Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos

En la actualidad se generan grandes cantidades de biomasa lignocelulosica la cual es desechada, esta cuenta con un alto potencial para el uso en la producción de biogás y puede ser aprovechada para producir energía no convencional, este artículo presenta una Vigilancia Tecnológica dirigida al recono...

Full description

Autores:
Ricardo Pineda, Andres Sebastian
Ocampo Diaz, Luis Felipe
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/35108
Acceso en línea:
http://hdl.handle.net/11634/35108
Palabra clave:
pre-treatment
technology watch
agro-industrial waste
Residuos lignocelulósicos
Biomasa
Biogás
pretratamientos
vigilancia tecnológica
residuos agroindustriales
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_94316eb2962fa23dca9aec369db0a055
oai_identifier_str oai:repository.usta.edu.co:11634/35108
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
title Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
spellingShingle Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
pre-treatment
technology watch
agro-industrial waste
Residuos lignocelulósicos
Biomasa
Biogás
pretratamientos
vigilancia tecnológica
residuos agroindustriales
title_short Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
title_full Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
title_fullStr Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
title_full_unstemmed Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
title_sort Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
dc.creator.fl_str_mv Ricardo Pineda, Andres Sebastian
Ocampo Diaz, Luis Felipe
dc.contributor.advisor.none.fl_str_mv Orlando Rojas, Ivan Cabeza
dc.contributor.author.none.fl_str_mv Ricardo Pineda, Andres Sebastian
Ocampo Diaz, Luis Felipe
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0001-7110-813X
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.es/citations?user=96vN0jsAAAAJ&hl=es
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv pre-treatment
technology watch
agro-industrial waste
topic pre-treatment
technology watch
agro-industrial waste
Residuos lignocelulósicos
Biomasa
Biogás
pretratamientos
vigilancia tecnológica
residuos agroindustriales
dc.subject.lemb.spa.fl_str_mv Residuos lignocelulósicos
Biomasa
Biogás
dc.subject.proposal.spa.fl_str_mv pretratamientos
vigilancia tecnológica
residuos agroindustriales
description En la actualidad se generan grandes cantidades de biomasa lignocelulosica la cual es desechada, esta cuenta con un alto potencial para el uso en la producción de biogás y puede ser aprovechada para producir energía no convencional, este artículo presenta una Vigilancia Tecnológica dirigida al reconocimiento de las distintas tecnologías aplicadas a los diversos pretratamientos para la producción de biogás a partir de residuos lignocelulósicos, en primer lugar se realizó una recopilación de información a partir de ecuaciones de búsqueda en las bases de datos Scopus y Directory open access journals (DOAJ), posteriormente se complementó la investigación con datos suministrados por las patentes presentes en el motor de búsqueda Espacenet. Los datos más relevantes de la búsqueda fueron sintetizados en el programa VOSviewer y Excel arrojando como resultado que los países más avanzados en temas de investigación son China, Estados Unidos, Italia e India, dado su potencial agrícola y una dieta basada en la alta ingesta de cereales y granos, esto conlleva al desarrollo de tecnologías más eficientes en cuanto el aprovechamiento de la biomasa.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-28T14:27:00Z
dc.date.available.none.fl_str_mv 2021-07-28T14:27:00Z
dc.date.issued.none.fl_str_mv 2021-07-26
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.category.spa.fl_str_mv Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Ricardo Pineda, A. S., & Ocampo Diaz, L. F. (2021). Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos.[Trabajo de pregrado Ingeniería Ambiental]. Repositorio institucional.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/35108
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.usta.edu.co
identifier_str_mv Ricardo Pineda, A. S., & Ocampo Diaz, L. F. (2021). Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos.[Trabajo de pregrado Ingeniería Ambiental]. Repositorio institucional.
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
repourl:https://repository.usta.edu.co
url http://hdl.handle.net/11634/35108
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv D. Lili, R. Nanqi, and C. Guangli, “Biogas slurry pretreatment method of lignocellulosic biomass and method for producing biogas,” Espacenet, 19-May-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/070618404/publication/CN111172198A?q=CN111172198A. [Accessed: 14-May-2021].
(Z. T. AANDERUD, C. L. HANSEN, J. C. HANSEN, and L. D. HANSEN, “Microbial pretreatment for conversion of biomass into biogas,” Espacenet, 02-Jul-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/066539155/publication/AU2018370156A1?q=AU2018370156A1. [Accessed: 14-May-2021].
L. Xuyuan and W. Mingming, “Method for using lignocellulose to produce biogas,” Espacenet, 09-Dec-2015. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/054718037/publication/CN105132469A?q=CN105132469A. [Accessed: 14-May-2021].
K. Xiaoying, L. Lianhua, S. Yongming, W. Zhongming, X. Tao, and Z. Feng, “ Method for co-production of medium-chain fatty acid and biogas by using wood fiber raw material,” Espacenet, 10-Jul-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/071427185/publication/CN111394402A?q=CN111394402A. [Accessed: 14-May-2021].
X. Haipeng, C. Lei, H. Dongliang, J. Fuqiang, L. I. Yan, and L. Xiaohui, “Method for enhancing efficiency of producing biogas from straw by pretreatment of green liquor,” espacenet, 28-Aug-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/072184346/publication/CN111593076A?q=CN111593076A. [Accessed: 14-May-2021].
Y. Xue, Q. Li, Y. Gu, H. Yu, Y. Zhang, and X. Zhou, “Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline pretreatment,” Industrial Crops and Products, 25-Dec-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0926669019309951. [Accessed: 14-May-2021].
M. Li, B. Si, Y. Zhang, J. Watson, and A. Aierzhati, “Reduce recalcitrance of cornstalk using post-hydrothermal liquefaction wastewater pretreatment,” Bioresource Technology, 23-Jan-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852419301191. [Accessed: 14-May-2021].
S. N. Malik, K. Madhu, V. A. Mhaisalkar, A. N. Vaidya, and S. N. Mudliar, “Pretreatment of yard waste using advanced oxidation processes for enhanced biogas production,” Biomass and Bioenergy, 23-Sep-2020. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0961953420303159?dgcid=rss_sd_all. [Accessed: 14-May-2021].
M. Kaur, Y. Neetu, and S. P. Verma, “Effect of Chemical Pretreatment of Sugarcane Bagasse on Biogas Production,” Materials Today: Proceedings, 19-Feb-2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785320303497. [Accessed: 14-May-2021].
Y. Deng, Y. Qiu, Y. Yao, M. Ayiania, and M. Davaritouchaee, “Weak-base pretreatment to increase biomethane production from wheat straw,” Environmental Science and Pollution Research, 02-Jul-2020. [Online]. Available: https://link.springer.com/article/10.1007/s11356-020-09914-7. [Accessed: 14-May-2021].
J. Kainthola, A. S. Kalamdhad, V. V. Goud, and R. Goel, “Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion,” Bioresource Technology, 25-Apr-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S096085241930598X. [Accessed: 14-May-2021].
H. L. Thomas, J. Seira, R. Escudié, and H. Carrère, “Lime Pretreatment of Miscanthus: Impact on BMP and Batch Dry Co-Digestion with Cattle Manure,” MDPI, 02-Jul-2018. [Online]. Available: https://www.mdpi.com/1420-3049/23/7/1608. [Accessed: 14-May-2021].
P. A. Cremonez, S. C. Sampaio, J. G. Teleken, T. W. Meier, E. P. Frigo, E. de Rossi, E. da Silva, and D. M. Rosa, Effect of substrate concentrations on methane and hydrogen biogas production by anaerobic digestion of a cassava starch-based polymer, 01-Jan-1970. [Online]. Available: https://pubag.nal.usda.gov/catalog/6916150. [Accessed: 14-May-2021].
H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, 10-Sep-2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852415012754. [Accessed: 15-May-2021].
S. R. Paudel, S. P. Banjara, O. K. Choi, K. Y. Park, Y. M. Kim, and J. W. Lee, “Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges,” Bioresource Technology, 01-Sep-2017. [Online]. Available:
P. Rusanowska, M. Zieliński, M. R. Dudek, and M. Dębowski, “Mechanical Pretreatment of Lignocellulosic Biomass for Methane Fermentation in Innovative Reactor with Cage Mixing System,” Journal of Ecological Engineering, 01-Sep-2018. [Online]. Available: http://www.jeeng.net/Mechanical-Pretreatment-of-Lignocellulosic-Biomass-for-Methane-Fermentation-in-Innovative,89822,0,2.html. [Accessed: 15-May-2021].
D. G. Mulat, S. G. Huerta, D. Kalyani, and S. J. Horn, “Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii,” Biotechnology for Biofuels, 29-Jan-2018. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1025-z. [Accessed: 15-May-2021].
B. Saletnik, G. Zagula, M. Bajcar, M. Czernicka, and C. Puchalski, “Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus),” MDPI, 22-Sep-2018. [Online]. Available: https://www.mdpi.com/1996-1073/11/10/2535. [Accessed: 15-May-2021].
]D. Kovacic, D. Kralik, S. Rupcic, D. Jovicic, R. Spajic, and M. Tišmac, “Soybean straw, corn stover and sunflower stalk as possible substrates for biogas production in Croatia: A review,” Mendeley, 01-Jan-1970. [Online]. Available: https://www.mendeley.com/catalogue/c71473bc-69ad-33d3-b288-43122961c887/. [Accessed: 15-May-2021].
M. A. H. Siddhu, J. Li, R. Zhang, J. Liu, J. Ji, Y. He, C. Chen, and G. Liu, “[PDF] Potential of Black Liquor of Potassium Hydroxide to Pretreat Corn Stover for Biomethane Production: Semantic Scholar,” undefined, 01-Jan-1970. [Online]. Available: https://www.semanticscholar.org/paper/Potential-of-Black-Liquor-of-Potassium-Hydroxide-to-Siddhu-Li/8b797f2e16325caed78cfd039062aaeb6b0013c7. [Accessed: 15-May-2021].
F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, 28-Mar-2017. [Online]. Available: https://link.springer.com/article/10.1186/s13568-017-0375-4. [Accessed: 15-May-2021].
F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, 28-Mar-2017. [Online]. Available: https://amb-express.springeropen.com/articles/10.1186/s13568-017-0375-4. [Accessed: 15-May-2021].
J. Baruah, B. K. Nath, R. Sharma, S. Kumar, R. C. Deka, D. C. Baruah, and E. Kalita, “Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products,” Frontiers, 03-Dec-2018. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fenrg.2018.00141/full. [Accessed: 15-May-2021].
M. Zhurka , K. Stamatelatou , A. Spyridonidis , and I. Vasiliadou , “Biogas Production from Sunflower Head and Stalk Residues: Effect of Alkaline Pretreatment,” Molecules (Basel, Switzerland) . [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31906116/. [Accessed: 15-May-2021].
H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, 10-Sep-2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852415012754. [Accessed: 15-May-2021].
B. Weber, A. Estrada-Maya, A. C. Sandoval-Moctezuma, and I. G. Martínez-Cienfuegos, “Anaerobic digestion of extracts from steam exploded Agave tequilana bagasse,” Journal of Environmental Management, 03-Jun-2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301479719307212. [Accessed: 15-May-2021].
V. Khatri, F. Meddeb-Mouelhi, K. Adjallé, S. Barnabé, and M. Beauregard, “Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules,” Biotechnology for Biofuels, 18-May-2018. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1145-5/figures/4. [Accessed: 15-May-2021].
B. Satari, K. Karimi, and R. Kumar, “Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review,” Sustainable Energy & Fuels, 28-Sep-2018. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2019/se/c8se00287h#!divAbstract. [Accessed: 15-May-2021].
M. Zieliński, M. Dębowski, M. Kisielewska, A. Nowicka, M. Rokicka, and K. Szwarc, “Cavitation-based pretreatment strategies to enhance biogas production in a small-scale agricultural biogas plant,” Energy for Sustainable Development, 17-Jan-2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0973082618306410. [Accessed: 15-May-2021].
J. U. Hernández-Beltrán, I. O. Hernández-De Lira, M. M. Cruz-Santos, A. Saucedo-Luevanos, F. Hernández-Terán, and N. Balagurusamy, “Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities,” MDPI, 06-Sep-2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/18/3721. [Accessed: 15-May-2021].
R. O. Arazo, D. A. D. Genuino, M. D. G. de Luna, and S. C. Capareda, “Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor,” Sustainable Environment Research, 18-Nov-2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468203916300875. [Accessed: 15-May-2021].
R. Isemin, D. Klimov, O. Larina, A. Mikhalev, and V. Zaitchenko, “Integrated Waste Treatment System Combining Biogas Technology and Pyrolysis,” Chemical Engineering Transactions. [Online]. Available: https://www.cetjournal.it/index.php/cet/article/view/CET1867085. [Accessed: 15-May-2021].
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Pregrado de Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería Ambiental
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/35108/2/2021andrespineda.pdf
https://repository.usta.edu.co/bitstream/11634/35108/3/2021andrespineda1.pdf
https://repository.usta.edu.co/bitstream/11634/35108/4/2021andrespineda2.pdf
https://repository.usta.edu.co/bitstream/11634/35108/5/2021andrespineda3.pdf
https://repository.usta.edu.co/bitstream/11634/35108/6/Carta_aprobacion_facultad_autoarchivo%20%285%29.xlsx%20-%20Andres%20Ricardo.pdf
https://repository.usta.edu.co/bitstream/11634/35108/10/Carta%20derechos%20de%20autor.pdf
https://repository.usta.edu.co/bitstream/11634/35108/13/Carta_aprobacion_facultad_autoarchivo%20-%20LUIS%20FELIPE%20OCAMPO%20D%c3%8dAZ.pdf
https://repository.usta.edu.co/bitstream/11634/35108/11/license_rdf
https://repository.usta.edu.co/bitstream/11634/35108/12/license.txt
https://repository.usta.edu.co/bitstream/11634/35108/14/2021andrespineda.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/35108/15/2021andrespineda1.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/35108/16/2021andrespineda2.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/35108/17/2021andrespineda3.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/35108/18/Carta_aprobacion_facultad_autoarchivo%20%285%29.xlsx%20-%20Andres%20Ricardo.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/35108/19/Carta%20derechos%20de%20autor.pdf.jpg
https://repository.usta.edu.co/bitstream/11634/35108/20/Carta_aprobacion_facultad_autoarchivo%20-%20LUIS%20FELIPE%20OCAMPO%20D%c3%8dAZ.pdf.jpg
bitstream.checksum.fl_str_mv 005072f62a28f175cceb730700ad2fd1
927dd0f5d8e459ce38110d95274ed5cd
5aacdb6ed5dda01adf9eb7b4dc3e963f
8758ac13ffb2e6591f50ed529ead0fae
1f757431ef055c8a1207d98b4f5e09b3
43ea26e82c135f5ce9d0768c5b9ce251
c16bf727a12077f796fb2e37b6ded122
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
56b5ec02f2879700182dfd35ef33abff
390d29084392b5850c3c546bb67002a1
1d4bfac9505087f8c1500443296ef976
2e44d27b115b18a8b7f698d546212d3f
1f1a8b06c8b73a9707256dfd881e6993
597f452c0a18315351c85c8678853b5f
bd2047cf1b3db87dbeda4f779fd35b91
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026137762791424
spelling Orlando Rojas, Ivan CabezaRicardo Pineda, Andres SebastianOcampo Diaz, Luis Felipehttps://orcid.org/0000-0001-7110-813Xhttps://scholar.google.es/citations?user=96vN0jsAAAAJ&hl=esUniversidad Santo Tomás2021-07-28T14:27:00Z2021-07-28T14:27:00Z2021-07-26Ricardo Pineda, A. S., & Ocampo Diaz, L. F. (2021). Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos.[Trabajo de pregrado Ingeniería Ambiental]. Repositorio institucional.http://hdl.handle.net/11634/35108reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn la actualidad se generan grandes cantidades de biomasa lignocelulosica la cual es desechada, esta cuenta con un alto potencial para el uso en la producción de biogás y puede ser aprovechada para producir energía no convencional, este artículo presenta una Vigilancia Tecnológica dirigida al reconocimiento de las distintas tecnologías aplicadas a los diversos pretratamientos para la producción de biogás a partir de residuos lignocelulósicos, en primer lugar se realizó una recopilación de información a partir de ecuaciones de búsqueda en las bases de datos Scopus y Directory open access journals (DOAJ), posteriormente se complementó la investigación con datos suministrados por las patentes presentes en el motor de búsqueda Espacenet. Los datos más relevantes de la búsqueda fueron sintetizados en el programa VOSviewer y Excel arrojando como resultado que los países más avanzados en temas de investigación son China, Estados Unidos, Italia e India, dado su potencial agrícola y una dieta basada en la alta ingesta de cereales y granos, esto conlleva al desarrollo de tecnologías más eficientes en cuanto el aprovechamiento de la biomasa.At present, large amounts of lignocellulosic biomass are generated which is discarded, this has a high potential for use in the production of biogas and can be used to produce unconventional energy, this article presents a Technological Watch aimed at the recognition of the different technologies applied to the various pretreatments for the production of biogas from lignocellulosic waste, first a compilation of information was made from search equations in the Scopus and Directory open access journals (DOAJ) databases, then I complement the research with data supplied by the patents present in the Espacenet search engine. The most relevant data of the search were synthesized in the VOSviewer and Excel program, showing that the most advanced countries in research issues are China, the United States, Italy and India, given their agricultural potential and a diet based on the high intake of cereals and grains, this leads to the development of more efficient technologies in terms of the use of biomass.Ingeniero Ambientalhttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAtribución-NoComercial-SinDerivadas 2.5 ColombiaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicospre-treatmenttechnology watchagro-industrial wasteResiduos lignocelulósicosBiomasaBiogáspretratamientosvigilancia tecnológicaresiduos agroindustrialesTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáD. Lili, R. Nanqi, and C. Guangli, “Biogas slurry pretreatment method of lignocellulosic biomass and method for producing biogas,” Espacenet, 19-May-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/070618404/publication/CN111172198A?q=CN111172198A. [Accessed: 14-May-2021].(Z. T. AANDERUD, C. L. HANSEN, J. C. HANSEN, and L. D. HANSEN, “Microbial pretreatment for conversion of biomass into biogas,” Espacenet, 02-Jul-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/066539155/publication/AU2018370156A1?q=AU2018370156A1. [Accessed: 14-May-2021].L. Xuyuan and W. Mingming, “Method for using lignocellulose to produce biogas,” Espacenet, 09-Dec-2015. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/054718037/publication/CN105132469A?q=CN105132469A. [Accessed: 14-May-2021].K. Xiaoying, L. Lianhua, S. Yongming, W. Zhongming, X. Tao, and Z. Feng, “ Method for co-production of medium-chain fatty acid and biogas by using wood fiber raw material,” Espacenet, 10-Jul-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/071427185/publication/CN111394402A?q=CN111394402A. [Accessed: 14-May-2021].X. Haipeng, C. Lei, H. Dongliang, J. Fuqiang, L. I. Yan, and L. Xiaohui, “Method for enhancing efficiency of producing biogas from straw by pretreatment of green liquor,” espacenet, 28-Aug-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/072184346/publication/CN111593076A?q=CN111593076A. [Accessed: 14-May-2021].Y. Xue, Q. Li, Y. Gu, H. Yu, Y. Zhang, and X. Zhou, “Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline pretreatment,” Industrial Crops and Products, 25-Dec-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0926669019309951. [Accessed: 14-May-2021].M. Li, B. Si, Y. Zhang, J. Watson, and A. Aierzhati, “Reduce recalcitrance of cornstalk using post-hydrothermal liquefaction wastewater pretreatment,” Bioresource Technology, 23-Jan-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852419301191. [Accessed: 14-May-2021].S. N. Malik, K. Madhu, V. A. Mhaisalkar, A. N. Vaidya, and S. N. Mudliar, “Pretreatment of yard waste using advanced oxidation processes for enhanced biogas production,” Biomass and Bioenergy, 23-Sep-2020. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0961953420303159?dgcid=rss_sd_all. [Accessed: 14-May-2021].M. Kaur, Y. Neetu, and S. P. Verma, “Effect of Chemical Pretreatment of Sugarcane Bagasse on Biogas Production,” Materials Today: Proceedings, 19-Feb-2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785320303497. [Accessed: 14-May-2021].Y. Deng, Y. Qiu, Y. Yao, M. Ayiania, and M. Davaritouchaee, “Weak-base pretreatment to increase biomethane production from wheat straw,” Environmental Science and Pollution Research, 02-Jul-2020. [Online]. Available: https://link.springer.com/article/10.1007/s11356-020-09914-7. [Accessed: 14-May-2021].J. Kainthola, A. S. Kalamdhad, V. V. Goud, and R. Goel, “Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion,” Bioresource Technology, 25-Apr-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S096085241930598X. [Accessed: 14-May-2021].H. L. Thomas, J. Seira, R. Escudié, and H. Carrère, “Lime Pretreatment of Miscanthus: Impact on BMP and Batch Dry Co-Digestion with Cattle Manure,” MDPI, 02-Jul-2018. [Online]. Available: https://www.mdpi.com/1420-3049/23/7/1608. [Accessed: 14-May-2021].P. A. Cremonez, S. C. Sampaio, J. G. Teleken, T. W. Meier, E. P. Frigo, E. de Rossi, E. da Silva, and D. M. Rosa, Effect of substrate concentrations on methane and hydrogen biogas production by anaerobic digestion of a cassava starch-based polymer, 01-Jan-1970. [Online]. Available: https://pubag.nal.usda.gov/catalog/6916150. [Accessed: 14-May-2021].H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, 10-Sep-2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852415012754. [Accessed: 15-May-2021].S. R. Paudel, S. P. Banjara, O. K. Choi, K. Y. Park, Y. M. Kim, and J. W. Lee, “Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges,” Bioresource Technology, 01-Sep-2017. [Online]. Available:P. Rusanowska, M. Zieliński, M. R. Dudek, and M. Dębowski, “Mechanical Pretreatment of Lignocellulosic Biomass for Methane Fermentation in Innovative Reactor with Cage Mixing System,” Journal of Ecological Engineering, 01-Sep-2018. [Online]. Available: http://www.jeeng.net/Mechanical-Pretreatment-of-Lignocellulosic-Biomass-for-Methane-Fermentation-in-Innovative,89822,0,2.html. [Accessed: 15-May-2021].D. G. Mulat, S. G. Huerta, D. Kalyani, and S. J. Horn, “Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii,” Biotechnology for Biofuels, 29-Jan-2018. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1025-z. [Accessed: 15-May-2021].B. Saletnik, G. Zagula, M. Bajcar, M. Czernicka, and C. Puchalski, “Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus),” MDPI, 22-Sep-2018. [Online]. Available: https://www.mdpi.com/1996-1073/11/10/2535. [Accessed: 15-May-2021].]D. Kovacic, D. Kralik, S. Rupcic, D. Jovicic, R. Spajic, and M. Tišmac, “Soybean straw, corn stover and sunflower stalk as possible substrates for biogas production in Croatia: A review,” Mendeley, 01-Jan-1970. [Online]. Available: https://www.mendeley.com/catalogue/c71473bc-69ad-33d3-b288-43122961c887/. [Accessed: 15-May-2021].M. A. H. Siddhu, J. Li, R. Zhang, J. Liu, J. Ji, Y. He, C. Chen, and G. Liu, “[PDF] Potential of Black Liquor of Potassium Hydroxide to Pretreat Corn Stover for Biomethane Production: Semantic Scholar,” undefined, 01-Jan-1970. [Online]. Available: https://www.semanticscholar.org/paper/Potential-of-Black-Liquor-of-Potassium-Hydroxide-to-Siddhu-Li/8b797f2e16325caed78cfd039062aaeb6b0013c7. [Accessed: 15-May-2021].F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, 28-Mar-2017. [Online]. Available: https://link.springer.com/article/10.1186/s13568-017-0375-4. [Accessed: 15-May-2021].F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, 28-Mar-2017. [Online]. Available: https://amb-express.springeropen.com/articles/10.1186/s13568-017-0375-4. [Accessed: 15-May-2021].J. Baruah, B. K. Nath, R. Sharma, S. Kumar, R. C. Deka, D. C. Baruah, and E. Kalita, “Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products,” Frontiers, 03-Dec-2018. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fenrg.2018.00141/full. [Accessed: 15-May-2021].M. Zhurka , K. Stamatelatou , A. Spyridonidis , and I. Vasiliadou , “Biogas Production from Sunflower Head and Stalk Residues: Effect of Alkaline Pretreatment,” Molecules (Basel, Switzerland) . [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31906116/. [Accessed: 15-May-2021].H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, 10-Sep-2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852415012754. [Accessed: 15-May-2021].B. Weber, A. Estrada-Maya, A. C. Sandoval-Moctezuma, and I. G. Martínez-Cienfuegos, “Anaerobic digestion of extracts from steam exploded Agave tequilana bagasse,” Journal of Environmental Management, 03-Jun-2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301479719307212. [Accessed: 15-May-2021].V. Khatri, F. Meddeb-Mouelhi, K. Adjallé, S. Barnabé, and M. Beauregard, “Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules,” Biotechnology for Biofuels, 18-May-2018. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1145-5/figures/4. [Accessed: 15-May-2021].B. Satari, K. Karimi, and R. Kumar, “Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review,” Sustainable Energy & Fuels, 28-Sep-2018. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2019/se/c8se00287h#!divAbstract. [Accessed: 15-May-2021].M. Zieliński, M. Dębowski, M. Kisielewska, A. Nowicka, M. Rokicka, and K. Szwarc, “Cavitation-based pretreatment strategies to enhance biogas production in a small-scale agricultural biogas plant,” Energy for Sustainable Development, 17-Jan-2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0973082618306410. [Accessed: 15-May-2021].J. U. Hernández-Beltrán, I. O. Hernández-De Lira, M. M. Cruz-Santos, A. Saucedo-Luevanos, F. Hernández-Terán, and N. Balagurusamy, “Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities,” MDPI, 06-Sep-2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/18/3721. [Accessed: 15-May-2021].R. O. Arazo, D. A. D. Genuino, M. D. G. de Luna, and S. C. Capareda, “Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor,” Sustainable Environment Research, 18-Nov-2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468203916300875. [Accessed: 15-May-2021].R. Isemin, D. Klimov, O. Larina, A. Mikhalev, and V. Zaitchenko, “Integrated Waste Treatment System Combining Biogas Technology and Pyrolysis,” Chemical Engineering Transactions. [Online]. Available: https://www.cetjournal.it/index.php/cet/article/view/CET1867085. [Accessed: 15-May-2021].ORIGINAL2021andrespineda.pdf2021andrespineda.pdfTrabajo de Gradoapplication/pdf1025631https://repository.usta.edu.co/bitstream/11634/35108/2/2021andrespineda.pdf005072f62a28f175cceb730700ad2fd1MD52open access2021andrespineda1.pdf2021andrespineda1.pdfAnexo1application/pdf1968515https://repository.usta.edu.co/bitstream/11634/35108/3/2021andrespineda1.pdf927dd0f5d8e459ce38110d95274ed5cdMD53open access2021andrespineda2.pdf2021andrespineda2.pdfAnexo2application/pdf894309https://repository.usta.edu.co/bitstream/11634/35108/4/2021andrespineda2.pdf5aacdb6ed5dda01adf9eb7b4dc3e963fMD54open access2021andrespineda3.pdf2021andrespineda3.pdfAnexo3application/pdf720531https://repository.usta.edu.co/bitstream/11634/35108/5/2021andrespineda3.pdf8758ac13ffb2e6591f50ed529ead0faeMD55open accessCarta_aprobacion_facultad_autoarchivo (5).xlsx - Andres Ricardo.pdfCarta_aprobacion_facultad_autoarchivo (5).xlsx - Andres Ricardo.pdfCarta de Aprobaciónapplication/pdf104455https://repository.usta.edu.co/bitstream/11634/35108/6/Carta_aprobacion_facultad_autoarchivo%20%285%29.xlsx%20-%20Andres%20Ricardo.pdf1f757431ef055c8a1207d98b4f5e09b3MD56metadata only accessCarta derechos de autor.pdfCarta derechos de autor.pdfCarta derechos de autorapplication/pdf212394https://repository.usta.edu.co/bitstream/11634/35108/10/Carta%20derechos%20de%20autor.pdf43ea26e82c135f5ce9d0768c5b9ce251MD510metadata only accessCarta_aprobacion_facultad_autoarchivo - LUIS FELIPE OCAMPO DÍAZ.pdfCarta_aprobacion_facultad_autoarchivo - LUIS FELIPE OCAMPO DÍAZ.pdfCarta de derechos de autorapplication/pdf306830https://repository.usta.edu.co/bitstream/11634/35108/13/Carta_aprobacion_facultad_autoarchivo%20-%20LUIS%20FELIPE%20OCAMPO%20D%c3%8dAZ.pdfc16bf727a12077f796fb2e37b6ded122MD513metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/35108/11/license_rdf217700a34da79ed616c2feb68d4c5e06MD511open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/35108/12/license.txtaedeaf396fcd827b537c73d23464fc27MD512open accessTHUMBNAIL2021andrespineda.pdf.jpg2021andrespineda.pdf.jpgIM Thumbnailimage/jpeg7405https://repository.usta.edu.co/bitstream/11634/35108/14/2021andrespineda.pdf.jpg56b5ec02f2879700182dfd35ef33abffMD514open access2021andrespineda1.pdf.jpg2021andrespineda1.pdf.jpgIM Thumbnailimage/jpeg6923https://repository.usta.edu.co/bitstream/11634/35108/15/2021andrespineda1.pdf.jpg390d29084392b5850c3c546bb67002a1MD515open access2021andrespineda2.pdf.jpg2021andrespineda2.pdf.jpgIM Thumbnailimage/jpeg7942https://repository.usta.edu.co/bitstream/11634/35108/16/2021andrespineda2.pdf.jpg1d4bfac9505087f8c1500443296ef976MD516open access2021andrespineda3.pdf.jpg2021andrespineda3.pdf.jpgIM Thumbnailimage/jpeg8209https://repository.usta.edu.co/bitstream/11634/35108/17/2021andrespineda3.pdf.jpg2e44d27b115b18a8b7f698d546212d3fMD517open accessCarta_aprobacion_facultad_autoarchivo (5).xlsx - Andres Ricardo.pdf.jpgCarta_aprobacion_facultad_autoarchivo (5).xlsx - Andres Ricardo.pdf.jpgIM Thumbnailimage/jpeg6852https://repository.usta.edu.co/bitstream/11634/35108/18/Carta_aprobacion_facultad_autoarchivo%20%285%29.xlsx%20-%20Andres%20Ricardo.pdf.jpg1f1a8b06c8b73a9707256dfd881e6993MD518open accessCarta derechos de autor.pdf.jpgCarta derechos de autor.pdf.jpgIM Thumbnailimage/jpeg7224https://repository.usta.edu.co/bitstream/11634/35108/19/Carta%20derechos%20de%20autor.pdf.jpg597f452c0a18315351c85c8678853b5fMD519open accessCarta_aprobacion_facultad_autoarchivo - LUIS FELIPE OCAMPO DÍAZ.pdf.jpgCarta_aprobacion_facultad_autoarchivo - LUIS FELIPE OCAMPO DÍAZ.pdf.jpgIM Thumbnailimage/jpeg7043https://repository.usta.edu.co/bitstream/11634/35108/20/Carta_aprobacion_facultad_autoarchivo%20-%20LUIS%20FELIPE%20OCAMPO%20D%c3%8dAZ.pdf.jpgbd2047cf1b3db87dbeda4f779fd35b91MD520open access11634/35108oai:repository.usta.edu.co:11634/351082022-10-10 15:37:58.66open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K