Células madre y su aplicación biotecnológica

La capacidad autorregenerativa de las células madre es una de sus principales propiedades, la cual ha sido utilizada en procesos de regeneración celular, ya sea para reemplazo o para recuperación celular de tejidos y órganos. Estas células también tienen la habilidad de producir diferentes compuesto...

Full description

Autores:
Sánchez Mora, Ruth Mélida
Arévalo Pinzón, Gabriela
Ostos Ortiz, Olga Lucía
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Santo Tomás
Repositorio:
Repositorio Institucional USTA
Idioma:
spa
OAI Identifier:
oai:repository.usta.edu.co:11634/45876
Acceso en línea:
http://hdl.handle.net/11634/45876
https://doi.org/10.15332/li.lib.2022.00280
Palabra clave:
Mother cells
hematopoietic stem cells
Regenerative medicine
Células madre
Células madre hematopoyéticas
Medicina regenerativa
Rights
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia
id SANTTOMAS2_8759350fde659a54ae25ba3f961057e0
oai_identifier_str oai:repository.usta.edu.co:11634/45876
network_acronym_str SANTTOMAS2
network_name_str Repositorio Institucional USTA
repository_id_str
dc.title.spa.fl_str_mv Células madre y su aplicación biotecnológica
title Células madre y su aplicación biotecnológica
spellingShingle Células madre y su aplicación biotecnológica
Mother cells
hematopoietic stem cells
Regenerative medicine
Células madre
Células madre hematopoyéticas
Medicina regenerativa
title_short Células madre y su aplicación biotecnológica
title_full Células madre y su aplicación biotecnológica
title_fullStr Células madre y su aplicación biotecnológica
title_full_unstemmed Células madre y su aplicación biotecnológica
title_sort Células madre y su aplicación biotecnológica
dc.creator.fl_str_mv Sánchez Mora, Ruth Mélida
Arévalo Pinzón, Gabriela
Ostos Ortiz, Olga Lucía
dc.contributor.author.none.fl_str_mv Sánchez Mora, Ruth Mélida
Arévalo Pinzón, Gabriela
Ostos Ortiz, Olga Lucía
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-0572-8418
https://orcid.org/0000-0002-5331-5693
https://orcid.org/0000-0002-6477-9872
dc.contributor.googlescholar.spa.fl_str_mv https://scholar.google.com/citations?hl=es&user=VGWRvDEAAAAJ
https://scholar.google.com/citations?hl=es&user=yCBpLUsAAAAJ
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000464252
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000744719
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000260010
dc.contributor.corporatename.spa.fl_str_mv Universidad Santo Tomás
dc.subject.keyword.spa.fl_str_mv Mother cells
hematopoietic stem cells
Regenerative medicine
topic Mother cells
hematopoietic stem cells
Regenerative medicine
Células madre
Células madre hematopoyéticas
Medicina regenerativa
dc.subject.lemb.spa.fl_str_mv Células madre
Células madre hematopoyéticas
Medicina regenerativa
description La capacidad autorregenerativa de las células madre es una de sus principales propiedades, la cual ha sido utilizada en procesos de regeneración celular, ya sea para reemplazo o para recuperación celular de tejidos y órganos. Estas células también tienen la habilidad de producir diferentes compuestos farmacológicos y toxicológicos. Así mismo, gracias a sus propiedades antiinflamatorias, antifibróticas regenerativas y antimicrobianas, se sitúan como un recurso biológico interesante. El objetivo de este libro es profundizar en los procesos moleculares y celulares de las células madre y mostrar sus diferentes usos biotecnológicos.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-16T16:30:32Z
dc.date.available.none.fl_str_mv 2022-07-16T16:30:32Z
dc.date.issued.none.fl_str_mv 2022
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.local.spa.fl_str_mv Libro
dc.type.category.spa.fl_str_mv Generación de Nuevo Conocimiento: Libro resultado de investigación
dc.type.drive.none.fl_str_mv info:eu-repo/semantics/book
dc.identifier.citation.spa.fl_str_mv Sánchez, R., Arévalo, G., & Ostos, O. (2022). Células madre y su aplicación biotecnológica. Ediciones USTA.
dc.identifier.isbn.spa.fl_str_mv 9789587824995
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11634/45876
dc.identifier.doi.none.fl_str_mv https://doi.org/10.15332/li.lib.2022.00280
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Santo Tomás
dc.identifier.instname.spa.fl_str_mv instname:Universidad Santo Tomás
identifier_str_mv Sánchez, R., Arévalo, G., & Ostos, O. (2022). Células madre y su aplicación biotecnológica. Ediciones USTA.
9789587824995
reponame:Repositorio Institucional Universidad Santo Tomás
instname:Universidad Santo Tomás
url http://hdl.handle.net/11634/45876
https://doi.org/10.15332/li.lib.2022.00280
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.uri.spa.fl_str_mv https://ediciones.usta.edu.co/index.php/publicaciones/ciencias-sociales/c%C3%A9lulas-madre-y-su-aplicaci%C3%B3n-biotecnol%C3%B3gica-detail
dc.relation.references.spa.fl_str_mv Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I. y Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantatio, 6(2), 230-247. https://doi.org/10.1097/00007890-196803000-00009
Hao, J., Ma, A., Wang, L., Cao, J., Chen, S., Wang, L., Fu, B., Zhou, J., Pei, X., Zhang, Y., Xiang, P., Hu, S., Li, Q., Zhang, Y., Xia, Y., Zhu, H., Stacey, G., Zhou, Q. y Zhao, T. (2020). General requirements for stem cells. Cell Prolif., 53(12), e12926. https://doi.org/10.1111/cpr.12926
Khan, F. A., Almohazey, D., Alomari, M. y Almofty, S. A. (2018). Isolation, culture, and functional characterization of human embryonic stem cells: current trends and challenges. Stem Cells International. https://doi.org/10.1155/2018/1429351
Mata-Miranda, M., Vázquez-Zapién, G. J. y Sánchez-Monroy, V. (2013). Generalidades y aplicaciones de las células madre. Perinatol. Reprod. Hum., 27(3), 194-199.
Sart, S. y Agathos, S. N. (2018). Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Molecular Biotechnology, 60(11), 843-861. https://doi.org/10.1007/s12033-018-0113-4
Schmidt, S., Lilienkampf, A. y Bradley, M. (2018). New substrates for stem cell control. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 373(1750). https://doi.org/10.1098/rstb.2017.0223
Arbósa, A., Nicolau, F., Quetglas, M., Ramis, J. M., Monjo, M., Muncunill, J., Calvo, J. y Gayà, A. (2013). Obtención de células madre mesenquimales a partir de cordones umbilicales procedentes de un programa altruista de donación de sangre de cordón. Inmunología, 32(1), 3-11. https://doi. org/10.1016/j.inmuno.2012.11.002
Bao, M., Xie, J. y Huck, W. T. S. (2018). Recent advances in engineering the stem cell microniche in 3D. Advanced Science, 5(8), 1800448. https:// doi.org/10.1002/advs.201800448
Bartfeld, S. y Clevers, H. (2017). Stem cell-derived organoids and their application for medical research and patient treatment. Journal of Molecular Medicine, 95(7), 729-738. https://doi.org/10.1007/s00109-017-1531-7
Brizuela, C., Galleguillos, S., Carrión, F., Cabrera, C., Luz, P. e Inostroza, C. (2013). Aislamiento y caracterización de células madre mesenquimales de pulpa y folículo dental humano. Int. J. Morphol., 31(2), 739-746. https:// doi.org/10.4067/S0717-95022013000200063
Centeno, E. G. Z., Cimarosti, H. y Bithell, A. (2018). 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration, 13(1), 27. https://doi. org/10.1186/s13024-018-0258-4
Donnelly, H., Salmeron-Sanchez, M. y Dalby, M. J. (2018). Designing stem cell niches for differentiation and self-renewal. Journal of the Royal Society Interface, 15(145). https://doi.org/10.1098/rsif.2018.0388
Eto, S., Goto, M., Soga, M., Kaneko, Y., Uehara, Y., Mizuta, H. y Era, T. (2018). Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. Plos One, 13(7), e0200790. https://doi.org/10.1371/journal.pone.0200790
Ho, B. X., Pek, N. M. Q. y Soh, B. S. (2018). Disease modeling using 3D organoids derived from human induced pluripotent stem cells. International Journal of Molecular Sciences, 19(4), 936. https://doi.org/10.3390/ijms19040936
Jun, D. Y., Kim, S. Y., Na, J. C., Lee, H. H., Kim, J., Yoon, Y. E, Hong, S. J. y Han, W. K. (2018). Tubular organotypic culture model of human kidney. Plos One, 13(10), e0206447. https://doi.org/10.1371/journal.pone.0206447
Liu, Z., Tang, M., Zhao, J., Chai, R. y Kang, J. (2018). Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. Advanced Materials, 30(17), e1705388. https://doi.org/10.1002/adma.201705388
Mizukami, A. y Swiech, K. (2018). Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization. Stem Cells International. https://doi.org/10.1155/2018/4083921
Osiecki, M. J., Michl, T. D., Kul Babur, B., Kabiri, M., Atkinson, K., Lott, W. B., Griesser H, J. y Doran, M. R. (2015). Packed bed bioreactor for the isolation and expansion of placental-derived mesenchymal stromal cells. Plos One, 10(12), e0144941. https://doi.org/10.1371/journal.pone.0144941
Paim, A., Tessaro, I. C., Cardozo, N. S. M. y Pranke, P. (2018). Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. Journal of Biological Physics, 44(3), 245-271. https://doi.org/10.1007/s10867-018-9482-y
Perez-Estenaga, I., Prosper, F. y Pelacho, B. (2018). Allogeneic mesenchymal stem cells and biomaterials: the perfect match for cardiac repair? International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103236
Petry, F., Smith, J. R., Leber, J., Salzig, D., Czermak, P. y Weiss, M. L. (2016). Manufacturing of human umbilical cord mesenchymal stromal cells on microcarriers in a dynamic system for clinical use. Stem Cells Int. https://doi.org/10.1155/2016/4834616
Petry, F., Weidner, T., Czermak, P. y Salzig, D. (2018). Three-dimensional bioreactor technologies for the cocultivation of human mesenchymal stem/ stromal cells and beta cells. Stem Cells Int. https://doi.org/10.1155/2018/2547098
Sane, M. S., Misra, N., Mousa, O. M., Czop, S., Tang, H., Khoo, L. T., Jones, C. D. y Mustafi, S. B. (2018). Cytokines in umbilical cord blood-derived cellular product: a mechanistic insight into bone repair. Regenerative Medicine, 13(8), 881-898. https://doi.org/10.2217/rme-2018-0102
Sart, S. y Agathos, S. N. (2018). Towards three-dimensional dynamic regulation and in situ characterization of single stem cell phenotype using microfluidics. Molecular Biotechnology, 60(11), 843-861. https://doi.org/10.1007/s12033-018-0113-4
Cable, J., Fuchs, E., Weissman, I., Jasper, H., Glass, D., Rando, T. A., Blau, H., Debnath, S., Oliva, A., Park, S., Passegué, E., Kim, C. y Krasnow, M. A. (2020). Adult stem cells and regenerative medicine: a symposium report. Ann N Y Acad Sci., 1462(1), 27-36. https://doi.org/10.1111/nyas.14243
Hawsawi, Y. M., Al-Zahrani, F., Mavromatis, C. H., Baghdadi, M. A., Saggu, S. y Oyouni, A. A. A. (2018). Stem cell applications for treatment of cancer and autoimmune diseases: its promises, obstacles, and future perspectives. Technology in Cancer Research & Treatment, 17. https://doi.org/10.1177/1533033818806910
Labusca, L., Herea, D. D. y Mashayekhi, K. (2018). Stem Cells as Delivery Vehicles for Regenerative Medicine: Challenges and Perspectives. World Journal of Stem Cells, 10(5), 43-56. https://doi.org/10.4252/wjsc.v10.i5.43
Liu, G., David, B. T., Trawczynski, M. y Fessler, R. G. (2020). Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep., 16(1), 3-32. https://doi.org/10.1007/s12015-019-09935-x
Mata-Miranda, M., Vázquez-Zapién, G. J. y Sánchez-Monroy, V. (2013). Generalidades y aplicaciones de las células madre. Perinatol. Reprod. Hum., 27(3), 194-199.
Ntege, E. H., Sunami, H. y Shimizu, Y. (2020). Advances in regenerative therapy: A review of the literature and future directions. Regen Ther, 14, 136-153. https://doi.org/10.1016/j.reth.2020.01.004
Perez-Estenaga, I., Prosper, F. y Pelacho, B. (2018). Allogeneic Mesenchymal Stem Cells and Biomaterials: The Perfect Match for Cardiac Repair? International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ ijms19103236
Serna-Cuéllar, E. y Santamaría-Solís, L. (2013). Protocol of extraction and processing of adult stem cells from abdominal adipose tissue: coordenates of the plastic surgeon in translational researching. Cir. Plást. Iberolatinoam., 39(Supl. 1), s44-s50. https://doi.org/10.4321/S0376-78922013000500012
Serra, M., Brito, C., Correia, C. y Alves, P. M. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 30(6), 350-359. https://doi.org/10.1016/j.tibtech.2012.03.003
Slack, J. M. W. (2018). What is a stem cell? Wiley interdisciplinary Reviews De- velopmental biology, 7(5), e323. https://doi.org/10.1002/wdev.323
Ude, C. C., Miskon, A., Idrus, R. B. H. y Abu Bakar, M. B. (2018). Application of stem cells in tissue engineering for defense medicine. Military Medical Research, 5(1), 7. https://doi.org/10.1186/s40779-018-0154-9
Ullah, I., Subbarao, R. B. y Rho, G. J. (2015). Human mesenchymal stem cells: current trends and future prospective. Bioscience Reports, 35(2). https:// doi.org/10.1042/BSR20150025
Wang, B. X., Kit-Anan, W. y Terracciano, CM. N. (2018). Many cells make life work. Multicellularity in stem cell-based cardiac disease modelling. International Journal of Molecular Sciences, 19(11), 3361. https://doi. org/10.3390/ijms19113361
Zhu, Y. e Yi, Y. (2017). Research progress and clinical prospect of three-dimensional spheroid culture of mesenchymal stem cells. Chinese Journal of Reparative and Reconstructive Surgery, 31(4), 497-503. https://doi. org/10.7507/1002-1892.201612056
Jenkins, M. J. y Farid, S. S. (2015). Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnology Journal, 10(1), 83-95. https://doi.org/10.1002/ biot.201400348
Gamble, A., Pawlick, R., Pepper, A. R., Bruni, A., Adesida, A., Senior, P. A., Korbutt, G. S. y Shapiro. A. M. J. (2018). Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. Plos One, 13(11), e0206449. https://doi.org/10.1371/journal.pone.0206449
Guo, G. R., Chen, L., Rao, M., Chen, K., Song, J. P. y Hu, S. S. (2018). A modified method for isolation of human cardiomyocytes to model cardiac diseases. Journal of Translational Medicine, 16, 288. https://doi. org/10.1186/s12967-018-1649-6
Hassan, S., Simaria, A. S., Varadaraju, H., Gupta, S., Warren, K. y Farid, S. S. (2015). Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Regenerative Medicine, 10(5), 591- 609. https://doi.org/10.2217/rme.15.29
Jossen, V., van den Bos, C., Eibl, R. y Eibl, D. (2018). Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Applied Microbiology and Biotechnology, 102(9), 3981-3994. https:// doi.org/10.1007/s00253-018-8912-x
Kim, S., Lee, S. K., Kim, H. y Kim, T. M. (2018). Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103119
Klar, A. S., Zimoch, J. y Biedermann, T. (2017). Skin tissue engineering: application of adipose-derived stem cells. BioMed Research International. https:// doi.org/10.1155/2017/9747010
Lee, J., Cho, Y. S., Jung, H. y Choi, I. (2018). Pharmacological regulation of oxidative stress in stem cells. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/4081890
Lin, H., Du, Q., Li, Q., Wang, O., Wang, Z., Sahu, N., Elowsky, C., Liu, K., Zhang, C., Chung, S., Duan, B. y Lei, Y. (2018). A scalable and efficient bioprocess for manufacturing human pluripotent stem cell-de- rived endothelial cells. Stem Cell Reports, 11(2), 454-469. https://doi.org/10.1016/j.stemcr.2018.07.001
Placzek, M. R., Chung, I. M., Macedo, H. M., Ismail, S., Mortera Blanco, T., Lim, M., Jae, M. C., Iliana, F., Yunyi, K., Yeo, D. C. L., Ma Chi, Y. C., Polak, J. M., Panoskaltsis, N. y Mantalaris, A. (2009). Stem cell bioprocessing: fundamentals and principles. Journal of the Royal Society Interface, 6(32), 209-232. https://doi.org/10.1098/rsif.2008.0442
Shyh-Chang, N., Daley, G. Q. y Cantley, L. C. (2013). Stem cell metabolism in tissue development and aging. Development, 140(12), 2535-2547. https://doi.org/10.1242/dev.091777
Silva, M. M., Rodrigues, A. F., Correia, C., Sousa, M. F., Brito, C., Coroadinha, A. S., Serra, M. y Alves, P. M. (2015). Robust expansion of human pluripotent stem cells: integration of bioprocess design with transcriptomic and metabolomic characterization. Stem Cells Translational Medicine, 4(7), 731-742. https://doi.org/10.5966/sctm.2014-0270
Sui, L., Danzl, N., Campbell, S. R., Viola, R., Williams, D., Xing, Y., Wang, Y., Phillips, N., Poffenberger, G., Johannesson, B., Oberholzer, J., Powers, A. C., Leibel, R. L., Chen, X., Sykes, M. y Egli, D. (2018). β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes, 67(1), 26-35. https://doi.org/10.2337/db17-0120
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 1-127
dc.coverage.campus.spa.fl_str_mv CRAI-USTA Bogotá
dc.publisher.spa.fl_str_mv Universidad Santo Tomás
dc.publisher.program.spa.fl_str_mv Producción Editorial
institution Universidad Santo Tomás
bitstream.url.fl_str_mv https://repository.usta.edu.co/bitstream/11634/45876/1/Obracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdf
https://repository.usta.edu.co/bitstream/11634/45876/2/license_rdf
https://repository.usta.edu.co/bitstream/11634/45876/3/license.txt
https://repository.usta.edu.co/bitstream/11634/45876/4/Obracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdf.jpg
bitstream.checksum.fl_str_mv ee59f10768ef56a396eed7b33410a72a
217700a34da79ed616c2feb68d4c5e06
aedeaf396fcd827b537c73d23464fc27
872cc7dc1a7b374bd4bfcf70ac23c2d9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Santo Tomás
repository.mail.fl_str_mv repositorio@usantotomas.edu.co
_version_ 1782026250476322816
spelling Sánchez Mora, Ruth MélidaArévalo Pinzón, GabrielaOstos Ortiz, Olga Lucíahttps://orcid.org/0000-0002-0572-8418https://orcid.org/0000-0002-5331-5693https://orcid.org/0000-0002-6477-9872https://scholar.google.com/citations?hl=es&user=VGWRvDEAAAAJhttps://scholar.google.com/citations?hl=es&user=yCBpLUsAAAAJhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000464252https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000744719https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000260010Universidad Santo Tomás2022-07-16T16:30:32Z2022-07-16T16:30:32Z2022Sánchez, R., Arévalo, G., & Ostos, O. (2022). Células madre y su aplicación biotecnológica. Ediciones USTA.9789587824995http://hdl.handle.net/11634/45876https://doi.org/10.15332/li.lib.2022.00280reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo TomásLa capacidad autorregenerativa de las células madre es una de sus principales propiedades, la cual ha sido utilizada en procesos de regeneración celular, ya sea para reemplazo o para recuperación celular de tejidos y órganos. Estas células también tienen la habilidad de producir diferentes compuestos farmacológicos y toxicológicos. Así mismo, gracias a sus propiedades antiinflamatorias, antifibróticas regenerativas y antimicrobianas, se sitúan como un recurso biológico interesante. El objetivo de este libro es profundizar en los procesos moleculares y celulares de las células madre y mostrar sus diferentes usos biotecnológicos.1-127spaUniversidad Santo TomásProducción Editorialhttps://ediciones.usta.edu.co/index.php/publicaciones/ciencias-sociales/c%C3%A9lulas-madre-y-su-aplicaci%C3%B3n-biotecnol%C3%B3gica-detailFriedenstein, A. J., Petrakova, K. V., Kurolesova, A. I. y Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantatio, 6(2), 230-247. https://doi.org/10.1097/00007890-196803000-00009Hao, J., Ma, A., Wang, L., Cao, J., Chen, S., Wang, L., Fu, B., Zhou, J., Pei, X., Zhang, Y., Xiang, P., Hu, S., Li, Q., Zhang, Y., Xia, Y., Zhu, H., Stacey, G., Zhou, Q. y Zhao, T. (2020). General requirements for stem cells. Cell Prolif., 53(12), e12926. https://doi.org/10.1111/cpr.12926Khan, F. A., Almohazey, D., Alomari, M. y Almofty, S. A. (2018). Isolation, culture, and functional characterization of human embryonic stem cells: current trends and challenges. Stem Cells International. https://doi.org/10.1155/2018/1429351Mata-Miranda, M., Vázquez-Zapién, G. J. y Sánchez-Monroy, V. (2013). Generalidades y aplicaciones de las células madre. Perinatol. Reprod. Hum., 27(3), 194-199.Sart, S. y Agathos, S. N. (2018). Towards Three-Dimensional Dynamic Regulation and In Situ Characterization of Single Stem Cell Phenotype Using Microfluidics. Molecular Biotechnology, 60(11), 843-861. https://doi.org/10.1007/s12033-018-0113-4Schmidt, S., Lilienkampf, A. y Bradley, M. (2018). New substrates for stem cell control. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 373(1750). https://doi.org/10.1098/rstb.2017.0223Arbósa, A., Nicolau, F., Quetglas, M., Ramis, J. M., Monjo, M., Muncunill, J., Calvo, J. y Gayà, A. (2013). Obtención de células madre mesenquimales a partir de cordones umbilicales procedentes de un programa altruista de donación de sangre de cordón. Inmunología, 32(1), 3-11. https://doi. org/10.1016/j.inmuno.2012.11.002Bao, M., Xie, J. y Huck, W. T. S. (2018). Recent advances in engineering the stem cell microniche in 3D. Advanced Science, 5(8), 1800448. https:// doi.org/10.1002/advs.201800448Bartfeld, S. y Clevers, H. (2017). Stem cell-derived organoids and their application for medical research and patient treatment. Journal of Molecular Medicine, 95(7), 729-738. https://doi.org/10.1007/s00109-017-1531-7Brizuela, C., Galleguillos, S., Carrión, F., Cabrera, C., Luz, P. e Inostroza, C. (2013). Aislamiento y caracterización de células madre mesenquimales de pulpa y folículo dental humano. Int. J. Morphol., 31(2), 739-746. https:// doi.org/10.4067/S0717-95022013000200063Centeno, E. G. Z., Cimarosti, H. y Bithell, A. (2018). 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Molecular Neurodegeneration, 13(1), 27. https://doi. org/10.1186/s13024-018-0258-4Donnelly, H., Salmeron-Sanchez, M. y Dalby, M. J. (2018). Designing stem cell niches for differentiation and self-renewal. Journal of the Royal Society Interface, 15(145). https://doi.org/10.1098/rsif.2018.0388Eto, S., Goto, M., Soga, M., Kaneko, Y., Uehara, Y., Mizuta, H. y Era, T. (2018). Mesenchymal stem cells derived from human iPS cells via mesoderm and neuroepithelium have different features and therapeutic potentials. Plos One, 13(7), e0200790. https://doi.org/10.1371/journal.pone.0200790Ho, B. X., Pek, N. M. Q. y Soh, B. S. (2018). Disease modeling using 3D organoids derived from human induced pluripotent stem cells. International Journal of Molecular Sciences, 19(4), 936. https://doi.org/10.3390/ijms19040936Jun, D. Y., Kim, S. Y., Na, J. C., Lee, H. H., Kim, J., Yoon, Y. E, Hong, S. J. y Han, W. K. (2018). Tubular organotypic culture model of human kidney. Plos One, 13(10), e0206447. https://doi.org/10.1371/journal.pone.0206447Liu, Z., Tang, M., Zhao, J., Chai, R. y Kang, J. (2018). Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. Advanced Materials, 30(17), e1705388. https://doi.org/10.1002/adma.201705388Mizukami, A. y Swiech, K. (2018). Mesenchymal Stromal Cells: From Discovery to Manufacturing and Commercialization. Stem Cells International. https://doi.org/10.1155/2018/4083921Osiecki, M. J., Michl, T. D., Kul Babur, B., Kabiri, M., Atkinson, K., Lott, W. B., Griesser H, J. y Doran, M. R. (2015). Packed bed bioreactor for the isolation and expansion of placental-derived mesenchymal stromal cells. Plos One, 10(12), e0144941. https://doi.org/10.1371/journal.pone.0144941Paim, A., Tessaro, I. C., Cardozo, N. S. M. y Pranke, P. (2018). Mesenchymal stem cell cultivation in electrospun scaffolds: mechanistic modeling for tissue engineering. Journal of Biological Physics, 44(3), 245-271. https://doi.org/10.1007/s10867-018-9482-yPerez-Estenaga, I., Prosper, F. y Pelacho, B. (2018). Allogeneic mesenchymal stem cells and biomaterials: the perfect match for cardiac repair? International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103236Petry, F., Smith, J. R., Leber, J., Salzig, D., Czermak, P. y Weiss, M. L. (2016). Manufacturing of human umbilical cord mesenchymal stromal cells on microcarriers in a dynamic system for clinical use. Stem Cells Int. https://doi.org/10.1155/2016/4834616Petry, F., Weidner, T., Czermak, P. y Salzig, D. (2018). Three-dimensional bioreactor technologies for the cocultivation of human mesenchymal stem/ stromal cells and beta cells. Stem Cells Int. https://doi.org/10.1155/2018/2547098Sane, M. S., Misra, N., Mousa, O. M., Czop, S., Tang, H., Khoo, L. T., Jones, C. D. y Mustafi, S. B. (2018). Cytokines in umbilical cord blood-derived cellular product: a mechanistic insight into bone repair. Regenerative Medicine, 13(8), 881-898. https://doi.org/10.2217/rme-2018-0102Sart, S. y Agathos, S. N. (2018). Towards three-dimensional dynamic regulation and in situ characterization of single stem cell phenotype using microfluidics. Molecular Biotechnology, 60(11), 843-861. https://doi.org/10.1007/s12033-018-0113-4Cable, J., Fuchs, E., Weissman, I., Jasper, H., Glass, D., Rando, T. A., Blau, H., Debnath, S., Oliva, A., Park, S., Passegué, E., Kim, C. y Krasnow, M. A. (2020). Adult stem cells and regenerative medicine: a symposium report. Ann N Y Acad Sci., 1462(1), 27-36. https://doi.org/10.1111/nyas.14243Hawsawi, Y. M., Al-Zahrani, F., Mavromatis, C. H., Baghdadi, M. A., Saggu, S. y Oyouni, A. A. A. (2018). Stem cell applications for treatment of cancer and autoimmune diseases: its promises, obstacles, and future perspectives. Technology in Cancer Research & Treatment, 17. https://doi.org/10.1177/1533033818806910Labusca, L., Herea, D. D. y Mashayekhi, K. (2018). Stem Cells as Delivery Vehicles for Regenerative Medicine: Challenges and Perspectives. World Journal of Stem Cells, 10(5), 43-56. https://doi.org/10.4252/wjsc.v10.i5.43Liu, G., David, B. T., Trawczynski, M. y Fessler, R. G. (2020). Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep., 16(1), 3-32. https://doi.org/10.1007/s12015-019-09935-xMata-Miranda, M., Vázquez-Zapién, G. J. y Sánchez-Monroy, V. (2013). Generalidades y aplicaciones de las células madre. Perinatol. Reprod. Hum., 27(3), 194-199.Ntege, E. H., Sunami, H. y Shimizu, Y. (2020). Advances in regenerative therapy: A review of the literature and future directions. Regen Ther, 14, 136-153. https://doi.org/10.1016/j.reth.2020.01.004Perez-Estenaga, I., Prosper, F. y Pelacho, B. (2018). Allogeneic Mesenchymal Stem Cells and Biomaterials: The Perfect Match for Cardiac Repair? International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ ijms19103236Serna-Cuéllar, E. y Santamaría-Solís, L. (2013). Protocol of extraction and processing of adult stem cells from abdominal adipose tissue: coordenates of the plastic surgeon in translational researching. Cir. Plást. Iberolatinoam., 39(Supl. 1), s44-s50. https://doi.org/10.4321/S0376-78922013000500012Serra, M., Brito, C., Correia, C. y Alves, P. M. (2012). Process engineering of human pluripotent stem cells for clinical application. Trends in Biotechnology, 30(6), 350-359. https://doi.org/10.1016/j.tibtech.2012.03.003Slack, J. M. W. (2018). What is a stem cell? Wiley interdisciplinary Reviews De- velopmental biology, 7(5), e323. https://doi.org/10.1002/wdev.323Ude, C. C., Miskon, A., Idrus, R. B. H. y Abu Bakar, M. B. (2018). Application of stem cells in tissue engineering for defense medicine. Military Medical Research, 5(1), 7. https://doi.org/10.1186/s40779-018-0154-9Ullah, I., Subbarao, R. B. y Rho, G. J. (2015). Human mesenchymal stem cells: current trends and future prospective. Bioscience Reports, 35(2). https:// doi.org/10.1042/BSR20150025Wang, B. X., Kit-Anan, W. y Terracciano, CM. N. (2018). Many cells make life work. Multicellularity in stem cell-based cardiac disease modelling. International Journal of Molecular Sciences, 19(11), 3361. https://doi. org/10.3390/ijms19113361Zhu, Y. e Yi, Y. (2017). Research progress and clinical prospect of three-dimensional spheroid culture of mesenchymal stem cells. Chinese Journal of Reparative and Reconstructive Surgery, 31(4), 497-503. https://doi. org/10.7507/1002-1892.201612056Jenkins, M. J. y Farid, S. S. (2015). Human pluripotent stem cell-derived products: advances towards robust, scalable and cost-effective manufacturing strategies. Biotechnology Journal, 10(1), 83-95. https://doi.org/10.1002/ biot.201400348Gamble, A., Pawlick, R., Pepper, A. R., Bruni, A., Adesida, A., Senior, P. A., Korbutt, G. S. y Shapiro. A. M. J. (2018). Improved islet recovery and efficacy through co-culture and co-transplantation of islets with human adipose-derived mesenchymal stem cells. Plos One, 13(11), e0206449. https://doi.org/10.1371/journal.pone.0206449Guo, G. R., Chen, L., Rao, M., Chen, K., Song, J. P. y Hu, S. S. (2018). A modified method for isolation of human cardiomyocytes to model cardiac diseases. Journal of Translational Medicine, 16, 288. https://doi. org/10.1186/s12967-018-1649-6Hassan, S., Simaria, A. S., Varadaraju, H., Gupta, S., Warren, K. y Farid, S. S. (2015). Allogeneic cell therapy bioprocess economics and optimization: downstream processing decisions. Regenerative Medicine, 10(5), 591- 609. https://doi.org/10.2217/rme.15.29Jossen, V., van den Bos, C., Eibl, R. y Eibl, D. (2018). Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Applied Microbiology and Biotechnology, 102(9), 3981-3994. https:// doi.org/10.1007/s00253-018-8912-xKim, S., Lee, S. K., Kim, H. y Kim, T. M. (2018). Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. International Journal of Molecular Sciences, 19(10). https://doi.org/10.3390/ijms19103119Klar, A. S., Zimoch, J. y Biedermann, T. (2017). Skin tissue engineering: application of adipose-derived stem cells. BioMed Research International. https:// doi.org/10.1155/2017/9747010Lee, J., Cho, Y. S., Jung, H. y Choi, I. (2018). Pharmacological regulation of oxidative stress in stem cells. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2018/4081890Lin, H., Du, Q., Li, Q., Wang, O., Wang, Z., Sahu, N., Elowsky, C., Liu, K., Zhang, C., Chung, S., Duan, B. y Lei, Y. (2018). A scalable and efficient bioprocess for manufacturing human pluripotent stem cell-de- rived endothelial cells. Stem Cell Reports, 11(2), 454-469. https://doi.org/10.1016/j.stemcr.2018.07.001Placzek, M. R., Chung, I. M., Macedo, H. M., Ismail, S., Mortera Blanco, T., Lim, M., Jae, M. C., Iliana, F., Yunyi, K., Yeo, D. C. L., Ma Chi, Y. C., Polak, J. M., Panoskaltsis, N. y Mantalaris, A. (2009). Stem cell bioprocessing: fundamentals and principles. Journal of the Royal Society Interface, 6(32), 209-232. https://doi.org/10.1098/rsif.2008.0442Shyh-Chang, N., Daley, G. Q. y Cantley, L. C. (2013). Stem cell metabolism in tissue development and aging. Development, 140(12), 2535-2547. https://doi.org/10.1242/dev.091777Silva, M. M., Rodrigues, A. F., Correia, C., Sousa, M. F., Brito, C., Coroadinha, A. S., Serra, M. y Alves, P. M. (2015). Robust expansion of human pluripotent stem cells: integration of bioprocess design with transcriptomic and metabolomic characterization. Stem Cells Translational Medicine, 4(7), 731-742. https://doi.org/10.5966/sctm.2014-0270Sui, L., Danzl, N., Campbell, S. R., Viola, R., Williams, D., Xing, Y., Wang, Y., Phillips, N., Poffenberger, G., Johannesson, B., Oberholzer, J., Powers, A. C., Leibel, R. L., Chen, X., Sykes, M. y Egli, D. (2018). β-Cell replacement in mice using human type 1 diabetes nuclear transfer embryonic stem cells. Diabetes, 67(1), 26-35. https://doi.org/10.2337/db17-0120Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Células madre y su aplicación biotecnológicaMother cellshematopoietic stem cellsRegenerative medicineCélulas madreCélulas madre hematopoyéticasMedicina regenerativaLibroGeneración de Nuevo Conocimiento: Libro resultado de investigacióninfo:eu-repo/semantics/bookhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2f33CRAI-USTA BogotáORIGINALObracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdfObracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdfapplication/pdf7965710https://repository.usta.edu.co/bitstream/11634/45876/1/Obracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdfee59f10768ef56a396eed7b33410a72aMD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/45876/2/license_rdf217700a34da79ed616c2feb68d4c5e06MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/45876/3/license.txtaedeaf396fcd827b537c73d23464fc27MD53open accessTHUMBNAILObracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdf.jpgObracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdf.jpgIM Thumbnailimage/jpeg3451https://repository.usta.edu.co/bitstream/11634/45876/4/Obracompleta.Coleccioncienciasdelasalud.2022Sanchezruth.pdf.jpg872cc7dc1a7b374bd4bfcf70ac23c2d9MD54open access11634/45876oai:repository.usta.edu.co:11634/458762022-12-05 09:00:50.636open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K