Economic Entomology 109(1), 360–365. https://doi.org/10.1093/jee/tov270Cao-Lormeau, V. M., Roche, C., Teissier, A., Robin, E., Berry, A. L., Mallet, H. P., Sall, A.A, & Musso, D. (2014). Zika virus, French Polynesia, South Pacific, 2013. Emerging Infectious Diseases 20(6), 1085–1086. https://doi.org/10.3201/eid2006.140138.Carreño, A.L., Vargas, L.Y., Duque, J.E. & Kouznetsov, V.V. (2014). Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever. European Journal of Medicinal Chemistry 78(1), 392–400. https://doi.org/10.1016/j.ejmech.2014.03.067Carson, R. L. (1962). La primavera silenciosa (1 ed.). En Ros, J. (Ed.). Barcelona, España: Editorial Crítica. (pp. 5-14). ISBN 978-84-08-11924-1CDC. (2013). Flaviviridae. Consultado el 22 de julio de 2020, disponible en https://www.cdc.gov/vhf/virus-families/flaviviridae.html#:~:text=The Flaviviridae are a family, and mortality throughout the world.Charcosset, C. (2016). Electrophoretic Mobility. En Drioli, E. & Giorno, L. (Eds.), Encyclopedia of Membranes. Berlin, Alemania: Springer Berlin Heidelberg. (p. 658). https://doi.org/10.1007/978-3-662-44324-8_208Chávez, J., Córdova, O., & Vargas, F. (2005). Niveles de susceptibilidad a temefos en el vector del dengue en Trujillo, Perú. Anales de La Facultad de Medicina Lima 66(1), 53–56. https://doi.org/10.15381/anales.v66i1.1350Chemical Book (2021a) Heptakis(2,6-di-o-methyl-3-o-''pentyl)-beta-cyclodextrin*. Consultado el 17 de febrero de 2021, disponible en https://www.chemicalbook.com/ChemicalProductProperty_EN_CB3521650.htmChemical Book (2021b) Heptakis(2,3-di-O-Methyl-6-O-tert-butyldiMethylsilyl)-β-cyclodextrin. Consultado el 17 de febrero de 2021, disponible en https://www.chemicalbook.com/ChemicalProductProperty_EN_CB82545174.htmChen, W., & Yang, Q. (2020). Development of Novel Pesticides Targeting Insect Chitinases: A Minireview and Perspective. Journal of Agricultural and Food Chemistry 68(16), 4559–4565. https://doi.org/10.1021/acs.jafc.0c00888Christie, W. W., & Han, X. (2012). Chromatographic analysis of lipids: general principles. En Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis (4 ed.) Filadelfia, Estados Unidos: Woodhead Publishing Limited (pp. 21–54). https://doi.org/10.1533/ 9780857097866.21Chutia, M., Deka Bhuyan, P., Pathak, M. G., Sarma, T. C., & Boruah, P. (2009). Antifungal activity and chemical composition of Citrus reticulata Blanco essential oil against phytopathogens from North East India. LWT - Food Science and Technology 42(3), 777–780. https://doi.org/ 10.1016/j.lwt.2008.09.015.Clogston, J. D., & Patri, A. K. (2011). Zeta Potential Measurement. En Mc Neil, S.E. (Ed.), Characterization of Nanoparticles Intended for Drug Delivery (1 ed.). Nueva York, Estados Unidos: Springer. (pp. 63–70). https://doi.org/10.1007/978-1-60327-198-1.Co, I. N., & Gunnerson, K. J. (2019). Iatrogenic and Poison-Derived Acid Base Disorders. En Ronco, C., Bellomo, R., Kellum, J, A. & Ricci, Z (Eds.) Critical Care Nephrology (3 ed.) Filadelfia, Estados Unidos: Elsevier (pp. 417-423). https://doi.org/10.1016/B978-0-323-44942-7.00071-6Cohn, C. D. (2018). Control Biológico de Plagas de la Agricultura (Tesis de pregrado en Agronomía). Universidad del Salvador, San Salvador, Salvador (pp. 7).Colegate, S. M., & Molyneux, R. J. (2007). Bioactive Natural Products: Detection, Isolation, and Structural Determination. (2 ed.) Boca ratón, Estados Unidos CRC Press (pp. 195-215). https://doi.org/10.1201/9781420006889Čolović, M. B., Krstić, D. Z., Lazarević-Pašti, T. D., Bondžić, A. M., & Vasić, V. M. (2013). Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology 11(3), 315–335. https://doi.org/10.2174/1570159x11311030006Conti-Tronconi, B. M., Hunkapiller, M. W., Lindstrom, J. M., & Raftery, M. A. (1982). Subunit structure of the acetyicholine receptor from Electrophorus electricus. Proceedings of the National Academy of Sciences 79(21), 6489–6493. https://doi.org/10.1073/pnas.79.21.6489.Conti, B., Leonardi, M., Pistelli, L., Profeti, R., Ouerghemmi, I., & Benelli, G. (2013). Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector.Cordell, G. A. (2000). Biodiversity and drug discovery - A symbiotic relationship. Phytochemistry 55(6), 463–480. https://doi.org/10.1016/S0031-9422(00)00230-2.Crossthwaite, A. J., Bigot, A., Camblin, P., Goodchild, J., Lind, R. J., Slater, R., & Maienfisch, P. (2017). The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. Journal of Pesticide Science 42(3), 67–83. https://doi.org/10.1584/jpestics.D17-019Da Botas, G. S., Cruz, R. A. S., De Almeida, F. B., Duarte, J. L., Araújo, R. S., Souto, R. N. P., Carvalho, J.C.T., Santos, M.G., Rocha, L., Pererira, V.L.P., & Fernandes, C. P. (2017). Baccharis reticularia DC. and limonene nanoemulsions: promising larvicidal agents for Aedes aegypti (Diptera: Culicidae) control. Molecules 22(11), 1–14. https://doi.org/10.3390/molecules22111990.Darwish, M., Hoogstraal, H., Roberts, T., Ahmed, I., & Omar, F. (1983). A sero-epidemiological survey for certain in Pakistan arboviruses (Togaviridae). Transactions of the Royal Society of Tropical Medicine and Hygiene 77(4), 442–445. https://doi.org/10.1016/0035-9203(83)90106-2.Di, S., Liu, R., Tian, Z., Cheng, C., Chen, L., & Zhang, W. (2017). Assessment of tissue- specific accumulation, elimination and toxic effects of dichlorodiphenyltrichloroethanes (DDTs) in carp through aquatic food web. Scientific Reports 7(1), 1-15. https://doi.org/10.1038/s41598-017-02612-4Diagne, C. T., Diallo, D., Faye, O., Ba, Y., Faye, O., Gaye, A., Dia, I., Faye, O., Weaver, S.C., Sall, A.A., & Diallo, M. (2015). Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infectious Diseases 15(1), 2–7. https://doi.org/10.1186/s12879-015-1231-2Dias, C. N., & Moraes, D. F. C. (2014). Essential oils and their compounds as Aedes aegypti L. (Diptera: Culicidae) larvicides: Review. Parasitology Research 113(2), 565–592. https://doi.org/ 10.1007/s00436-013-3687-6.Dick, G. W. A., Kitchen, S. F., & Haddow, A. J. (1952). Zika virus. I. Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene 46(5), 509–520. https://doi.org/10.1016/0035-9203(52)90042-4.Ditsuwan, T., Liabsuetrakul, T., Ditsuwan, V., & Thammapalo, S. (2012). Cost of standard indoor ultra-low-volume space spraying as a method to control adult dengue vectors. Tropical Medicine and International Health 17(6), 767–774. https://doi.org/10.1111/j.1365-3156.2012.02997.x.Djordjevic, D., Cercaci, L., Alamed, J., Mc Clements, D. J., & Decker, E. A. (2007). Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions. Journal of Agricultural and Food Chemistry 55(9), 3585–3591. https://doi.org/10.1021/jf063472rDuffy, M. R., Chen, T.-H., Hancock, W. T., Powers, A. M., Kool, J. L., Lanciotti, R. S., Pretrick, M., Marfel, M., Holzbauer, M.S., Dubray, C., Guillaumot, L., Griggs, A., Bel, M., Lambert, A., Laven, J., Kosoy, O., Panella, A., Biggerstaff, B.J., Fischer, M., & Hayes, E. B. (2009). Zika virus outbreak on Yap Island, Federated States of Micronesia. The New England Journal of Medicine 360(1), 2536–2543. https://doi.org/10.1056/NEJMoa0805715.Dulo, F., & Pal, M. (2017). Emerging viral zoonoses and their implications on public health. World Applied Sciences Journal 35(2), 188–198. https://doi.org/10.5829/idosi.wasj.2017.188.198.El-akhal, F., Lalami Abdelhakim, E. O., & Guemmouh, R. (2015). Larvicidal activity of essential oils of Citrus sinensis and Citrus aurantium (Rutaceae) cultivated in Morocco against the malaria vector Anopheles labranchiae (Diptera: Culicidae). Asian Pacific Journal of Tropical Disease 5(6), 458–462. https://doi.org/10.1016/S2222-1808(15)60815-5Eliel, E. L., Wilen, S. H., & Mander, L. N. (1994). Stereoselective synthesis. En S. H. Wilen, & L. N. Mander (Eds.), Stereochemistry of organic compounds. Estados Unidos: Wiley Interscience (pp. 1191-1210). ISBN: 978-0-471-01670-0Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9Espinosa-Andrews, H. (2017). Encapsulación por coacervación compleja. En Espinosa-Andrews, H. & García-Márquez, E.(Eds.), Tecnologías de nano/microencapsulación de compuestos bioactivos. Guadalajara, México: Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (p. 90). ISBN: 978-607-97548-3-9Esser, H. J., Mögling, R., Cleton, N. B., Van Der Jeugd, H., Sprong, H., Stroo, A., Koopmans, M.P.G., de Boer, W. F., Reusken, C. B. E. M. (2019). Risk factors associated with sustained circulation of six zoonotic arboviruses: A systematic review for selection of surveillance sites in non-endemic areas. Parasites and Vectors 12(265), 1–17. https://doi.org/10.1186/s13071-019-3515-7.Esu, E., Lenhart, A., Smith, L., & Horstick, O. (2010). Effectiveness of peridomestic space spraying with insecticide on dengue transmission; Systematic review. Tropical Medicine and International Health 15(5), 619–631. https://doi.org/10.1111/j.1365-3156.2010.02489.x.Express. (2020). Terrifying new Zika virus strain could cause another epidemic in Brazil. Consultado del 5 de julio de 2020, diponible en https://www.express.co.uk/news/world/1301128/Zika-virus-Brazil-epidemic-faculty-of-sciences-and-technology-disease-news.Fagbami, A. H. (1979). Zika virus infections in Nigeria: Virological and seroepidemiological investigations in Oyo State. Journal of Hygiene 83(2), 213–219. https://doi.org/ 10.1017/S0022172400025997.Faye, O., Freire, C. C. M., Iamarino, A., Faye, O., de Oliveira, J. V. C., Diallo, M., Zanotto, P.M.A., & Sall, A. A. (2014). Molecular evolution of zika virus during its emergence in the 20th century. PLoS Neglected Tropical Diseases 8(1), e2636.1 - e2636.10. https://doi.org/10.1371/journal.pntd.0002636FDA. (2020). CFR-Code of Federal Regulations Title 21, synthetic flavoring substances and adjuvants. Consultado del 7 de enero de 2021, disponible en https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=182.60&SearchTerm=limonene.Feng, J., Zhang, Q., Liu, Q., Zhu, Z., Mcclements, D. J., & Jafari, S. M. (2018). Application of Nanoemulsions in Formulation of Pesticides. En. Jafari, S. M. & McClements, D. J (Eds.), Nanoemulsions, Formulation, Applications, and Characterization Londres, Reino Unido: Academic Press (pp. 379–413). https://doi.org/10.1016/B978-0-12-811838-2.00012-6.Ferhat, M. A., Boukhatem, M. N., Hazzit, M., Meklati, B. Y., & Chemat, F. (2016). Cold pressing hydrodistillation and microwave dry distillation of Citrus essential oil from Algeria: A Comparative Study. Electronic Journal of Biology 12(S1) 30–41. ISSN 1860-3122.Field, L. M., Emyr Davies, T. G., O’Reilly, A. O., Williamson, M. S., & Wallace, B. A. (2017). Voltage-gated sodium channels as targets for pyrethroid insecticides. European Biophysics Journal 46(7), 675–679. https://doi.org/10.1007/s00249-016-1195-1.Finefield, J. M., Sherman, D. H., Kreitman, M., & Williams, R. M. (2012). Enantiomeric natural products: Occurrence and biogenesis. Angewandte Chemie 51(20), 4802–4836. https://doi.org/10.1002/anie.201107204.Fleming, A., Sato, M., & Goldsmith, P. (2005). High-throughput in vivo screening for bone anabolic compounds with zebrafish. Journal of Biomolecular Screening 10(8), 823–831. https://doi.org/ 10.1177/1087057105279952Fonseca-González, I., Quiñones, M. L., Lenhart, A., & Brogdon, W. G. (2011). Insecticide resistance status of Aedes aegypti (L.) from Colombia. Pest Management Science 67(4), 430–437. https://doi.org/10.1002/ps.2081Forney, R. D. (1999). Importance of Pesticides in Integrated Pest Management. En Ragsdale. N.N. & Seiber, J. N. (Eds) Pesticides: Managing Risks and Optimizing Benefits Washington, Estados Unidos: American Chemical Society (pp. 174–197). https://doi.org/ 10.1021/bk-1999-0734.ch013 xGalanakis, C. (2015). Conventional extraction. En Galanakis, C. (Ed.), Food Waste Recovery: Processing Technologies and Industrial Techniques (1 ed.) Londres, Reino Unido: Academic Press (pp. 136–138). https://doi.org/10.1016/B978-0-12-800351-0.00006-7.Gao, J., Naughton, S. X., Beck, W. D., Hernandez, C. M., Wu, G., Yang, X., Bartlett, M.G., & Terry Jr, A. V. (2017). Chlorpyrifos and chlorpyrifos oxon impair the transport of membrane bound organelles in rat cortical axons. Neurotoxicology 62(1), 111–123. https://doi.org/10.1016/ j.neuro.2017.06.003.Chlorpyrifos.Garrison, A. W. (2006). Probing the enantioselectivity of chiral pesticides. Environmental Science & Technology 40(1), 16–23. https://doi.org/10.1584/jpestics.R08-03.Geetha, C. K., Shetty, N. J., & Harini, B. P. (2019). Larvicidal susceptibility studies of a few strains of Aedes vectors of Bengaluru, Karnataka, India. Journal of Communicable Diseases 51(1), 34–42. https://doi.org/10.24321/0019.5138.201905Gómez-Biedma, S., Vivó, M., & Soria, E. (2001). Pruebas de significación en Bioestadística. Revista de Diagnóstico Biológico 50(4), 207–218. ISSN 0034-7973.Graca, M., Bongaerts, J. H. H., Stokes, J. R., & Granick, S. (2007). Friction and adsorption of aqueous polyoxyethylene (Tween) surfactants at hydrophobic surfaces. Journal of Colloid and Interface Science 315(2), 662–670. https://doi.org/10.1016/j.jcis.2007.06.057.Greay, S. J., & Hammer, K. A. (2015). Recent developments in the bioactivity of mono- and diterpenes: anticancer and antimicrobial activity. Phytochemistry Reviews 14(1), 1-6. https://doi.org/10.1007/s11101-011-9212-6.Grobuschek, N., Sriphong, L., Schmid, M. G., Lorànd, T., Aboul-Enein, H. Y., & Gübitz, G. (2002). Chiral separation of bioactive cyclic Mannich ketones by HPLC and CE using cellulose derivatives and cyclodextrins as chiral selectors. Journal of Biochemical and Biophysical Methods 53(1–3), 25–36. https://doi.org/10.1016/S0165-022X(02)00089-1.Guarín, O. D., & Barajas-Solano, A. F. (2015). Hidrodestilación asistida con microondas (MWHD) para la extracción de hidrolatos de plantas aromáticas. Revista Politecnica 11(21), 51–55. ISSN 2256-5353.Guemmouh, R., Greche, H., & Lalami, A. E. O. (2014). Valorisation en tant que bioinsecticide de deux huiles essentielles de Citrus sinensis et Citrus aurantium cultivées au centre du Maroc (Valorization as a bio-insecticide of essential oils of Citrus sinensis and Citrus aurantium cultivated in center of Morocco. Journal of Materials and Environmental Science 5(S1), 2319–2324. ISSN : 2028-2508.Hackley, V. A., & Clogston, J. D. (2015). Measuring the size of nanoparticles in aqueous media using batch-mode Dynamic Light Scattering. En NIST Special Publication (Ed) Estados Unidos: NIST. (pp. 17). https://doi.org/10.1007/978-1-60327-198-1_4.Hage, D. S. (2018). Chromatography. En Rifai, N., Horvath, A.R. & Wittwer, C.T (Eds.). Principles and Applications of Clinical Mass Spectrometry: Small Molecules, Peptides, and Pathogens Amsterdam, Netherlands: Elsevier (pp. 1-32). https://doi.org/10.1016/B978-0-12-816063-3.00001-3.Hategekimana, J., Chamba, M. V. M., Shoemaker, C. F., Majeed, H., & Zhong, F. (2015). Vitamin E nanoemulsions by emulsion phase inversion: Effect of environmental stress and long-term storage on stability and degradation in different carrier oil types. Colloids and Surfaces A: Physicochemical and Engineering Aspects 483(1), 70–80. https://doi.org/10.1016/j.colsurfa.2015.03.020.Hayes, E. B. (2009). Zika virus outside Africa. Emerging Infectious Diseases 15(9), 1347–1350. https://doi.org/10.3201/eid1509.090442.He, Z. J., Song, H., Zhang, Y. W., Wang, D. C., & Yao, S. (2015). Chiral stationary phases and their relationship with enantiomer structures in enantioseparation research of analytical laboratory. Journal of the Mexican Chemical Society 59(1), 43–49. https://doi.org/10.29356/jmcs.v59i1.13.Hener, U., Kreis, P., & Mosandl, A. (1991). Enantiomeric distribution of α-pinene, β-pinene and limonene in essential oils and extracts. part 3. oils for alcoholic beverages and seasonings. Flavour and Fragrance Journal 6(2), 109–111. https://doi.org/10.1002/ffj.2730060202.Higgs, S. (2016). Zika Virus: Emergence and Emergency. Vector-Borne and Zoonotic Diseases 16(2), 75–76. https://doi.org/10.1089/vbz.2016.29001.hig.Hodgson, E. (2012). Biotransformation of Individual Pesticides: Some Examples. En Hodgson, E (Ed.), Pesticide Biotransformation and Disposition (1 ed. Vol. 1) Londres, Reino Unido: Academic Press (pp. 195–208). https://doi.org/10.1016/B978-0-12-385481-0.00009-5.Hong, J. H., Khan, N., Jamila, N., Hong, Y. S., Nho, E. Y., Choi, J. Y., Lee, C. M., & Kim, K. S. (2017). Determination of Volatile Flavour Profiles of Citrus spp. Fruits by SDE-GC–MS and Enantiomeric Composition of Chiral Compounds by MDGC–MS. Phytochemical Analysis, 28(5), 392–403. https://doi.org/10.1002/pca.2686Houghton, P. J., Ren, Y., & Howes, M. J. (2006). Acetylcholinesterase inhibitors from plants and fungi. Natural Product Reports 23(2), 181–199. https://doi.org/10.1039/b508966m.Hurtado, C. M., & Gutiérrez, M. (2005). Enfoque del paciente con intoxicación aguda por plaguicidas organofosforados. Revista de La Facultad de Medicina de La Universidad Nacional de Colombia 53(4), 244–258. ISSN 2357-3848.Ilisz, I., Pataj, Z., Berkecz, R., Szatmári, I., Fülöp, F., & Péter, A. (2009). Comparison of separation performances of cellulose-based chiral stationary phases in LC enantioseparation of aminonaphthol analogues. Chromatographia 70(5–6), 723–729. https://doi.org/10.1365/s10337-009-1262-1.INS (2015). Boletin Epidemiologico Semanal: Semana epidemiológica 52 de 2015 del 27 de dicimbre al 02 de enero. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2015%20Boletin%20 epidemiologico%20Semana%2052.pdfINS (2016). Boletin Epidemiologico Semanal: Semana epidemiológica número 52 del 2016 del 25 al 31 de diciembre. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2016%20Bolet%C3% ADn% 20epidemiol%C3%B3gico%20semana%2052%20-.pdf.INS (2017). Boletin epidemiologo semanal: Semana epidemiológica 52 de 2017 del 24 al 30 de diciembre. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2017%20Bolet%C3% ADn%20epidemiol%C3%B3gico%20semana%2052.pdf.INS. (2018). Boletin epidemiologico Semanal: Semana epidemiológica 52 de 2018 23 al 29 de diciembre. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2018%20Bolet%C3% ADn%20epidemiol%C3%B3gico%20semana%2052.pdf.INS. (2019). Boletin Epidemiologico Semanal: Semana epidemiológica número 52 de 2019 del 22 al 28 de diciembre. Consultado el 20 de mayo de 2020, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2019_Boletin_epidemiologico_ semana_52.pdf.INS. (2020). Boletín Epidemiológico Semanal, Semana epidemiológica 53 de 2020 del 27 de diciembre al 02 de enero de 2021. Consultado el 7 de enero de 2021, disponible en https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2020_Boletin_epidemiologico_ semana_53.pdf.Ioos, S., Mallet, H. P., Leparc Goffart, I., Gauthier, V., Cardoso, T., & Herida, M. (2014). Current Zika virus epidemiology and recent epidemics. Medecine et Maladies Infectieuses 44(7), 302–307. https://doi.org/10.1016/j.medmal.2014.04.008.Jaeger, A. S., Murrieta, R. A., Goren, L. R., Crooks, C. M., Moriarty, R. V., Weiler, A. M., Rybarczyk, S., Semler, M.R., Huffman, C., Mejia, M., Simmons, H.A., Fritsch M., Osorio, J.E., Eickhoff, J.C., O'Connor, S.L., Ebel, G.D., Friedrich, T.C., & Aliota, M. T. (2019). Zika viruses of African and Asian lineages cause fetal harm in a mouse model of vertical transmission. PLoS Neglected Tropical Diseases 13(4), 1–18. https://doi.org/10.1371/journal.pntd.0007343Jafari, S. M., Beheshti, P., & Assadpoor, E. (2012). Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum. Journal of Food Engineering 109(1), 1–8. https://doi.org/10.1016/j.jfoodeng.2011.10.016.Jia-Xu. (2014). Diagnóstico. Guías de Estudio de Medicina China (2da ed,), Madrid, España. Fundación Europea de MTC (pp. 29), ISBN: 711713500X, 9787117135009.Jirakanjanakit, N., Rongnoparut, P., Chareonviriyaphap, T., Duchon, S., & Yoksan, S. (2007). Insecticide Susceptible / Resistance Status in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Díptera: Culicidae) in Thailand During 2003 – 2005. Journal of Economic Entomology 100(2), 545–550. https://doi.org/10.1603/0022-0493(2007)100[545:irsias]2.0.co;2.Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451(1), 990–993. https://doi.org/10.1038/nature06536.Kai Seng, K., & Loong, W. V. (2019). Introductory Chapter: From Microemulsions to Nanoemulsions. En Kai Seng, K. & Loong, W. V. (Eds.), Nanoemulsions: Properties, Fabrications and Applications (pp. 1–7). https://doi.org/10.5772/intechopen.87104.Kaleka, A. S., Kaur, N., & Kour Bali, G. (2019). Larval Development and Molting. En Mikkola, H.J. (Ed.), Edible Insects (pp. 1–20). IntechOpen. https://doi.org/10.5772/intechopen.85530.Karlberg, A., Magnusson, K., & Nilsson, U. (1992). Air oxidation of D-limonene (the citrus solvent) creates potent allergens. Contact Dermatitis 26(5), 332–340. https://doi.org/10.1111/j.1600-0536.1992.tb00129.x.Kavitha, P., & Rao, J. V. (2008). Toxic effects of chlorpyrifos on antioxidant enzymes and target enzyme acetylcholinesterase interaction in mosquito fish Gambusia affinis. Environmental Toxicology and Pharmacology 16(1), 192–198. https://doi.org/10.1016/j.etap.2008.03.010.Kawasaki, T., & Soai, K. (2010). Amplification of chirality as a pathway to biological homochirality. Journal of Fluorine Chemistry 131(4), 525–534. https://doi.org/10.1016/j.jfluchem.2009.12.014.Kim, J. H., & Scialli, A. R. (2011). Thalidomide: The tragedy of birth defects and the effective treatment of disease. Toxicological Sciences 122(1), 1–6. https://doi.org/10.1093/toxsci/kfr088Kobayashi, H., Ito, Y., Komanoya, T., Hosaka, Y., Dhepe, P. L., Kasai, K., Haraa, K., & Fukuoka, A. (2011). Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chemistry 13(2), 326–333. https://doi.org/10.1039/c0gc00666a.Komaiko, J. S., & Mc Clements, D. J. (2016). Formation of Food-Grade Nanoemulsions Using Low-Energy Preparation Methods: A Review of Available Methods. Comprehensive Reviews in Food Science and Food Safety 15(2), 331–352. https://doi.org/10.1111/1541-4337.12189.Konieczka, P. (2012). Validation and regulatory issues for sample preparation. En Pawliszyn, J (Ed.), Comprehensive Sampling and Sample Preparation. Analytical Techniques for Scientists (Vol. 2). Elsevier (pp. 699–711). https://doi.org/10.1016/B978-0-12-381373-2.00064-8.Kouznetsov, V. V. (2014). Conexión de Biología y Química vía Síntesis Orgánica dirigida a la Diversidad molecular. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 38(S1), 129-141. https://doi.org/10.18257/raccefyn.159.Kraemer, M. U. G., Sinka, M. E., Duda, K. A., Mylne, A. Q. N., Shearer, F. M., Barker, C. M., Moore, C.G., Carvalho R.G., Coelho, G.E., Van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I.R.F., Teng, H.T., Brady, O.J., Messina, J.P., Pigott, D.M., Scott, T.W., Smith, D.L., Wint, G.R., Golding, N., & Hay, S. I. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. Albopictus. ELife 4(1), 1–18. https://doi.org/10.7554/eLife.08347.Kramer, V., Schnell, D., & Nickerson, K. (1983). Relative toxicity of organic solvents to Aedes aegypti larvae. Journal of Invertebrate Pathology 42(2), 285–287. https://doi.org/10.1016/0022-2011 (83)90076-9.Kromasil (2021) Kromasil 5-CelluCoat column. Consultado el 17 de febrero de 2021, disponible en https://www.kromasil.com/products/info.php?C05CCP25Kularatne, S. A. M. (2015). Dengue fever. The BMJ - British Medical Journal 351, 1–10. https://doi.org/10.1136/bmj.h4661.Kuno, G. (2007). Research on dengue and dengue-like illness in East Asia and the Western Pacific during the first half of the 20th century. Reviews in Medical Virology 17(5), 327–341. https://doi.org/10.1002/rmv.Kuss, H. J., & Kromidas, S. (2009). Quantification in LC and GC. Weinheim, Germany: Wiley-VCH (p. 376). ISBN: 978-3-527-32301-2.Lalthazuali, & Mathew, N. (2017). Mosquito repellent activity of volatile oils from selected aromatic plants. Parasitology Research 116(2), 821–825. https://doi.org/10.1007/s00436-016-5351-4.Li, P. H., & Chiang, B. H. (2012). Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrasonics Sonochemistry 19(1), 192–197. https://doi.org/10.1016/j.ultsonch.2011.05.017.Li, P. H., & Lu, W. C. (2016). Effects of storage conditions on the physical stability of D-limonene nanoemulsion. Food Hydrocolloids 53(1), 218–224. https://doi.org/10.1016/j.foodhyd.2015.01.031.Lin, T., Cai, Z., Wu, H., & Luo, L. (2016). Changes in midgut gene expression following Bacillus thuringiensis (Bacillales: Bacillaceae) Infection in Monochamus alternatus (Coleoptera: Cerambycidae). BioOne 99(1), 60–66. https://doi.org/10.1653/024.099.0111.Little, T. (2015). Method Validation Essentials, Limit of Blank, Limit of Detection, and Limit of Quantitation. BioPharm International 28(4), 48–51. PMID 18852857.Liu, N. (2015). Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review of Entomology 60(1), 537–559. https://doi.org/10.1146/annurev-ento-010814-020828.London, L., Flisher, A. J., Wesseling, C., Mergler, D., & Kromhout, H. (2005). Suicide and exposure to organophosphate insecticides: Cause or effect? American Journal of Industrial Medicine 47(4), 308–321. https://doi.org/10.1002/ajim.20147.Loukotková, L., Rambousková, M., Bosáková, Z., & Tesařová, E. (2008). Cellulose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phases as effective tools for enantioselective HPLC separation of structurally different disubstituted binaphthyls. Chirality 20(8), 900–909. https://doi.org/10.1002/chir.20585.Maestre, R. S., Rey, G. V., De Las A. Salas, J., Vergara, C. S., Santacoloma, L. V., Goenaga, S. O., & Carrasquilla, M. C. F. (2009). Susceptibilidad de Aedes aegypti (Díptera: Culicidae) a temefos en Atlántico-Colombia. Revista Colombiana de Entomologia 35(2), 202–205. ISSN 2665-4385.Mahdavi, S. A., Jafari, S. M., Ghorbani, M., & Assadpoor, E. (2014). Spray-Drying microencapsulation of anthocyanins by natural biopolymers: A review. Drying Technology 32(5), 509–518. https://doi.org/10.1080/07373937.2013.839562.Maia, A. S., Ribeiro, A. R., Castro, P. M. L., & Tiritan, M. E. (2017). Chiral analysis of pesticides and drugs of environmental concern: Biodegradation and enantiomeric fraction. Symmetry 9(9), 1–25. https://doi.org/10.3390/sym9090196.Malvern Instruments. (2004). Zetasizer Nano Series User Manual (pp 2.1 - 2.3).Malvern Panalytical. (2020). Dispersión de luz electroforética (ELS). Consultado el 24 septimbre de 2020, disponible en: https://www.malvernpanalytical.com/es/products/technology/light-scattering/ electrophoretic-light-scatteringMalvern Panalytical. (2021). Dispersión de luz dinámica (DLS). Consultado el 21 de enero de 2021, disponible en https://www.malvernpanalytical.com/es/products/technology/light-scattering/dynamic-light-scatteringMarcondes, C. B., & Ximenes, M. de F. F. de M. (2016). Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Revista da Sociedade Brasileira de Medicina Tropical 49(1), 4–10. https://doi.org/10.1590/0037-8682-0220-2015.Marine, S. S., Clemons, J. (2003). Determination of limonene oxidation products using SPME and GC-MS. Journal of Chromatographic Science 41(1), 31–35. https://doi.org/10.1093/chromsci/41.1.31Martins, A. J., Lins, R. M. M. D. A., Linss, J. G. B., Peixoto, A. A., & Valle, D. (2009). Voltage-gated sodium channel polymorphism and metabolic resistance in pyrethroid-resistant Aedes aegypti from Brazil. American Journal of Tropical Medicine and Hygiene 81(1), 108–115. https://doi.org/ 10.4269/ajtmh.2009.81.108.Massoulié, J., Bacou, F., Barnard, E., Chatonnet, A., Doctor, B. P., & Quinn, D. M. (1991). Cholinesterases. Structure, function, mechanism, genetics and cell biology. In ACS Conference proceedings series. Washington: Estados Unidos (pp. 2–398).Massoulié, J., & Bon, S. (1982). The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annual Review of Neuroscience 5(1), 57–106. https://doi.org/10.1146/annurev.ne. 05.030182.000421Méndez-Jérez, K., & Jaramillo-Pérez, V. (2017). Evaluación de la susceptibilidad y resistencia de larvas de Aedes aegypti a metabolitos secundarios de plantas aromáticas y medicinales (Tesis de pregrado en Química Ambiental). Universidad Santo Tomás. Bucaramanga, Colombia (pp. 46 - 48).Menichini, F., Tundis, R., Loizzo, M. R., Bonesi, M., Marrelli, M., Statti, G. A., Menichini, F., & Conforti, F. (2009). Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia 80(5), 297–300. https://doi.org/10.1016/j.fitote.2009.03.008.Min. Agricultura. (2019). Cadena de Citricos; Indicadores e instrumentos. Consultado el 6 de julio de 2020. Disponible en: https://sioc.minagricultura.gov.co/Citricos/Documentos/2019-06-30Cifras Sectoriales.pdfMoldoveanu, S. C., & David, V. (2013). Parameters that Characterize HPLC Analysis. En: Moldoveanu S. C. & David V. (Eds.), Essentials in Modern HPLC SeparationsWaltham, Estados Unidos: Elsevier. (pp. 53–83) https://doi.org/10.1016/b978-0-12-385013-3.00002-1.Möllenbeck, S., König, T., Schreier, P., Schwab, W., Rajaonarivony, J., & Ranarivelo, L. (1997). Chemical composition and analyses of enantiomers of essential oils from Madagascar. Flavour and Fragrance Journal 12(2), 63–69. https://doi.org/10.1002/(sici)1099-1026(199703)12:2<63aid-ffj614>3.3.co;2-q.Mordor Intelligence. (2020). Limonene Market - Growth, Trends and Forecasts (2020 - 2025). Consultado del 17 de julio de 2020, disponible en https://www.mordorintelligence.com/industry-reports/limonene-market.Morehouse, B. R., Kumar, R. P., Matos, J. O., Olsen, S. N., Entova, S., & Oprian, D. D. (2017). Functional and Structural Characterization of a (+)-Limonene Synthase from Citrus sinensis. Biochemistry 56(12), 1706–1715. https://doi.org/10.1016/j.physbeh.2017.03.040.Mostafalou, S., & Abdollahi, M. (2017). Pesticides: an update of human exposure and toxicity. Archives of Toxicology 91(2), 549–599. https://doi.org/10.1007/s00204-016-1849-x.Murphey, R. D., & Zon, L. I. (2006). Small molecule screening in the zebrafish. Methods 39(3), 255–261. https://doi.org/10.1016/j.ymeth.2005.09.019.Musso, D. (2015). Zika virus transmission from French Polynesia to Brazil. Emerging Infectious Diseases 21(10), 1887–1889. https://doi.org/10.3201/eid2110.151125.Nabel, G. J., & Zerhouni, E. A. (2016). Once and future epidemics: Zika virus emerging. Science Translational Medicine 8(330), 1–3. https://doi.org/10.1126/scitranslmed.aaf4548.Nan, A. (2015). Miscellaneous Drugs, Materials, Medical Devices and Techniques. En Ray, S.D (Ed.) Side Effects of Drugs Annual (1ra ed., Vol. 37) Ámsterdam, Holanda: Elsevier (pp. 603–619). https://doi.org/10.1016/bs.seda.2015.06.007National Institute of Neurological Disorders and Stroke. (2019). Encephalopathy Information Page. Consultado el 2 de junio de 2020, disponible en https://www.ninds.nih.gov/Disorders/All-Disorders/Encephalopathy-Information-Page.National Pesticide Information Center. (2009). Chlorpyrifos. Consultado el 6 de enero de 2021, disponible en http://npic.orst.edu/factsheets/archive/chlorptech.html#referencesNoisakran, S., Chokephaibulkit, K., Songprakhon, P., Onlamoon, N., Hsiao, H. M., Villinger, F., Ansari, A., & Perng, G. C. (2009). A re-evaluation of the mechanisms leading to dengue hemorrhagic fever. Annals of the New York Academy of Sciences 1171(S1), E24–E25. https://doi.org/10.1111/j.1749-6632.2009.05050.x.Ocampo, C. B., Salazar-Terreros, M. J., Mina, N. J., McAllister, J., & Brogdon, W. (2011). Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Tropica 118(1), 37–44. https://doi.org/10.1016/j.actatropica.2011.01.007.Oliveira, A. E. M. F. M., Duarte, J. L., Cruz, R. A. S., Souto, R. N. P., Ferreira, R. M. A., Peniche, T., da Conceição, E.C., de Oliveira, L.A.R., Faustino, S. M.M., Florentino, A.C., Carvalho, J.C.T. & Fernandes, C. P. (2017). Pterodon emarginatus oleoresin-based nanoemulsion as a promising tool for Culex quinquefasciatus (Diptera: Culicidae) control. Journal of Nanobiotechnology 15(1), 1–11. https://doi.org/10.1186/s12951-016-0234-5OMS. (2020). Dengue y dengue grave. Consultado el 26 de mazco de 2020, disponible en http://www.who.int/es/news-room/fact-sheets/detail/dengue-and-severe-dengue.OPS. (2010). Aedes Aegypti: medidas para el control del vector. Consultado el 26 de marzo de 2020, disponible en https://www.paho.org/hq/index.php?option=com_content&view=article&id=4503: 2010-aedes-aaegypti-medidas-control-vector&Itemid=40264&lang=es.OPS. (2019). Epidemiological Update Dengue. Consultado el 26 de mazco de 2020, disponible en https://www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=dengue-2217&alias=50963-11-november-2019-dengue-epidemiological-update-1&Itemid=270&lang=enPadhan, D., Pattnaik, S., & Behera, A. (2017). Growth-arresting activity of acmella essential oil and its isolated component D-limonene (1,8-p-menthadiene) against Trichophyton rubrum (microbial type culture collection 296). Pharmacognosy Magazine 13(51), 555–560. https://doi.org/10.4103/ pm.pm_65_17Palmer, T., & Bonner, P. L. (2011). Enzyme Inhibition. En Enzymes: Biochemistry, Biotechnology, Clinical Chemistry (2 ed.) Cambridge, Reino Unido: Woodhead Publishing Limited (pp. 126–152). https://doi.org/10.1533/9780857099921.2.126.Pasquali, R. C., Taurozzi, M. P., & Bregni, C. (2008). Some considerations about the hydrophilic-lipophilic balance system. International Journal of Pharmaceutics 356(1–2), 44–51. https://doi.org/ 10.1016/j.ijpharm.2007.12.034.Patel, S., & Goyal, A. (2017). Chitin and chitinase: Role in pathogenicity, allergenicity and health. International Journal of Biological Macromolecules 97, 331–338. https://doi.org/10.1016/j. ijbiomac.2017.01.042.Pavela, R., Maggi, F., Lupidi, G., Cianfaglione, K., Dauvergne, X., Bruno, M., & Benelli, G. (2017). Efficacy of sea fennel (Crithmum maritimum L., Apiaceae) essential oils against Culex quinquefasciatus say and Spodoptera littoralis (Boisd.). Industrial Crops and Products 109(15), 603–610. https://doi.org/10.1016/j.indcrop.2017.09.013.Peng, W., & Ding, F. (2017). Enantioselective recognition of an isomeric ligand by a biomolecule: Mechanistic insights into static and dynamic enantiomeric behavior and structural flexibility. Molecular BioSystems 13(11), 2226-2234. https://doi.org/10.1039/c7mb00378a.Peniche, T., Duarte, J. L., Amaral, F. A. S., Sarquis, I. R., Sarquis, R., Cruz, R. A. S., Oliveira, A.E.F.M., Ferreira, R.M.A., Rocha, L., Tietbohl, L.A.C., Florentino, A.C., Carvalho, J.C.T., Souto, R.N.P., & Fernandes, C. P. (2019). Hyptis suaveolens (L.) Poit. essential oil: a raw material for a larvicidal nano-emulsion. Latin American Journal of Pharmacy 38(5), 938–944. ISSN 2362-3853.Peterson, R. T., Link, B. A., Dowling, J. E., & Schreiber, S. L. (2000). Small molecule developmental screens reveal the logic and timing of vertebrate development. Proceedings of the National Academy of Sciences 97(24), 12965–12969. https://doi.org/10.1073/pnas.97.24.12965.Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilised by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. Journal of Colloid and Interface Science 352(1), 128–135. https://doi.org/10.1016/j.jcis.2010.08.021.Poland, G. A., Ovsyannikova, I. G., & Kennedy, R. B. (2019). Zika Vaccine Development: Current Status. Mayo Clinic Proceedings 94(12), 2572–2586. https://doi.org/10.1016/j.mayocp.2019.05.016.Polo-Díez, L. M. (2015). Fundamentos de Cromatografía. Madrid, España: Dexrea Editorial (pp. 90). ISBN: 9788416277575Rai, V. K., Mishra, N., Yadav, K. S., & Yadav, N. P. (2018). Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: Formulation development, stability issues, basic considerations and applications. Journal of Controlled Release 270(1), 203–225. https://doi.org/10.1016/j.jconrel.2017.11.049.Rajashekar, Y., & Shivanandappa, T. (2017). Mode of action of the natural insecticide, decaleside involves sodium pump inhibition. PLoS ONE 12(1), 1–15. https://doi.org/10.1371/ journal.pone.0170836.Ramírez-Sánchez, K., Alvarado-Hidalgo, F., Ardao, I., & Starbird-Pérez, R. (2018). Enzymatic inhibition constant of acetylcholinesterase for the electrochemical detection and sensing of chlorpyrifos. Journal of Natural Resources and Development 8(1), 9–14. https://doi.org/ 10.5027/jnrd.v8i0.02Rao, J. V., Pavan, Y. S., & Madhavendra, S. S. (2003). Toxic effects of chlorpyrifos on morphology and acetylcholinesterase activity in the earthworm, Eisenia foetida. Ecotoxicology and Environmental Safety 54(3), 296–301. https://doi.org/10.1016/s0147-6513(02)00013-1.Rawlins, S. C. (1998). Spatial distribution of insecticide resistance in caribbean populations of Aedes aegypti and its significance. Revista Panamericana de Salud Publica 4(4), 243–251. https://doi.org/10.1590/s1020-49891998001000004.Ríos, J. L. (2016). Essential oils: What they are and how the terms are used and defined. En Preedy, V.R. (ED) Essential Oils in Food Preservation, Flavor and Safety. Londres, Reino Unido: Academic (pp. 3 - 10)Press https://doi.org/10.1016/B978-0-12-416641-7.00001-8.Rosado-Solano, D. N., Jaramillo-Pérez, V. M., Kouznetsov, V. V., Restrepo-Manrique, R., Puerto-Galvis, C. E., & Vargas-Méndez, L. Y. (2018). Actividad larvicida de aceites esenciales y extractos de plantas colombianas frente a Culex quinquefasciatus (Díptera: Culicidae). ITECKNE 15(2), 79–87. https://doi.org/10.15332/iteckne.v15i2.2069.Rosenberg, R. (2015). Detecting the emergence of novel, zoonotic viruses pathogenic to humans. Cellular and Molecular Life Sciences 72(6), 1115–1125. https://doi.org/10.1007/s00018-014-1785-y.Detecting.Rubinstein, A. (2003). Zebrafish: from disease modeling to drug discovery. Current Opinion in Drug Discovery & Development 6(2), 218–223. ISSN 13676733.Ruiz-López, F., González-Mazo, A., Vélez-Mira, A., Gómez, G. F., Zuleta, L., Uribe, S., & Vélez-Bernal, I. D. (2016). Presencia de Aedes (Stegomyia) aegypti (Linnaeus, 1762) y su infección natural con el virus del dengue en alturas no registradas para Colombia. Biomédica 36(2), 303-308. https://doi.org/10.7705/biomedica.v36i2.3301Ruppert, E., & Barnes, R. (2000). Insectos. Zoología de los Invertebrados. (6 ed.). Mexico, Mexico: McGraw-Hill (p. 1001). ISBN 968-25-2452-0.Saberi, A. H., Fang, Y., & McClements, D. J. (2013). Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: Effect of propylene glycol and ethanol on formation, stability, and properties. Food Research International 54(1), 812–820. https://doi.org/10.1016/j.foodres. 2013.08.028Saelim, V., Brogdon, W. G., Rojanapremsuk, J., Suvannadabba, S., Pandii, W., Jones, J. W., & Sithiprasasna, R. (2005). Bottle and biochemical assays on temephos resistance in Aedes aegypti in Thailand. The Southeast Asian Journal of Tropical Medicine and Public Health 36(2), 417–425. PMID15916049Santacoloma, L., Chaves, B., & Brochero, H. L. (2012). Estado de la susceptibilidad de poblaciones naturales del vector del dengue a insecticidas en 13 localidades de Colombia. Biomédica 32(3), 333–343. https://doi.org/10.7705/biomedica.v32i3.680.Santos, S. R. L., Melo, M. A., Valença, A., Santos, R. L. C., Sousa, D. P. De, & Cavalcanti, S. C. H. (2011). Structure – activity relationships of larvicidal monoterpenes and derivatives against Aedes aegypti Linn. Chemosphere 84(1), 150–153. https://doi.org/10.1016/j.chemosphere.2011.02.018.Sattelle, D. B., Cordova, D., & Cheek, T. R. (2008). Insect ryanodine receptors: Molecular targets for novel pest control chemicals. Invertebrate Neuroscience 8(3), 107–119. https://doi.org/10.1007/ s10158-008-0076-4.Shafaati, A. (2007). Chiral Drugs: Current Status of the Industry and the Market. Iranian Journal of Pharmaceutical Research 6(2), 73–74. https://doi.org/10.22037/ijpr.2010.702.Shan, C., Xie, X., Barrett, A. D. T., Garcia-Blanco, M. A., Tesh, R. B., Vasconcelos, P. F. D. C., Vasilakis, N., Weaver, S.C., & Shi, P. Y. (2016). Zika Virus: Diagnosis, therapeutics, and vaccine. ACS Infectious Diseases 2(3), 170–172. https://doi.org/10.1021/acsinfecdis.6b00030.Shetty, V., Sanil, D., & Shetty, N. J. (2013). Insecticide susceptibility status in three medically important species of mosquitoes, Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus, from Bruhat Bengaluru Mahanagara Palike, Karnataka, India. Pest Management Science 69(2), 257–267. https://doi.org/10.1002/ps.3383.Shivanandappa, T., & Rajashekar, Y. (2014). Mode of action of plant-derived natural insecticides. En Singh, D. (Ed.), Advances in Plant Biopesticides. Nueva Delhi, India: Springer India (pp. 323–346). https://doi.org/10.1007/978-81-322-2006-0.Shrivastava, A., & Gupta, V. (2011). Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists 2(1), 21-25. https://doi.org/ 10.4103/2229-5186.79345.Shutava, H. G., Kavalenka, N. A., Supichenka, H. N., Leontiev, V. N., & Shutava, T. G. (2014). Essential oils of Lamiaceae with high content of α-, β-pinene and limonene enantiomers. Journal of Essential Oil-Bearing Plants 17(1), 18–25. https://doi.org/10.1080/0972060X.2014.884816.Silva, E. K., Gomes, M. T. M. S., Hubinger, M. D., Cunha, R. L., & Meireles, M. A. A. (2015). Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocolloids 47(1), 1–13. https://doi.org/10.1016/j.foodhyd.2015.01.001.Sigma-Aldrich (2021a) Tween 20. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sial/p1379?lang=en®ion=COSigma-Aldrich (2021b) Tween 40. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sigma/p1504?lang=en®ion=COSigma-Aldrich (2021c) Tween 80. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sial/p1754?lang=en®ion=COSigma-Aldrich (2021d) Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sigma/h4645?lang=en®ion=COSigma-Aldrich (2021e) Acetylcholine iodide. Consultado el 17 de febrero de 2021, disponible en https://www.sigmaaldrich.com/catalog/product/sigma/a7000?lang=en®ion=COSmith, L. B., Kasai, S., & Scott, J. G. (2016). Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases. Pesticide Biochemistry and Physiology 133(1), 1–12. https://doi.org/10.1016/j.pestbp.2016.03.005.Smith, S. W. (2009). Chiral toxicology: It’s the same thing only different. Toxicological Sciences 110(1), 4–30. https://doi.org/10.1093/toxsci/kfp097.Smith, W., & Rybczynski, R. (2012). Prothoracicotropic Hormone. En Gilbert, L. I.(Ed.), Insect Endocrinology. Londres: Reino Unido: Academic Press (pp. 1–62). https://doi.org/10.1016/B978-0-12-384749-2.10001-9.Solans, C., Izquierdo, P., Nolla, J., Azemar, N., & Garcia-Celma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid and Interface Science 10(3–4), 102–110. https://doi.org/10.1016/ j.cocis.2005.06.004.Song, M., Cho, S., & Kim, J. (2002). Novel evaluation method for the water-in-oil (W/O) emulsion stability by turbidity ratio measurements. Korean Journal of Chemical Engineering 19(3), 425–430. https://doi.org/10.1007/BF02697151Sonneville-Aubrun, O., Simonnet, J. T., & L’Alloret, F. (2004). Nanoemulsions: a new vehicle for skincare products. Advances in Colloid and Interface Science 108-109(1), 145–149. https://doi.org/10.1016/s0001-8686(03)00146-5.Souza, J. M., Caldas, A. L., Tohidi, S. D., Molina, J., Souto, A. P., Fangueiro, R., & Zille, A. (2014). Properties and controlled release of chitosan microencapsulated limonene oil. Brazilian Journal of Pharmacognosy 24(6), 691–698. https://doi.org/10.1016/j.bjp.2014.11.007.Stern, H. M., & Zon, L. I. (2003). Cancer genetics and drug discovery in the zebrafish. Nature Reviews Cancer 3(7), 533–539. https://doi.org/10.1038/nrc1126.Stevens, J., Breckenridge, C. B., & Wright, J. (2010). The Role of P-glycoprotein in Preventing Developmental and Neurotoxicity: Avermectins - A Case Study. En Krieger, R (Ed.), Hayes’ Handbook of Pesticide Toxicology (3 ed) Londres: Reino Unido: Academic Pres (pp 2093-2110). https://doi.org/10.1016/B978-0-12-374367-1.00097-5.Suárez, M. F., & Nelson, M. J. (1981). Registro de altitud del Aedes Aegypti en Colombia. Biomédica 1(4), 225. https://doi.org/10.7705/biomedica.v1i4.1809.Tabashnik, B. E., Mota-Sanchez, D., Whalon, M. E., Hollingworth, R. M., & Carrière, Y. (2014). Defining terms for proactive management of resistance to Bt Crops and Pesticides. Journal of Economic Entomology 107(2), 496–507. https://doi.org/10.1603/EC13458.Tang, H., Hammack, C., Ogden, S. C., Wen, Z., Qian, X., Li, Y., Ya, B., Shin, J., Zhang, F., Lee, E.M., Christian, K.M., Didier, R.A., Jin, P., Song, H., & Ming, G.L. (2016). Zika virus infect human cortical neural precursors and attenuates their growth. Cell Stem Cell 18(5), 587–590. https://doi.org/10.1016/j.stem.2016.02.016.Zika.Tapiero, J., Salamanca, G., & Marín, C. (2019). Analysis of volatile compounds and antioxidant activity of the essential oil of oregano (Origanum vulgare L.). Advancement in Medicinal Plant Research 7(2), 54–60. https://doi.org/10.30918/ampr.72.19.022.Tardos, T. (2014). An introduction to surfractants. Boston, Estados Unidos: De Gruyter (pp. 1- 15.) ISBN 978-3-11-031212-6.Tardos, T. (2016). Emulsions: Formation, Stability, Industrial Applications. Boston, Estados Unidos: De Gruyter. (pp. 1-5) ISBN ISBN 978-3-11-045217-4.Testai, E., Buratti, F. M., & Consiglio, E. Di. (2010). Chlorpyrifos En Krieger, R (Ed.), Hayes’ Handbook of Pesticide Toxicology (3 ed) Londres: Reino Unido: Academic Pres (pp. 1505-1526). https://doi.org/10.1016/B978-0-12-374367-1.00097-5.Trathnigg, B., & Abrar, S. (2009). Characterization of commercial polysorbates using different chromatographic techniques. Tenside, Surfactants, Detergents 46(5), 280–288. https://doi.org/ 10.3139/113.110032.Vargesson, N. (2015). Thalidomide-induced teratogenesis: History and mechanisms. Birth Defects Research (Part C) Embryo Today: Reviews 105(2), 140–156. https://doi.org/10.1002/bdrc.21096.Verri, W. A., Vicentini, F. T. M. C., Baracat, M. M., Georgetti, S. R., Cardoso, R. D. R., Cunha, T. M., Fonseca, J.V. & Casagrande, R. (2012). Flavonoids as anti-inflammatory and analgesic drugs: Mechanisms of action and perspectives in the development of pharmaceutical forms. En Rahman, A (Ed) Studies in Natural Products Chemistry (1st ed., Vol. 36) Amsterdam, Netherlands: Elsevier. (pp. 297-330) https://doi.org/10.1016/B978-0-444-53836-9.00026-8.Vincent, J. F. V. (2001). Cuticle. En. CahnJürgen Buschow K. H, Lemings, M. C., Kramer, E. J., Veyssière, P., Cahn, R. W., Ilschner,B., & Mahajan S. (Eds.), Encyclopedia of Materials: Science and Technology (2 ed) Amsterdam, Netherlands: Elsevier ( pp. 1924–1928) . ISBN 978-0-08-043152-9.Vivanco, J., Cosio, E., Loyola -Vargas, V., & Flores, H. (2005). Mecanismos químicos de defensa en las plantas. Investigación y Ciencia 341(1), 68–75 ISSN 0210-136X.Walker, S. I. (2014). Homochirality. In Gargaud, M., Amils R., Cernicharo Quintanilla, J., Cleaves, H.J., Irvine, W.M., Pinti, D., Viso, M. (Eds), Encyclopedia of Astrobiology. Berlin, Alemania: Springer. (pp 44) https://doi.org/10.1007/978-3-642-27833-4_731-2.Weiss, S. A., Kavecansky, J., & Pavlick, A. C. (2016). Management of Melanoma Therapy-Associated Toxicities. En Hayat, M.A. (Ed) Brain Metastases from Primary Tumors: Epidemiology, Biology, and Therapy of Melanoma and Other Cancers (Vol. 3). Londres, Reino Unido: Academic Press (pp. 299-319). https://doi.org/10.1016/B978-0-12-803508-5.00020-2.Wen, C., Yuan, Q., Liang, H., & Vriesekoop, F. (2014). Preparation and stabilization of d-limonene Pickering emulsions by cellulose nanocrystals. Carbohydrate Polymers 112(1), 695–700. https://doi.org/10.1016/j.carbpol.2014.06.051.WHO. (1957). Expert Committee on Insecticide Seventh Report Conultado el 25 de julio de 2018 disponible en https://apps.who.int/iris/bitstream/handle/10665/40380/WHO_TRS_125.pdf? sequence=1&isAllowed=y.WHO. (2005). Guidelines for laboratory and field testing of mosquito larvicides. World Health Organization, 1–41. https://doi.org/Ref: WHO/CDS/WHOPES/GCDPP/2005.11.WHO. (2011). Global Insecticide Use for Vector-Borne Disease Control: A 10-Year assessment (2000–2009) (5th ed.). https://doi.org/10.1086/523153.WHO. (2016). Monitoring and managing insecticide resistance in Aedes mosquito populations. Consultado el 20 de octubre de 2018, disponible en http://apps.who.int/iris/bitstream/10665/ 204588/2/ WHO_ZIKV_VC_16.1_eng.pdf 7.WHO. (2020). Prioritizing diseases for research and development in emergency contexts. Consultado el 20 de Junio de 2020, disponible en https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts.Wilder-Smith, A., Gubler, D. J., Weaver, S. C., Monath, T. P., Heymann, D. L., & Scott, T. W. (2017). Epidemic arboviral diseases: priorities for research and public health. The Lancet Infectious Diseases 17(3), e101–e106. https://doi.org/10.1016/S1473-3099(16)30518-7.Woolhouse, M., Scott, F., Hudson, Z., Howey, R., & Chase-Topping, M. (2012). Human viruses: Discovery and emergence. Philosophical Transactions of the Royal Society B: Biological Sciences 367(1), 2864–2871. https://doi.org/10.1098/rstb.2011.0354.Zahran, H. E. M., & Abdelgaleil, S. A. M. (2011). Insecticidal and developmental inhibitory properties of monoterpenes on Culex pipiens L. (Diptera: Culicidae). Journal of Asia-Pacific Entomology 14(1), 46–51. https://doi.org/10.1016/j.aspen.2010.11.013.Zahran, H. E. M., Abou-Taleb, H. K., & Abdelgaleil, S. A. M. (2017). Adulticidal, larvicidal and biochemical properties of essential oils against Culex pipiens L. Journal of Asia-Pacific Entomology 20(1), 133–139. https://doi.org/10.1016/j.aspen.2016.12.006.Zanluca, C., De Melo, V. C. A., Mosimann, A. L. P., Dos Santos, G. I. V., dos Santos, C. N. D., & Luz, K. (2015). First report of autochthonous transmission of Zika virus in Brazil. Memorias do Instituto Oswaldo Cruz 110(4), 569–572. https://doi.org/10.1590/0074-02760150192.Zarrad, K., Hamouda, A. Ben, Chaieb, I., Laarif, A., & Jemâa, J. M. Ben. (2015). Chemical composition, fumigant and anti-acetylcholinesterase activity of the Tunisian Citrus aurantium L. essential oils. Industrial Crops and Products 76(1), 121–127. https://doi.org/10.1016/ j.indcrop.2015.06.039.Zhang, J., Liu, L., Ren, L., Feng, W., Lv, P., Wu, W., & Yan, Y. (2017). The single and joint toxicity effects of chlorpyrifos and beta- cypermethrin in zebrafish (Danio rerio) early life stages. Journal of Hazardous Materials 334(15), 121–131. https://doi.org/10.1016/j.jhazmat.2017.03.055.Zorro-González, A. F. (2018). Evaluación de la susceptibilidad y la resistencia de mosquitos colectados en Bucaramanga al limoneno y a aceites esenciales de cítricos (Tesis de pregrado en Química Ambiental). Universidad Santo Tómas; Bucaramanga, Colombia (pp. 67 - 68).ORIGINAL2021JaramilloVictor.pdf2021JaramilloVictor.pdfTrabajo de gradoapplication/pdf5206479https://repository.usta.edu.co/bitstream/11634/32507/1/2021JaramilloVictor.pdf8cb9305a7c2eb5c1a783f34b7cc1edb6MD51metadata only access2021JaramilloVictor1.pdf2021JaramilloVictor1.pdfAprobación Facultadapplication/pdf136503https://repository.usta.edu.co/bitstream/11634/32507/2/2021JaramilloVictor1.pdfea8b58a4b15071bd3a40bb37a56efbccMD52metadata only access2021JaramilloVictor2.pdf2021JaramilloVictor2.pdfAutorización de NO publicaciónapplication/pdf578745https://repository.usta.edu.co/bitstream/11634/32507/3/2021JaramilloVictor2.pdf65a529d64190cb00028720678a861230MD53metadata only access2021JaramilloVictor3.pdf2021JaramilloVictor3.pdfAcuerdo de Confidencialidadapplication/pdf242700https://repository.usta.edu.co/bitstream/11634/32507/4/2021JaramilloVictor3.pdf33be76fcd5609d1ac6ee811e84d042c8MD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/32507/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2021JaramilloVictor.pdf.jpg2021JaramilloVictor.pdf.jpgIM Thumbnailimage/jpeg4980https://repository.usta.edu.co/bitstream/11634/32507/6/2021JaramilloVictor.pdf.jpg80339174fdcbc4c2fed1f4f871524c4dMD56open access2021JaramilloVictor1.pdf.jpg2021JaramilloVictor1.pdf.jpgIM Thumbnailimage/jpeg8470https://repository.usta.edu.co/bitstream/11634/32507/7/2021JaramilloVictor1.pdf.jpg396149b70b2115698871adc9b4f1bcf4MD57open access2021JaramilloVictor2.pdf.jpg2021JaramilloVictor2.pdf.jpgIM Thumbnailimage/jpeg10322https://repository.usta.edu.co/bitstream/11634/32507/8/2021JaramilloVictor2.pdf.jpg5139affdce2197202a62b68256f705bdMD58open access2021JaramilloVictor3.pdf.jpg2021JaramilloVictor3.pdf.jpgIM Thumbnailimage/jpeg12006https://repository.usta.edu.co/bitstream/11634/32507/9/2021JaramilloVictor3.pdf.jpga112400fd3960522299202a92f48b862MD59open access11634/32507oai:repository.usta.edu.co:11634/325072022-10-10 16:00:42.747metadata only accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |