Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos
En la actualidad se generan grandes cantidades de biomasa lignocelulosica la cual es desechada, esta cuenta con un alto potencial para el uso en la producción de biogás y puede ser aprovechada para producir energía no convencional, este artículo presenta una Vigilancia Tecnológica dirigida al recono...
- Autores:
-
Ricardo Pineda, Andres Sebastian
Ocampo Diaz, Luis Felipe
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/35108
- Acceso en línea:
- http://hdl.handle.net/11634/35108
- Palabra clave:
- pre-treatment
technology watch
agro-industrial waste
Residuos lignocelulósicos
Biomasa
Biogás
pretratamientos
vigilancia tecnológica
residuos agroindustriales
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_94316eb2962fa23dca9aec369db0a055 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/35108 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos |
title |
Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos |
spellingShingle |
Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos pre-treatment technology watch agro-industrial waste Residuos lignocelulósicos Biomasa Biogás pretratamientos vigilancia tecnológica residuos agroindustriales |
title_short |
Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos |
title_full |
Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos |
title_fullStr |
Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos |
title_full_unstemmed |
Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos |
title_sort |
Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos |
dc.creator.fl_str_mv |
Ricardo Pineda, Andres Sebastian Ocampo Diaz, Luis Felipe |
dc.contributor.advisor.none.fl_str_mv |
Orlando Rojas, Ivan Cabeza |
dc.contributor.author.none.fl_str_mv |
Ricardo Pineda, Andres Sebastian Ocampo Diaz, Luis Felipe |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0001-7110-813X |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.es/citations?user=96vN0jsAAAAJ&hl=es |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Santo Tomás |
dc.subject.keyword.spa.fl_str_mv |
pre-treatment technology watch agro-industrial waste |
topic |
pre-treatment technology watch agro-industrial waste Residuos lignocelulósicos Biomasa Biogás pretratamientos vigilancia tecnológica residuos agroindustriales |
dc.subject.lemb.spa.fl_str_mv |
Residuos lignocelulósicos Biomasa Biogás |
dc.subject.proposal.spa.fl_str_mv |
pretratamientos vigilancia tecnológica residuos agroindustriales |
description |
En la actualidad se generan grandes cantidades de biomasa lignocelulosica la cual es desechada, esta cuenta con un alto potencial para el uso en la producción de biogás y puede ser aprovechada para producir energía no convencional, este artículo presenta una Vigilancia Tecnológica dirigida al reconocimiento de las distintas tecnologías aplicadas a los diversos pretratamientos para la producción de biogás a partir de residuos lignocelulósicos, en primer lugar se realizó una recopilación de información a partir de ecuaciones de búsqueda en las bases de datos Scopus y Directory open access journals (DOAJ), posteriormente se complementó la investigación con datos suministrados por las patentes presentes en el motor de búsqueda Espacenet. Los datos más relevantes de la búsqueda fueron sintetizados en el programa VOSviewer y Excel arrojando como resultado que los países más avanzados en temas de investigación son China, Estados Unidos, Italia e India, dado su potencial agrícola y una dieta basada en la alta ingesta de cereales y granos, esto conlleva al desarrollo de tecnologías más eficientes en cuanto el aprovechamiento de la biomasa. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-28T14:27:00Z |
dc.date.available.none.fl_str_mv |
2021-07-28T14:27:00Z |
dc.date.issued.none.fl_str_mv |
2021-07-26 |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Ricardo Pineda, A. S., & Ocampo Diaz, L. F. (2021). Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos.[Trabajo de pregrado Ingeniería Ambiental]. Repositorio institucional. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/35108 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Ricardo Pineda, A. S., & Ocampo Diaz, L. F. (2021). Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos.[Trabajo de pregrado Ingeniería Ambiental]. Repositorio institucional. reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/35108 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
D. Lili, R. Nanqi, and C. Guangli, “Biogas slurry pretreatment method of lignocellulosic biomass and method for producing biogas,” Espacenet, 19-May-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/070618404/publication/CN111172198A?q=CN111172198A. [Accessed: 14-May-2021]. (Z. T. AANDERUD, C. L. HANSEN, J. C. HANSEN, and L. D. HANSEN, “Microbial pretreatment for conversion of biomass into biogas,” Espacenet, 02-Jul-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/066539155/publication/AU2018370156A1?q=AU2018370156A1. [Accessed: 14-May-2021]. L. Xuyuan and W. Mingming, “Method for using lignocellulose to produce biogas,” Espacenet, 09-Dec-2015. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/054718037/publication/CN105132469A?q=CN105132469A. [Accessed: 14-May-2021]. K. Xiaoying, L. Lianhua, S. Yongming, W. Zhongming, X. Tao, and Z. Feng, “ Method for co-production of medium-chain fatty acid and biogas by using wood fiber raw material,” Espacenet, 10-Jul-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/071427185/publication/CN111394402A?q=CN111394402A. [Accessed: 14-May-2021]. X. Haipeng, C. Lei, H. Dongliang, J. Fuqiang, L. I. Yan, and L. Xiaohui, “Method for enhancing efficiency of producing biogas from straw by pretreatment of green liquor,” espacenet, 28-Aug-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/072184346/publication/CN111593076A?q=CN111593076A. [Accessed: 14-May-2021]. Y. Xue, Q. Li, Y. Gu, H. Yu, Y. Zhang, and X. Zhou, “Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline pretreatment,” Industrial Crops and Products, 25-Dec-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0926669019309951. [Accessed: 14-May-2021]. M. Li, B. Si, Y. Zhang, J. Watson, and A. Aierzhati, “Reduce recalcitrance of cornstalk using post-hydrothermal liquefaction wastewater pretreatment,” Bioresource Technology, 23-Jan-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852419301191. [Accessed: 14-May-2021]. S. N. Malik, K. Madhu, V. A. Mhaisalkar, A. N. Vaidya, and S. N. Mudliar, “Pretreatment of yard waste using advanced oxidation processes for enhanced biogas production,” Biomass and Bioenergy, 23-Sep-2020. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0961953420303159?dgcid=rss_sd_all. [Accessed: 14-May-2021]. M. Kaur, Y. Neetu, and S. P. Verma, “Effect of Chemical Pretreatment of Sugarcane Bagasse on Biogas Production,” Materials Today: Proceedings, 19-Feb-2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785320303497. [Accessed: 14-May-2021]. Y. Deng, Y. Qiu, Y. Yao, M. Ayiania, and M. Davaritouchaee, “Weak-base pretreatment to increase biomethane production from wheat straw,” Environmental Science and Pollution Research, 02-Jul-2020. [Online]. Available: https://link.springer.com/article/10.1007/s11356-020-09914-7. [Accessed: 14-May-2021]. J. Kainthola, A. S. Kalamdhad, V. V. Goud, and R. Goel, “Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion,” Bioresource Technology, 25-Apr-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S096085241930598X. [Accessed: 14-May-2021]. H. L. Thomas, J. Seira, R. Escudié, and H. Carrère, “Lime Pretreatment of Miscanthus: Impact on BMP and Batch Dry Co-Digestion with Cattle Manure,” MDPI, 02-Jul-2018. [Online]. Available: https://www.mdpi.com/1420-3049/23/7/1608. [Accessed: 14-May-2021]. P. A. Cremonez, S. C. Sampaio, J. G. Teleken, T. W. Meier, E. P. Frigo, E. de Rossi, E. da Silva, and D. M. Rosa, Effect of substrate concentrations on methane and hydrogen biogas production by anaerobic digestion of a cassava starch-based polymer, 01-Jan-1970. [Online]. Available: https://pubag.nal.usda.gov/catalog/6916150. [Accessed: 14-May-2021]. H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, 10-Sep-2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852415012754. [Accessed: 15-May-2021]. S. R. Paudel, S. P. Banjara, O. K. Choi, K. Y. Park, Y. M. Kim, and J. W. Lee, “Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges,” Bioresource Technology, 01-Sep-2017. [Online]. Available: P. Rusanowska, M. Zieliński, M. R. Dudek, and M. Dębowski, “Mechanical Pretreatment of Lignocellulosic Biomass for Methane Fermentation in Innovative Reactor with Cage Mixing System,” Journal of Ecological Engineering, 01-Sep-2018. [Online]. Available: http://www.jeeng.net/Mechanical-Pretreatment-of-Lignocellulosic-Biomass-for-Methane-Fermentation-in-Innovative,89822,0,2.html. [Accessed: 15-May-2021]. D. G. Mulat, S. G. Huerta, D. Kalyani, and S. J. Horn, “Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii,” Biotechnology for Biofuels, 29-Jan-2018. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1025-z. [Accessed: 15-May-2021]. B. Saletnik, G. Zagula, M. Bajcar, M. Czernicka, and C. Puchalski, “Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus),” MDPI, 22-Sep-2018. [Online]. Available: https://www.mdpi.com/1996-1073/11/10/2535. [Accessed: 15-May-2021]. ]D. Kovacic, D. Kralik, S. Rupcic, D. Jovicic, R. Spajic, and M. Tišmac, “Soybean straw, corn stover and sunflower stalk as possible substrates for biogas production in Croatia: A review,” Mendeley, 01-Jan-1970. [Online]. Available: https://www.mendeley.com/catalogue/c71473bc-69ad-33d3-b288-43122961c887/. [Accessed: 15-May-2021]. M. A. H. Siddhu, J. Li, R. Zhang, J. Liu, J. Ji, Y. He, C. Chen, and G. Liu, “[PDF] Potential of Black Liquor of Potassium Hydroxide to Pretreat Corn Stover for Biomethane Production: Semantic Scholar,” undefined, 01-Jan-1970. [Online]. Available: https://www.semanticscholar.org/paper/Potential-of-Black-Liquor-of-Potassium-Hydroxide-to-Siddhu-Li/8b797f2e16325caed78cfd039062aaeb6b0013c7. [Accessed: 15-May-2021]. F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, 28-Mar-2017. [Online]. Available: https://link.springer.com/article/10.1186/s13568-017-0375-4. [Accessed: 15-May-2021]. F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, 28-Mar-2017. [Online]. Available: https://amb-express.springeropen.com/articles/10.1186/s13568-017-0375-4. [Accessed: 15-May-2021]. J. Baruah, B. K. Nath, R. Sharma, S. Kumar, R. C. Deka, D. C. Baruah, and E. Kalita, “Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products,” Frontiers, 03-Dec-2018. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fenrg.2018.00141/full. [Accessed: 15-May-2021]. M. Zhurka , K. Stamatelatou , A. Spyridonidis , and I. Vasiliadou , “Biogas Production from Sunflower Head and Stalk Residues: Effect of Alkaline Pretreatment,” Molecules (Basel, Switzerland) . [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31906116/. [Accessed: 15-May-2021]. H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, 10-Sep-2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852415012754. [Accessed: 15-May-2021]. B. Weber, A. Estrada-Maya, A. C. Sandoval-Moctezuma, and I. G. Martínez-Cienfuegos, “Anaerobic digestion of extracts from steam exploded Agave tequilana bagasse,” Journal of Environmental Management, 03-Jun-2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301479719307212. [Accessed: 15-May-2021]. V. Khatri, F. Meddeb-Mouelhi, K. Adjallé, S. Barnabé, and M. Beauregard, “Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules,” Biotechnology for Biofuels, 18-May-2018. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1145-5/figures/4. [Accessed: 15-May-2021]. B. Satari, K. Karimi, and R. Kumar, “Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review,” Sustainable Energy & Fuels, 28-Sep-2018. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2019/se/c8se00287h#!divAbstract. [Accessed: 15-May-2021]. M. Zieliński, M. Dębowski, M. Kisielewska, A. Nowicka, M. Rokicka, and K. Szwarc, “Cavitation-based pretreatment strategies to enhance biogas production in a small-scale agricultural biogas plant,” Energy for Sustainable Development, 17-Jan-2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0973082618306410. [Accessed: 15-May-2021]. J. U. Hernández-Beltrán, I. O. Hernández-De Lira, M. M. Cruz-Santos, A. Saucedo-Luevanos, F. Hernández-Terán, and N. Balagurusamy, “Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities,” MDPI, 06-Sep-2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/18/3721. [Accessed: 15-May-2021]. R. O. Arazo, D. A. D. Genuino, M. D. G. de Luna, and S. C. Capareda, “Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor,” Sustainable Environment Research, 18-Nov-2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468203916300875. [Accessed: 15-May-2021]. R. Isemin, D. Klimov, O. Larina, A. Mikhalev, and V. Zaitchenko, “Integrated Waste Treatment System Combining Biogas Technology and Pyrolysis,” Chemical Engineering Transactions. [Online]. Available: https://www.cetjournal.it/index.php/cet/article/view/CET1867085. [Accessed: 15-May-2021]. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bogotá |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado de Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/35108/2/2021andrespineda.pdf https://repository.usta.edu.co/bitstream/11634/35108/3/2021andrespineda1.pdf https://repository.usta.edu.co/bitstream/11634/35108/4/2021andrespineda2.pdf https://repository.usta.edu.co/bitstream/11634/35108/5/2021andrespineda3.pdf https://repository.usta.edu.co/bitstream/11634/35108/6/Carta_aprobacion_facultad_autoarchivo%20%285%29.xlsx%20-%20Andres%20Ricardo.pdf https://repository.usta.edu.co/bitstream/11634/35108/10/Carta%20derechos%20de%20autor.pdf https://repository.usta.edu.co/bitstream/11634/35108/13/Carta_aprobacion_facultad_autoarchivo%20-%20LUIS%20FELIPE%20OCAMPO%20D%c3%8dAZ.pdf https://repository.usta.edu.co/bitstream/11634/35108/11/license_rdf https://repository.usta.edu.co/bitstream/11634/35108/12/license.txt https://repository.usta.edu.co/bitstream/11634/35108/14/2021andrespineda.pdf.jpg https://repository.usta.edu.co/bitstream/11634/35108/15/2021andrespineda1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/35108/16/2021andrespineda2.pdf.jpg https://repository.usta.edu.co/bitstream/11634/35108/17/2021andrespineda3.pdf.jpg https://repository.usta.edu.co/bitstream/11634/35108/18/Carta_aprobacion_facultad_autoarchivo%20%285%29.xlsx%20-%20Andres%20Ricardo.pdf.jpg https://repository.usta.edu.co/bitstream/11634/35108/19/Carta%20derechos%20de%20autor.pdf.jpg https://repository.usta.edu.co/bitstream/11634/35108/20/Carta_aprobacion_facultad_autoarchivo%20-%20LUIS%20FELIPE%20OCAMPO%20D%c3%8dAZ.pdf.jpg |
bitstream.checksum.fl_str_mv |
005072f62a28f175cceb730700ad2fd1 927dd0f5d8e459ce38110d95274ed5cd 5aacdb6ed5dda01adf9eb7b4dc3e963f 8758ac13ffb2e6591f50ed529ead0fae 1f757431ef055c8a1207d98b4f5e09b3 43ea26e82c135f5ce9d0768c5b9ce251 c16bf727a12077f796fb2e37b6ded122 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 56b5ec02f2879700182dfd35ef33abff 390d29084392b5850c3c546bb67002a1 1d4bfac9505087f8c1500443296ef976 2e44d27b115b18a8b7f698d546212d3f 1f1a8b06c8b73a9707256dfd881e6993 597f452c0a18315351c85c8678853b5f bd2047cf1b3db87dbeda4f779fd35b91 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026137762791424 |
spelling |
Orlando Rojas, Ivan CabezaRicardo Pineda, Andres SebastianOcampo Diaz, Luis Felipehttps://orcid.org/0000-0001-7110-813Xhttps://scholar.google.es/citations?user=96vN0jsAAAAJ&hl=esUniversidad Santo Tomás2021-07-28T14:27:00Z2021-07-28T14:27:00Z2021-07-26Ricardo Pineda, A. S., & Ocampo Diaz, L. F. (2021). Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicos.[Trabajo de pregrado Ingeniería Ambiental]. Repositorio institucional.http://hdl.handle.net/11634/35108reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coEn la actualidad se generan grandes cantidades de biomasa lignocelulosica la cual es desechada, esta cuenta con un alto potencial para el uso en la producción de biogás y puede ser aprovechada para producir energía no convencional, este artículo presenta una Vigilancia Tecnológica dirigida al reconocimiento de las distintas tecnologías aplicadas a los diversos pretratamientos para la producción de biogás a partir de residuos lignocelulósicos, en primer lugar se realizó una recopilación de información a partir de ecuaciones de búsqueda en las bases de datos Scopus y Directory open access journals (DOAJ), posteriormente se complementó la investigación con datos suministrados por las patentes presentes en el motor de búsqueda Espacenet. Los datos más relevantes de la búsqueda fueron sintetizados en el programa VOSviewer y Excel arrojando como resultado que los países más avanzados en temas de investigación son China, Estados Unidos, Italia e India, dado su potencial agrícola y una dieta basada en la alta ingesta de cereales y granos, esto conlleva al desarrollo de tecnologías más eficientes en cuanto el aprovechamiento de la biomasa.At present, large amounts of lignocellulosic biomass are generated which is discarded, this has a high potential for use in the production of biogas and can be used to produce unconventional energy, this article presents a Technological Watch aimed at the recognition of the different technologies applied to the various pretreatments for the production of biogas from lignocellulosic waste, first a compilation of information was made from search equations in the Scopus and Directory open access journals (DOAJ) databases, then I complement the research with data supplied by the patents present in the Espacenet search engine. The most relevant data of the search were synthesized in the VOSviewer and Excel program, showing that the most advanced countries in research issues are China, the United States, Italy and India, given their agricultural potential and a diet based on the high intake of cereals and grains, this leads to the development of more efficient technologies in terms of the use of biomass.Ingeniero Ambientalhttp://unidadinvestigacion.usta.edu.coPregradoapplication/pdfspaUniversidad Santo TomásPregrado de Ingeniería AmbientalFacultad de Ingeniería AmbientalAtribución-NoComercial-SinDerivadas 2.5 ColombiaAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vigilancia tecnológica asociada a los pretratamientos para la generación de biogás a partir de sustratos lignocelulósicospre-treatmenttechnology watchagro-industrial wasteResiduos lignocelulósicosBiomasaBiogáspretratamientosvigilancia tecnológicaresiduos agroindustrialesTrabajo de Gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BogotáD. Lili, R. Nanqi, and C. Guangli, “Biogas slurry pretreatment method of lignocellulosic biomass and method for producing biogas,” Espacenet, 19-May-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/070618404/publication/CN111172198A?q=CN111172198A. [Accessed: 14-May-2021].(Z. T. AANDERUD, C. L. HANSEN, J. C. HANSEN, and L. D. HANSEN, “Microbial pretreatment for conversion of biomass into biogas,” Espacenet, 02-Jul-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/066539155/publication/AU2018370156A1?q=AU2018370156A1. [Accessed: 14-May-2021].L. Xuyuan and W. Mingming, “Method for using lignocellulose to produce biogas,” Espacenet, 09-Dec-2015. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/054718037/publication/CN105132469A?q=CN105132469A. [Accessed: 14-May-2021].K. Xiaoying, L. Lianhua, S. Yongming, W. Zhongming, X. Tao, and Z. Feng, “ Method for co-production of medium-chain fatty acid and biogas by using wood fiber raw material,” Espacenet, 10-Jul-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/071427185/publication/CN111394402A?q=CN111394402A. [Accessed: 14-May-2021].X. Haipeng, C. Lei, H. Dongliang, J. Fuqiang, L. I. Yan, and L. Xiaohui, “Method for enhancing efficiency of producing biogas from straw by pretreatment of green liquor,” espacenet, 28-Aug-2020. [Online]. Available: https://worldwide.espacenet.com/patent/search/family/072184346/publication/CN111593076A?q=CN111593076A. [Accessed: 14-May-2021].Y. Xue, Q. Li, Y. Gu, H. Yu, Y. Zhang, and X. Zhou, “Improving biodegradability and biogas production of miscanthus using a combination of hydrothermal and alkaline pretreatment,” Industrial Crops and Products, 25-Dec-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0926669019309951. [Accessed: 14-May-2021].M. Li, B. Si, Y. Zhang, J. Watson, and A. Aierzhati, “Reduce recalcitrance of cornstalk using post-hydrothermal liquefaction wastewater pretreatment,” Bioresource Technology, 23-Jan-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852419301191. [Accessed: 14-May-2021].S. N. Malik, K. Madhu, V. A. Mhaisalkar, A. N. Vaidya, and S. N. Mudliar, “Pretreatment of yard waste using advanced oxidation processes for enhanced biogas production,” Biomass and Bioenergy, 23-Sep-2020. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0961953420303159?dgcid=rss_sd_all. [Accessed: 14-May-2021].M. Kaur, Y. Neetu, and S. P. Verma, “Effect of Chemical Pretreatment of Sugarcane Bagasse on Biogas Production,” Materials Today: Proceedings, 19-Feb-2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785320303497. [Accessed: 14-May-2021].Y. Deng, Y. Qiu, Y. Yao, M. Ayiania, and M. Davaritouchaee, “Weak-base pretreatment to increase biomethane production from wheat straw,” Environmental Science and Pollution Research, 02-Jul-2020. [Online]. Available: https://link.springer.com/article/10.1007/s11356-020-09914-7. [Accessed: 14-May-2021].J. Kainthola, A. S. Kalamdhad, V. V. Goud, and R. Goel, “Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion,” Bioresource Technology, 25-Apr-2019. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S096085241930598X. [Accessed: 14-May-2021].H. L. Thomas, J. Seira, R. Escudié, and H. Carrère, “Lime Pretreatment of Miscanthus: Impact on BMP and Batch Dry Co-Digestion with Cattle Manure,” MDPI, 02-Jul-2018. [Online]. Available: https://www.mdpi.com/1420-3049/23/7/1608. [Accessed: 14-May-2021].P. A. Cremonez, S. C. Sampaio, J. G. Teleken, T. W. Meier, E. P. Frigo, E. de Rossi, E. da Silva, and D. M. Rosa, Effect of substrate concentrations on methane and hydrogen biogas production by anaerobic digestion of a cassava starch-based polymer, 01-Jan-1970. [Online]. Available: https://pubag.nal.usda.gov/catalog/6916150. [Accessed: 14-May-2021].H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, 10-Sep-2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852415012754. [Accessed: 15-May-2021].S. R. Paudel, S. P. Banjara, O. K. Choi, K. Y. Park, Y. M. Kim, and J. W. Lee, “Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges,” Bioresource Technology, 01-Sep-2017. [Online]. Available:P. Rusanowska, M. Zieliński, M. R. Dudek, and M. Dębowski, “Mechanical Pretreatment of Lignocellulosic Biomass for Methane Fermentation in Innovative Reactor with Cage Mixing System,” Journal of Ecological Engineering, 01-Sep-2018. [Online]. Available: http://www.jeeng.net/Mechanical-Pretreatment-of-Lignocellulosic-Biomass-for-Methane-Fermentation-in-Innovative,89822,0,2.html. [Accessed: 15-May-2021].D. G. Mulat, S. G. Huerta, D. Kalyani, and S. J. Horn, “Enhancing methane production from lignocellulosic biomass by combined steam-explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii,” Biotechnology for Biofuels, 29-Jan-2018. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1025-z. [Accessed: 15-May-2021].B. Saletnik, G. Zagula, M. Bajcar, M. Czernicka, and C. Puchalski, “Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus),” MDPI, 22-Sep-2018. [Online]. Available: https://www.mdpi.com/1996-1073/11/10/2535. [Accessed: 15-May-2021].]D. Kovacic, D. Kralik, S. Rupcic, D. Jovicic, R. Spajic, and M. Tišmac, “Soybean straw, corn stover and sunflower stalk as possible substrates for biogas production in Croatia: A review,” Mendeley, 01-Jan-1970. [Online]. Available: https://www.mendeley.com/catalogue/c71473bc-69ad-33d3-b288-43122961c887/. [Accessed: 15-May-2021].M. A. H. Siddhu, J. Li, R. Zhang, J. Liu, J. Ji, Y. He, C. Chen, and G. Liu, “[PDF] Potential of Black Liquor of Potassium Hydroxide to Pretreat Corn Stover for Biomethane Production: Semantic Scholar,” undefined, 01-Jan-1970. [Online]. Available: https://www.semanticscholar.org/paper/Potential-of-Black-Liquor-of-Potassium-Hydroxide-to-Siddhu-Li/8b797f2e16325caed78cfd039062aaeb6b0013c7. [Accessed: 15-May-2021].F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, 28-Mar-2017. [Online]. Available: https://link.springer.com/article/10.1186/s13568-017-0375-4. [Accessed: 15-May-2021].F. R. Amin, H. Khalid, H. Zhang, S. u Rahman, R. Zhang, G. Liu, and C. Chen, “Pretreatment methods of lignocellulosic biomass for anaerobic digestion,” AMB Express, 28-Mar-2017. [Online]. Available: https://amb-express.springeropen.com/articles/10.1186/s13568-017-0375-4. [Accessed: 15-May-2021].J. Baruah, B. K. Nath, R. Sharma, S. Kumar, R. C. Deka, D. C. Baruah, and E. Kalita, “Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products,” Frontiers, 03-Dec-2018. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fenrg.2018.00141/full. [Accessed: 15-May-2021].M. Zhurka , K. Stamatelatou , A. Spyridonidis , and I. Vasiliadou , “Biogas Production from Sunflower Head and Stalk Residues: Effect of Alkaline Pretreatment,” Molecules (Basel, Switzerland) . [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/31906116/. [Accessed: 15-May-2021].H. Carrere, G. Antonopoulou, R. Affes, F. Passos, A. Battimelli, G. Lyberatos, and I. Ferrer, “Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application,” Bioresource Technology, 10-Sep-2015. [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0960852415012754. [Accessed: 15-May-2021].B. Weber, A. Estrada-Maya, A. C. Sandoval-Moctezuma, and I. G. Martínez-Cienfuegos, “Anaerobic digestion of extracts from steam exploded Agave tequilana bagasse,” Journal of Environmental Management, 03-Jun-2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0301479719307212. [Accessed: 15-May-2021].V. Khatri, F. Meddeb-Mouelhi, K. Adjallé, S. Barnabé, and M. Beauregard, “Determination of optimal biomass pretreatment strategies for biofuel production: investigation of relationships between surface-exposed polysaccharides and their enzymatic conversion using carbohydrate-binding modules,” Biotechnology for Biofuels, 18-May-2018. [Online]. Available: https://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/s13068-018-1145-5/figures/4. [Accessed: 15-May-2021].B. Satari, K. Karimi, and R. Kumar, “Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review,” Sustainable Energy & Fuels, 28-Sep-2018. [Online]. Available: https://pubs.rsc.org/en/content/articlelanding/2019/se/c8se00287h#!divAbstract. [Accessed: 15-May-2021].M. Zieliński, M. Dębowski, M. Kisielewska, A. Nowicka, M. Rokicka, and K. Szwarc, “Cavitation-based pretreatment strategies to enhance biogas production in a small-scale agricultural biogas plant,” Energy for Sustainable Development, 17-Jan-2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0973082618306410. [Accessed: 15-May-2021].J. U. Hernández-Beltrán, I. O. Hernández-De Lira, M. M. Cruz-Santos, A. Saucedo-Luevanos, F. Hernández-Terán, and N. Balagurusamy, “Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities,” MDPI, 06-Sep-2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/18/3721. [Accessed: 15-May-2021].R. O. Arazo, D. A. D. Genuino, M. D. G. de Luna, and S. C. Capareda, “Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor,” Sustainable Environment Research, 18-Nov-2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2468203916300875. [Accessed: 15-May-2021].R. Isemin, D. Klimov, O. Larina, A. Mikhalev, and V. Zaitchenko, “Integrated Waste Treatment System Combining Biogas Technology and Pyrolysis,” Chemical Engineering Transactions. [Online]. Available: https://www.cetjournal.it/index.php/cet/article/view/CET1867085. [Accessed: 15-May-2021].ORIGINAL2021andrespineda.pdf2021andrespineda.pdfTrabajo de Gradoapplication/pdf1025631https://repository.usta.edu.co/bitstream/11634/35108/2/2021andrespineda.pdf005072f62a28f175cceb730700ad2fd1MD52open access2021andrespineda1.pdf2021andrespineda1.pdfAnexo1application/pdf1968515https://repository.usta.edu.co/bitstream/11634/35108/3/2021andrespineda1.pdf927dd0f5d8e459ce38110d95274ed5cdMD53open access2021andrespineda2.pdf2021andrespineda2.pdfAnexo2application/pdf894309https://repository.usta.edu.co/bitstream/11634/35108/4/2021andrespineda2.pdf5aacdb6ed5dda01adf9eb7b4dc3e963fMD54open access2021andrespineda3.pdf2021andrespineda3.pdfAnexo3application/pdf720531https://repository.usta.edu.co/bitstream/11634/35108/5/2021andrespineda3.pdf8758ac13ffb2e6591f50ed529ead0faeMD55open accessCarta_aprobacion_facultad_autoarchivo (5).xlsx - Andres Ricardo.pdfCarta_aprobacion_facultad_autoarchivo (5).xlsx - Andres Ricardo.pdfCarta de Aprobaciónapplication/pdf104455https://repository.usta.edu.co/bitstream/11634/35108/6/Carta_aprobacion_facultad_autoarchivo%20%285%29.xlsx%20-%20Andres%20Ricardo.pdf1f757431ef055c8a1207d98b4f5e09b3MD56metadata only accessCarta derechos de autor.pdfCarta derechos de autor.pdfCarta derechos de autorapplication/pdf212394https://repository.usta.edu.co/bitstream/11634/35108/10/Carta%20derechos%20de%20autor.pdf43ea26e82c135f5ce9d0768c5b9ce251MD510metadata only accessCarta_aprobacion_facultad_autoarchivo - LUIS FELIPE OCAMPO DÍAZ.pdfCarta_aprobacion_facultad_autoarchivo - LUIS FELIPE OCAMPO DÍAZ.pdfCarta de derechos de autorapplication/pdf306830https://repository.usta.edu.co/bitstream/11634/35108/13/Carta_aprobacion_facultad_autoarchivo%20-%20LUIS%20FELIPE%20OCAMPO%20D%c3%8dAZ.pdfc16bf727a12077f796fb2e37b6ded122MD513metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/35108/11/license_rdf217700a34da79ed616c2feb68d4c5e06MD511open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/35108/12/license.txtaedeaf396fcd827b537c73d23464fc27MD512open accessTHUMBNAIL2021andrespineda.pdf.jpg2021andrespineda.pdf.jpgIM Thumbnailimage/jpeg7405https://repository.usta.edu.co/bitstream/11634/35108/14/2021andrespineda.pdf.jpg56b5ec02f2879700182dfd35ef33abffMD514open access2021andrespineda1.pdf.jpg2021andrespineda1.pdf.jpgIM Thumbnailimage/jpeg6923https://repository.usta.edu.co/bitstream/11634/35108/15/2021andrespineda1.pdf.jpg390d29084392b5850c3c546bb67002a1MD515open access2021andrespineda2.pdf.jpg2021andrespineda2.pdf.jpgIM Thumbnailimage/jpeg7942https://repository.usta.edu.co/bitstream/11634/35108/16/2021andrespineda2.pdf.jpg1d4bfac9505087f8c1500443296ef976MD516open access2021andrespineda3.pdf.jpg2021andrespineda3.pdf.jpgIM Thumbnailimage/jpeg8209https://repository.usta.edu.co/bitstream/11634/35108/17/2021andrespineda3.pdf.jpg2e44d27b115b18a8b7f698d546212d3fMD517open accessCarta_aprobacion_facultad_autoarchivo (5).xlsx - Andres Ricardo.pdf.jpgCarta_aprobacion_facultad_autoarchivo (5).xlsx - Andres Ricardo.pdf.jpgIM Thumbnailimage/jpeg6852https://repository.usta.edu.co/bitstream/11634/35108/18/Carta_aprobacion_facultad_autoarchivo%20%285%29.xlsx%20-%20Andres%20Ricardo.pdf.jpg1f1a8b06c8b73a9707256dfd881e6993MD518open accessCarta derechos de autor.pdf.jpgCarta derechos de autor.pdf.jpgIM Thumbnailimage/jpeg7224https://repository.usta.edu.co/bitstream/11634/35108/19/Carta%20derechos%20de%20autor.pdf.jpg597f452c0a18315351c85c8678853b5fMD519open accessCarta_aprobacion_facultad_autoarchivo - LUIS FELIPE OCAMPO DÍAZ.pdf.jpgCarta_aprobacion_facultad_autoarchivo - LUIS FELIPE OCAMPO DÍAZ.pdf.jpgIM Thumbnailimage/jpeg7043https://repository.usta.edu.co/bitstream/11634/35108/20/Carta_aprobacion_facultad_autoarchivo%20-%20LUIS%20FELIPE%20OCAMPO%20D%c3%8dAZ.pdf.jpgbd2047cf1b3db87dbeda4f779fd35b91MD520open access11634/35108oai:repository.usta.edu.co:11634/351082022-10-10 15:37:58.66open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |