Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución
La propiedad única del 2,4,6-tricloro-1,3,5-triazina (cloruro cianúrico) es su capacidad para experimentar una reacción de sustitución nucleófila aromática (SNAr) en condiciones de temperatura controlada. Usando un protocolo sintético conveniente, la s-triazinas monosustituidas se trataron con un ex...
- Autores:
-
Arguello Reyes, Jeison David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Santo Tomás
- Repositorio:
- Repositorio Institucional USTA
- Idioma:
- spa
- OAI Identifier:
- oai:repository.usta.edu.co:11634/51999
- Acceso en línea:
- http://hdl.handle.net/11634/51999
- Palabra clave:
- Chemosensor
cyanuric chloride
triazines
metal cations
Iones metálicos
Transferencia de carga intramolecular
Transferencia de energía de resonancia
Transferencia de electrones fotoinducida
Quimiosensor
cloruro cianúrico
triazinas
cationes metálicos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
SANTTOMAS2_866f7007493c9cf1758cdbb2c220b496 |
---|---|
oai_identifier_str |
oai:repository.usta.edu.co:11634/51999 |
network_acronym_str |
SANTTOMAS2 |
network_name_str |
Repositorio Institucional USTA |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución |
title |
Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución |
spellingShingle |
Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución Chemosensor cyanuric chloride triazines metal cations Iones metálicos Transferencia de carga intramolecular Transferencia de energía de resonancia Transferencia de electrones fotoinducida Quimiosensor cloruro cianúrico triazinas cationes metálicos |
title_short |
Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución |
title_full |
Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución |
title_fullStr |
Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución |
title_full_unstemmed |
Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución |
title_sort |
Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución |
dc.creator.fl_str_mv |
Arguello Reyes, Jeison David |
dc.contributor.advisor.none.fl_str_mv |
Osorio Martínez, Carlos Alberto |
dc.contributor.author.none.fl_str_mv |
Arguello Reyes, Jeison David |
dc.subject.keyword.spa.fl_str_mv |
Chemosensor cyanuric chloride triazines metal cations |
topic |
Chemosensor cyanuric chloride triazines metal cations Iones metálicos Transferencia de carga intramolecular Transferencia de energía de resonancia Transferencia de electrones fotoinducida Quimiosensor cloruro cianúrico triazinas cationes metálicos |
dc.subject.lemb.spa.fl_str_mv |
Iones metálicos Transferencia de carga intramolecular Transferencia de energía de resonancia Transferencia de electrones fotoinducida |
dc.subject.proposal.spa.fl_str_mv |
Quimiosensor cloruro cianúrico triazinas cationes metálicos |
description |
La propiedad única del 2,4,6-tricloro-1,3,5-triazina (cloruro cianúrico) es su capacidad para experimentar una reacción de sustitución nucleófila aromática (SNAr) en condiciones de temperatura controlada. Usando un protocolo sintético conveniente, la s-triazinas monosustituidas se trataron con un exceso de nucleófilos para obtener sensores ópticos de triazinas di y trisustituidos en modo 1 + 1 + 1 (un nucleófilo como primera sustitución, seguida de otro nucleófilo para la segunda y otro más para la última posición). Los nucleófilos utilizados para este estudio fueron el 5-amino-2,3-dihidroftalazina-1,4-diona (luminol), la n-butilamina y la 4-amino-1,5-dimetil-2-fenilpirazol-3-ona (4-aminoantipirina). El mejor orden de incorporación para la obtención de los sensores ópticos derivados del cloruro cianúrico y estudiar su capacidad coordinante de iones metálicos en solución acuosa de este trabajo fue, 4-aminoantipirina para la primera posición seguido de la n-butilamina para la segunda posición y la tercera posición del núcleo triazínico con el luminol. El sensor resultante de la síntesis primeramente del cloruro cianúrico con el luminol como primer sustituyente y 4-aminoantipirina como segundo sustituyente tiene sensibilidad al ser probado con soluciones de metales pesados (Hg, Cd, Pb, Cr y Fe) de los cuales todos abaten la fluorescencia que aporta el luminol al quimiosensor. El límite de detección para cada metal pesado fue dado en rangos de concentración en ppm (partes por millón) y fue de 40-30 ppm para el Hg+2, 70-60 ppm para Pb+2 y Cd+2 y de 20-10 ppm para el Cr+2. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-07T14:35:08Z |
dc.date.available.none.fl_str_mv |
2023-09-07T14:35:08Z |
dc.date.issued.none.fl_str_mv |
2023-09-06 |
dc.type.local.spa.fl_str_mv |
Trabajo de grado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.category.spa.fl_str_mv |
Formación de Recurso Humano para la Ctel: Trabajo de grado de Pregrado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.drive.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Arguello Reyes, J. D., (2023). Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución. [Trabajo de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11634/51999 |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Universidad Santo Tomás |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Santo Tomás |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.usta.edu.co |
identifier_str_mv |
Arguello Reyes, J. D., (2023). Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución. [Trabajo de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombia reponame:Repositorio Institucional Universidad Santo Tomás instname:Universidad Santo Tomás repourl:https://repository.usta.edu.co |
url |
http://hdl.handle.net/11634/51999 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
A. Lace, J. Cleary, (2021). A review of microfluidic detection strategies for heavy metals in water, Chemosensors., 9, 60, 1-26. DOI: https://doi.org/10.3390/chemosensors9040060 Asmamaw T. (2018). CYCLOTRIMERIZATION OF NITRILES WITH α-HETEROATOMS CATALYZED BY USING TUNGSTEN AND MOLYBDENUM BRONZES. Pag 4-5. URI: https://hdl.handle.net/11244/8074 Ayman El-Faham., (2016). sym-Trisubstituted 1,3,5-Triazine Derivatives as Promising Organic Corrosion Inhibitors for Steel in Acidic Solution,, Molecules. 21, 436, 1-11. DOI: 10.3390/molecules21040436. Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. DOI: 10.1016/j.bios.2017.03.031. Blotny G., (2006). Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis., Tetrahedron 62 9507–9522. DOI: 10.1002/chin.200651255 Blotny, G. (2006). Recent applications of 2, 4, 6-trichloro-1, 3, 5-triazine and its derivatives in organic synthesis. Tetrahedron 62, 9507–9522. doi: 10.1016/j.tet.2006.07.039. Bui The Huy. (2022). Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis - A mechanistic approach., Microchemical Journal., 179, 10751, 1-16. ISSN 0026-265X, https://doi.org/10.1016/j.microc.2022.107511. Callan JF, de Silva AP, Magri DC. (2005). Luminescent sensors and switches in the Early 21st century. Tetrahedron. 61, 8551-8588. DOI: 10.1016/j.tet.2005.05.043 Carofiglio. T.; Varotto. A.; Tonellato. U. (2004) One-Pot Synthesis of Cyanuric Acid-Bridged Porphyrin−Porphyrin Dyads., J. Org. Chem. 69, 8121. https://doi.org/10.1021/jo048713d D. Cao, Z. Liu, P. Verwilst, S. Koo, P. Jangjili, J.S. Kim, W. Lin, (2019). Coumarin-based small-molecule fluorescent chemosensors, Chem. Rev. 119, 10403–10519. DOI: https://doi.org/10.1021/acs.chemrev.9b00145 D. Sadananda, A.M.M. Mallikarjunaswamy, C.N. Prashantha, R. Mala, K. Gouthami, L. Lakshminarayana, L.F.R. Ferreira, M. Bilal, A. Rahdar, S.I. Mulla, (2022). Recent development in chemosensor probes for the detection and imaging of zinc ions: a systematic review, Chem. Pap. 76 5997–6015. https://doi.org/10.1007/s11696-022-02284-z Dawid Maliszewski and Danuta Drozdowska., (2022). Recent Advances in the Biological Activity of s-Triazine Core Compounds., Pharmaceuticals. 15, 221. 1-19. DOI: 10.3390/ph15020221 Deepa S., Venkatesan R., Jayalakshmi S., Priya M., Seong-Cheol Kim., (2023). Recent advances in catalyst-enhanced luminol chemiluminescence system and its environmental and chemical Applications., Journal of Environmental Chemical Engineering 11, 109853, 1-15. ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.109853. Disasa D. (2010). Templates synthesis and characterization of Ni (II) complex derived from 4‐phenoxy – 2,6 – dichloro‐s‐triazin and 2,4‐dinitro phenylhydrazine. Pag 2-4. URI: http://etd.aau.edu.et/handle/123456789/1050. Elosua, C.; de Acha, N.; Lopez-Torres, D.; Matias, I.R.; Arregui, F.J. Luminescent Optical Fiber Oxygen Sensor following Layer-by-layer Method. Procedia Eng. 2014, 87, 987–990. DOI: 10.1016/j.proeng.2014.11.324. E.M. McConnell, J. Nguyen, Y. Li, (2020). Aptamer-based biosensors for environmental monitoring, Front. Chem. 8, 1-24. DOI: https://doi.org/10.3389/fchem.2020.00434 Gang Zhao, Binyuan Guo, Gang Wei, Shanyi Guang, Zhengye Gu, Hongyao Xu, (2019). A novel dual-channel Schiff base fluorescent chemo-sensor for Zn2+ and Ca2+ recognition: Synthesis, mechanism and application, Dyes and Pigments, Volume 170, 107614, ISSN 0143-7208, https://doi.org/10.1016/j.dyepig.2019.107614. H. Wang, H. Su, N. Wang, J. Wang, J. Zhang, J.-H. Wang, W. Zhao, (2021). Recent development of reactional small-molecule fluorescent probes based on resorufin., Dyes Pigments 191, 109351, 1-22. ISSN 0143-7208, https://doi.org/10.1016/j.dyepig.2021.109351. Huiyu Niu, (2023). Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy., Chem. Soc. Rev. 52, 2322-2357. DOI: https://doi.org/10.1039/D1CS01097B Huthmacher, K.; Most, D., (2006). Cyanuric Acid and Cyanuric Chloride. In Ullmann's Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: Weinheim, Germany, V 11., 1-21. DOI: https://doi.org/10.1002/14356007.a08_191 J. J. Celestina, L. Alphonse, P. Tharmaraj, C.D. Sheela., (2019) Journal of Science: Advanced Materials and Devices., 4, 237-244. J. Jone Celestina , P. Tharmaraj, A. Jeevika y C.D. Sheela, (2019). Novel triazine-based colorimetric and fluorescent sensor for highly selective detection of Al3+., Journal of Science: Advanced Materials and Devices., 4, 2, 237-244. ISSN 2468-2179, https://doi.org/10.1016/j.jsamd.2019.05.001. J.F. Chen, Q. Lin, Y.M. Zhang, H. Yao, T.B. Wei, (2017). Pillararene-based fluorescent chemosensors: recent advances and perspectives, Chem. Commun. 53, 13296–13311. DOI: https://doi.org/10.1039/C7CC08365C Jone Celestina, P. Tharmaraj, A. Jeevika y C.D. Sheela., (2020). Fabrication of triazine based colorimetric and electrochemical sensor for the quantification of Co2+ ion. Microchemical Journal., 155, 104692, 1-9. ISSN 0026-265X, https://doi.org/10.1016/j.microc.2020.104692. L. Wu, J. Liu, P. Li, B. Tang, T.D. James, (2021). Two-photon small-molecule fluorescence-based agents for sensing, imaging, and therapy within biological systems, Chem. Soc. Rev. 50, 702–734. DOI: https://doi.org/10.1039/D0CS00861C Liu Hu; et al., (2022). Synthesis of novel triazine-quinoline-appended naphthalimide sensors for Hg(II) recognition and their structure-activity relationship. Dyes and Pigments. Volume 199, March, 110048-11053. ISSN 0143-7208, https://doi.org/10.1016/j.dyepig.2021.110048. Liu, C.-W.; Tsai, T.-C.; Osawa, M.; Chang, H.-C.; Yang, R.-J. Aptamer-based sensor for quantitative detection of mercury (II) ions by attenuated total reflection surface enhanced infrared absorption spectroscopy. Anal. Chim. Acta 2018, 1033, 137–147. DOI: 10.1016/j.aca.2018.05.037. Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.; Chen, Q. Turn-On Fluoresence Sensor for Hg2+ in Food based on FRET between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles. J. Agric. Food Chem. 2018, 66, 6188–6195. DOI: 10.1021/acs.jafc.8b00546. M. Ghiyasiyan-Arani, M. Salavati-Niasari, S. Naseh, (2017). Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization, Ultrason. Sonochem. 39, 494–503. ISSN 1350-4177, https://doi.org/10.1016/j.ultsonch.2017.05.025. M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, (2017). Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf. 138, 279–285. ISSN 0147-6513, https://doi.org/10.1016/j.ecoenv.2017.01.010. M.K. Goshisht, G.K. Patra, N. Tripathi, (2022). Fluorescent Schiff base sensors as a versatile tool for metal ion detection: strategies, mechanistic insights, and applications, Mater. Adv. 3, 2612-2669. DOI: https://doi.org/10.1039/D1MA01175H Ma, Xuelin, et al. (2020). Triazine Derivative for Fluorescence Sensing of Zr 4+, Fe3+Ions and Acetone. Chin. J. Org. Chem. 40, 1745-1751. DOI: 10.6023/cjoc201912007 Mario J. F. Calvete, (2020). Multifunctionalization of cyanuric chloride for the stepwise synthesis of potential multimodal imaging chemical entities., Arabian Journal of Chemistry., 13, 1, 2517-2525. ISSN 1878-5352, https://doi.org/10.1016/j.arabjc.2018.06.005. Mooibroek, T.J.; Gamez, P. Inorg. Chim. Acta. (2007), 360-381 Moral, M.; Ruiz, A.; Moreno, A.; Díaz-Ortiz, A.; López-Solera, I.; de la Hoz, A.; Sánchez-Migallón, (2010). Microwave-assisted synthesis of pyrazolyl bistriazines., Tetrahedron 66, 121.). https://doi.org/10.1016/j.tet.2009.11.028. ISSN 0040-4020 Muhammed Abdalhasan Shallal., (2021). Synthesis and Characterization of New 1,3,5-Triazine Derivatives Based on Benzene Ring., Egypt. J. Chem. Vol. 64, No. 12 pp. 7201 – 7208. DOI: 10.21608/EJCHEM.2021.76395.3737 N. Garg, A. Deep, A.L. Sharma, (2022). Recent trends and advances in porous metal- organic framework nanostructures for the electrochemical and optical sensing of heavy metals in water, Crit. Rev. Anal. Chem., 1–25. DOI: https://doi.org/10.1080/10408347.2022.2106543 N. Ullah, M. Mansha, I. Khan, A. Qurashi, (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges, TrAC-Trends Anal. Chem., 100, 155–166. ISSN 0165-9936, https://doi.org/10.1016/j.trac.2018.01.002. N.S. Patil, R.B. Dhake, M.I. Ahamed, U. Fegade, (2020). A mini review on Organic chemosensors for cation recognition., J. Fluor. 30, 1295–1330. https://doi.org/10.1007/s10895-020-02554-7 Nosrat Mahmoodi, Hadiseh Yazdani Nyaki y Meysam Pasandideh Nadamani., (2020). Design and Synthesis of New Tripod-Chromogenic Sensor Based on S-Triazine and Thiazolidine-2,4-Dione Ring (TCST) for Naked-Eye Detection of Li-Ions. SSRN., 367158, 1-19. DOI: https://doi.org/10.1139/cjc-2020-0366. Orgel, L. E. (2012). Introducción a la Química de los Metales de Transición. Reverte. P. Devi, P. Rajput, A. Thakur, K.-H. Kim, P. Kumar, (2019). Recent advances in carbon quantum dot-based sensing of heavy metals in water, TrAC-Trends Anal. Chem. 114, 171–195. ISSN 0165-9936, https://doi.org/10.1016/j.trac.2019.03.003. P. Khan, D. Idrees, M.A. Moxley, J.A. Corbett, F. Ahmad, G.V. Figura, W.S. Sly, A. Waheed, M.I. Hassan, (2014). Luminol-based chemiluminescent signals: Clinical and non-clinical application and future uses, Appl. Biochem. Biotechnol. 173, 333–355. doi: 10.1007/s12010-014-0850-1. P. Samanta, S. Let, W. Mandal, S. Dutta, S.K. Ghosh, (2020). Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic wáter pollutants, Inorg. Chem. Front., 7, 1801–1821. DOI: https://doi.org/10.1039/D0QI00167H P. Yadav, L. Yadav, H. Laddha, M. Agarwal, R. Gupta, (2022). Upsurgence of smartphone as an economical, portable, and consumer-friendly analytical device/interface platform for digital sensing of hazardous environmental ions, Trends Environ. Anal. Chem. V 36, e00177, 1-19. ISSN 2214-1588, https://doi.org/10.1016/j.teac.2022.e00177. Pal A, Karmakar M, Bhatta SR, Thakur A. (2021). A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coordination Chemistry Reviews. 448, 214167. ISSN 0010-8545, https://doi.org/10.1016/j.ccr.2021.214167. Popiołek L; Baran I., (2015). Synthesis of New Cyanuric Chloride Derivatives., International Research Journal of Pure & Applied Chemistry 9(4): 1-6, Article no. IRJPAC. 20466 ISSN: 2231-3443. DOI: 10.9734/IRJPAC/2015/20466 Pralok K, Misra R, (2023). Intramolecular charge transfer for optical Applications., Journal of Applied Physics., 133, 020901 (1-17). https://doi.org/10.1063/5.0131426 R. Iftikhar, A.F. Zahoor, M. Irfan, A. Rasul, F. Rao, (2021). Synthetic molecules targeting yes associated protein activity as chemotherapeutics against cancer, Chem. Biol. Drug Des. 98, 1025–1037. DOI: 10.1111/cbdd.13960 R. Sivakumar, N.Y. Lee, (2021). Paper-based fluorescence chemosensors for metal ion detection in biological and environmental samples, BioChip J. 15, 216–232. DOI: https://doi.org/10.1007/s13206-021-00026-z Rajasekar M, Vijayanand R, Rajasekar K. (2023). Recent advances in Fluorescent-based cation sensors for biomedical Applications., Results in Chemistry., 5, 100850, 1-30. ISSN 2211-7156, https://doi.org/10.1016/j.rechem.2023.100850. Rangel E. (2019). Síntesis y reactividad de 1,3,5-triazinas derivadas del 2-(aminometil)bencimidazol. Pag 11. Reyes Y. Vergara I, Torres O, Diaz M, González E. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. ISSN Online 2422-4324. Vol. 16 N.º 2, Julio-diciembre, pp. 66-77 Rodríguez, D. (2017). Intoxicación ocupacional por metales pesados. Medisan, 21(12), 3372-3385.). ISSN 1029-3019 Ruiz N. (2018). Evaluación de la actividad antioxidante de bases de Schiff derivadas de 4-aminoantipirina. Cap. 2, pág. 6. URI: http://www.dspace.uce.edu.ec/handle/25000/16723 Segura S, Beltramini T, Takayanagui A, Hering S, Cupo P. (2003). Metales pesados en agua de bebederos de presión. Archivos Latinoamericanos de Nutrición, 53(1), 59-64. ISSN 2309-5806 Sharma A, Ayman El-Faham, Beatriz G. de la Torre, Albericio F. (2018). Exploring the Orthogonal Chemoselectivity of 2,4,6-Trichloro-1,3,5-Triazine (TCT) as a Trifunctional Linker With Different Nucleophiles: Rules of the Game. Front. Chem., Sec. Chemical Biology., 6, 1-11, https://doi.org/10.3389/fchem.2018.00516. T. Qin, B. Liu, Z. Xu, G. Yao, H. Xu, C. Zhao, (2021). Flavonol-based small-molecule fluorescent probes., Sens. Actuators B Chem. 336, 129718, 1-23. ISSN 0925-4005, https://doi.org/10.1016/j.snb.2021.129718. T. Skorjanc, D. Shetty, M. Valant, (2021). Covalent organic polymers and frameworks for fluorescence-based sensors, ACS Sens., 6, 1461–1481. DOI: https://doi.org/10.1021/acssensors.1c00183 Tappe, H.; Helmling, W.; Mischke, P.; Rebsamen, K.; Reiher, U.; Russ, W.; Schläfer, L.; Vermehren, P., (2006). Reactive Dyes. In Ullmann's Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: Weinheim, Germany. DOI: https://doi.org/10.1002/14356007.a22_651.pub2 Ugozzoli, F.; Massera, C. (2005). Building co-crystals with molecular sense and supramolecular sensibility., Cryst. Eng. Commun. 7, 121., 439-448 W.A. Khanday, M. Asif, B.H. Hameed, (2017). Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes, Int. J. Biol. Macromol. 95, 895–902. ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2016.10.075. Wu, L., Huang, (2020). Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents., Chemical Society Reviews, 49(15), 5110-5139. https://doi.org/10.1039/C9CS00318E X. Chen, Z. Huang, L. Huang, Q. Shen, N.-D. Yang, C. Pu, J. Shao, L. Li, C. Yu, W. Huang, (2022). Small-molecule fluorescent probes based on covalent assembly strategy for chemoselective bioimaging, RSC Adv. 12, 1393–1415. DOI: https://doi.org/10.1039/D1RA08037G X. Lu, Y. Zhan, W. He, (2022). Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates, J. Photochem. Photobiol. B: Biol. 234, 112528, 1-21. ISSN 1011-1344, https://doi.org/10.1016/j.jphotobiol.2022.112528. Z. Yan, Y. Cai, J. Zhang, Y. Zhao, (2022). Fluorescent sensor arrays for metal ions detection: a review, Measurement 187, 110355, 1-10. ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2021.110355. Z.H. Yuan, Y.S. Yang, P.C. Lv, H.L. Zhu, (2020). Recent progress in small-molecule fluorescent probes for detecting mercury ions, Crit. Rev. Anal. Chem. 52, 1–25. DOI: https://doi.org/10.1080/10408347.2020.1797466 Zheng J., Wai J.L., Ryan J. Lake., Siu Yee New., Zhike He., Yi Lu., (2021). DNAzyme Sensor Uses Chemiluminescence Resonance Energy Transfer for Rapid, Portable, and Ratiometric Detection of Metal Ions., Anal. Chem. 93,31, 10834–10840. DOI: https://doi.org/10.1021/acs.analchem.1c01077 Zhou Y, Zhang J, Zhou H, Hu X, Zhang L, Zhang M. (2013). A highly selective fluorescent probe for Al3+ based on 4-aminoantipyrine. https://doi.org/10.1016/j.saa.2012.12.084. |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
CRAI-USTA Bucaramanga |
dc.publisher.spa.fl_str_mv |
Universidad Santo Tomás |
dc.publisher.program.spa.fl_str_mv |
Pregrado Química Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Química Ambiental |
institution |
Universidad Santo Tomás |
bitstream.url.fl_str_mv |
https://repository.usta.edu.co/bitstream/11634/51999/1/2023ArguelloJeison.pdf https://repository.usta.edu.co/bitstream/11634/51999/2/2023ArguelloJeison1.pdf https://repository.usta.edu.co/bitstream/11634/51999/3/2023ArguelloJeison2.pdf https://repository.usta.edu.co/bitstream/11634/51999/4/license_rdf https://repository.usta.edu.co/bitstream/11634/51999/5/license.txt https://repository.usta.edu.co/bitstream/11634/51999/6/2023ArguelloJeison.pdf.jpg https://repository.usta.edu.co/bitstream/11634/51999/7/2023ArguelloJeison1.pdf.jpg https://repository.usta.edu.co/bitstream/11634/51999/8/2023ArguelloJeison2.pdf.jpg |
bitstream.checksum.fl_str_mv |
f0d96ca7bf1969300299d4c8d96b1e31 8745f3312d9b173af113fcd939c8fadf 2968c8fb2b894a740cd267949d132951 217700a34da79ed616c2feb68d4c5e06 aedeaf396fcd827b537c73d23464fc27 c5cc432e66207a105102720a27ffc01a c3d17e0fc025d4059251ef131a5d1fb3 9d52a93141def017f723da53cf4ccd68 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Santo Tomás |
repository.mail.fl_str_mv |
repositorio@usantotomas.edu.co |
_version_ |
1782026342610501632 |
spelling |
Osorio Martínez, Carlos AlbertoArguello Reyes, Jeison David2023-09-07T14:35:08Z2023-09-07T14:35:08Z2023-09-06Arguello Reyes, J. D., (2023). Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en solución. [Trabajo de pregrado]. Universidad Santo Tomás, Bucaramanga, Colombiahttp://hdl.handle.net/11634/51999reponame:Repositorio Institucional Universidad Santo Tomásinstname:Universidad Santo Tomásrepourl:https://repository.usta.edu.coLa propiedad única del 2,4,6-tricloro-1,3,5-triazina (cloruro cianúrico) es su capacidad para experimentar una reacción de sustitución nucleófila aromática (SNAr) en condiciones de temperatura controlada. Usando un protocolo sintético conveniente, la s-triazinas monosustituidas se trataron con un exceso de nucleófilos para obtener sensores ópticos de triazinas di y trisustituidos en modo 1 + 1 + 1 (un nucleófilo como primera sustitución, seguida de otro nucleófilo para la segunda y otro más para la última posición). Los nucleófilos utilizados para este estudio fueron el 5-amino-2,3-dihidroftalazina-1,4-diona (luminol), la n-butilamina y la 4-amino-1,5-dimetil-2-fenilpirazol-3-ona (4-aminoantipirina). El mejor orden de incorporación para la obtención de los sensores ópticos derivados del cloruro cianúrico y estudiar su capacidad coordinante de iones metálicos en solución acuosa de este trabajo fue, 4-aminoantipirina para la primera posición seguido de la n-butilamina para la segunda posición y la tercera posición del núcleo triazínico con el luminol. El sensor resultante de la síntesis primeramente del cloruro cianúrico con el luminol como primer sustituyente y 4-aminoantipirina como segundo sustituyente tiene sensibilidad al ser probado con soluciones de metales pesados (Hg, Cd, Pb, Cr y Fe) de los cuales todos abaten la fluorescencia que aporta el luminol al quimiosensor. El límite de detección para cada metal pesado fue dado en rangos de concentración en ppm (partes por millón) y fue de 40-30 ppm para el Hg+2, 70-60 ppm para Pb+2 y Cd+2 y de 20-10 ppm para el Cr+2.The unique property of 2,4,6-trichloro-1,3,5-triazine (cyanuric chloride) is its ability to undergo a nucleophilic aromatic substitution (SNAr) reaction under controlled temperature conditions. Using a convenient synthetic protocol, monosubstituted s-triazines were treated with an excess of nucleophiles to obtain optical sensors for di- and trisubstituted triazines in 1+1+1 mode (one nucleophile for the first substitution, followed by another nucleophile for the second, and another more for the last position). The nucleophiles used for this study were 5-amino-2,3-dihydrophthalazine-1,4-dione (luminol), n-butylamine, and 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one. (4-Aminoantipyrine). The best order of incorporation for obtaining the optical sensors derived from cyanuric chloride and studying its coordinating capacity of metal ions in aqueous solution of this work was 4-aminoantipyrine for the first position followed by n-butylamine for the second position and the third position of the triazine nucleus with luminol. The sensor resulting from the synthesis of cyanuric chloride first with luminol as the first substituent and 4-aminoantipyrine as the second substituent has sensitivity when tested with solutions of heavy metals (Hg, Cd, Pb, Cr and Fe) of which all lower the fluorescence provided by luminol to the chemosensor. The detection limit for each heavy metal was given in concentration ranges in ppm (parts per million) and was 40-30 ppm for Hg+2, 70-60 ppm for Pb+2 and Cd+2, and 20-10 ppm for Cr+2.Químico Ambientalhttp://www.ustabuca.edu.co/ustabmanga/presentacionPregradoapplication/pdfspaUniversidad Santo TomásPregrado Química AmbientalFacultad de Química AmbientalAtribución-NoComercial-SinDerivadas 2.5 Colombiahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Novedosos sensores fluorescentes basados en el 2,4,6-tricloro-1,3,5-triazina para la detección de iones metálicos en soluciónChemosensorcyanuric chloridetriazinesmetal cationsIones metálicosTransferencia de carga intramolecularTransferencia de energía de resonanciaTransferencia de electrones fotoinducidaQuimiosensorcloruro cianúricotriazinascationes metálicosTrabajo de gradoinfo:eu-repo/semantics/acceptedVersionFormación de Recurso Humano para la Ctel: Trabajo de grado de Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisCRAI-USTA BucaramangaA. Lace, J. Cleary, (2021). A review of microfluidic detection strategies for heavy metals in water, Chemosensors., 9, 60, 1-26. DOI: https://doi.org/10.3390/chemosensors9040060Asmamaw T. (2018). CYCLOTRIMERIZATION OF NITRILES WITH α-HETEROATOMS CATALYZED BY USING TUNGSTEN AND MOLYBDENUM BRONZES. Pag 4-5. URI: https://hdl.handle.net/11244/8074Ayman El-Faham., (2016). sym-Trisubstituted 1,3,5-Triazine Derivatives as Promising Organic Corrosion Inhibitors for Steel in Acidic Solution,, Molecules. 21, 436, 1-11. DOI: 10.3390/molecules21040436.Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. DOI: 10.1016/j.bios.2017.03.031.Blotny G., (2006). Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis., Tetrahedron 62 9507–9522. DOI: 10.1002/chin.200651255Blotny, G. (2006). Recent applications of 2, 4, 6-trichloro-1, 3, 5-triazine and its derivatives in organic synthesis. Tetrahedron 62, 9507–9522. doi: 10.1016/j.tet.2006.07.039.Bui The Huy. (2022). Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis - A mechanistic approach., Microchemical Journal., 179, 10751, 1-16. ISSN 0026-265X, https://doi.org/10.1016/j.microc.2022.107511.Callan JF, de Silva AP, Magri DC. (2005). Luminescent sensors and switches in the Early 21st century. Tetrahedron. 61, 8551-8588. DOI: 10.1016/j.tet.2005.05.043Carofiglio. T.; Varotto. A.; Tonellato. U. (2004) One-Pot Synthesis of Cyanuric Acid-Bridged Porphyrin−Porphyrin Dyads., J. Org. Chem. 69, 8121. https://doi.org/10.1021/jo048713dD. Cao, Z. Liu, P. Verwilst, S. Koo, P. Jangjili, J.S. Kim, W. Lin, (2019). Coumarin-based small-molecule fluorescent chemosensors, Chem. Rev. 119, 10403–10519. DOI: https://doi.org/10.1021/acs.chemrev.9b00145D. Sadananda, A.M.M. Mallikarjunaswamy, C.N. Prashantha, R. Mala, K. Gouthami, L. Lakshminarayana, L.F.R. Ferreira, M. Bilal, A. Rahdar, S.I. Mulla, (2022). Recent development in chemosensor probes for the detection and imaging of zinc ions: a systematic review, Chem. Pap. 76 5997–6015. https://doi.org/10.1007/s11696-022-02284-zDawid Maliszewski and Danuta Drozdowska., (2022). Recent Advances in the Biological Activity of s-Triazine Core Compounds., Pharmaceuticals. 15, 221. 1-19. DOI: 10.3390/ph15020221Deepa S., Venkatesan R., Jayalakshmi S., Priya M., Seong-Cheol Kim., (2023). Recent advances in catalyst-enhanced luminol chemiluminescence system and its environmental and chemical Applications., Journal of Environmental Chemical Engineering 11, 109853, 1-15. ISSN 2213-3437, https://doi.org/10.1016/j.jece.2023.109853.Disasa D. (2010). Templates synthesis and characterization of Ni (II) complex derived from 4‐phenoxy – 2,6 – dichloro‐s‐triazin and 2,4‐dinitro phenylhydrazine. Pag 2-4. URI: http://etd.aau.edu.et/handle/123456789/1050.Elosua, C.; de Acha, N.; Lopez-Torres, D.; Matias, I.R.; Arregui, F.J. Luminescent Optical Fiber Oxygen Sensor following Layer-by-layer Method. Procedia Eng. 2014, 87, 987–990. DOI: 10.1016/j.proeng.2014.11.324.E.M. McConnell, J. Nguyen, Y. Li, (2020). Aptamer-based biosensors for environmental monitoring, Front. Chem. 8, 1-24. DOI: https://doi.org/10.3389/fchem.2020.00434Gang Zhao, Binyuan Guo, Gang Wei, Shanyi Guang, Zhengye Gu, Hongyao Xu, (2019). A novel dual-channel Schiff base fluorescent chemo-sensor for Zn2+ and Ca2+ recognition: Synthesis, mechanism and application, Dyes and Pigments, Volume 170, 107614, ISSN 0143-7208, https://doi.org/10.1016/j.dyepig.2019.107614.H. Wang, H. Su, N. Wang, J. Wang, J. Zhang, J.-H. Wang, W. Zhao, (2021). Recent development of reactional small-molecule fluorescent probes based on resorufin., Dyes Pigments 191, 109351, 1-22. ISSN 0143-7208, https://doi.org/10.1016/j.dyepig.2021.109351.Huiyu Niu, (2023). Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy., Chem. Soc. Rev. 52, 2322-2357. DOI: https://doi.org/10.1039/D1CS01097BHuthmacher, K.; Most, D., (2006). Cyanuric Acid and Cyanuric Chloride. In Ullmann's Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: Weinheim, Germany, V 11., 1-21. DOI: https://doi.org/10.1002/14356007.a08_191J. J. Celestina, L. Alphonse, P. Tharmaraj, C.D. Sheela., (2019) Journal of Science: Advanced Materials and Devices., 4, 237-244.J. Jone Celestina , P. Tharmaraj, A. Jeevika y C.D. Sheela, (2019). Novel triazine-based colorimetric and fluorescent sensor for highly selective detection of Al3+., Journal of Science: Advanced Materials and Devices., 4, 2, 237-244. ISSN 2468-2179, https://doi.org/10.1016/j.jsamd.2019.05.001.J.F. Chen, Q. Lin, Y.M. Zhang, H. Yao, T.B. Wei, (2017). Pillararene-based fluorescent chemosensors: recent advances and perspectives, Chem. Commun. 53, 13296–13311. DOI: https://doi.org/10.1039/C7CC08365CJone Celestina, P. Tharmaraj, A. Jeevika y C.D. Sheela., (2020). Fabrication of triazine based colorimetric and electrochemical sensor for the quantification of Co2+ ion. Microchemical Journal., 155, 104692, 1-9. ISSN 0026-265X, https://doi.org/10.1016/j.microc.2020.104692.L. Wu, J. Liu, P. Li, B. Tang, T.D. James, (2021). Two-photon small-molecule fluorescence-based agents for sensing, imaging, and therapy within biological systems, Chem. Soc. Rev. 50, 702–734. DOI: https://doi.org/10.1039/D0CS00861CLiu Hu; et al., (2022). Synthesis of novel triazine-quinoline-appended naphthalimide sensors for Hg(II) recognition and their structure-activity relationship. Dyes and Pigments. Volume 199, March, 110048-11053. ISSN 0143-7208, https://doi.org/10.1016/j.dyepig.2021.110048.Liu, C.-W.; Tsai, T.-C.; Osawa, M.; Chang, H.-C.; Yang, R.-J. Aptamer-based sensor for quantitative detection of mercury (II) ions by attenuated total reflection surface enhanced infrared absorption spectroscopy. Anal. Chim. Acta 2018, 1033, 137–147. DOI: 10.1016/j.aca.2018.05.037.Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.; Chen, Q. Turn-On Fluoresence Sensor for Hg2+ in Food based on FRET between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles. J. Agric. Food Chem. 2018, 66, 6188–6195. DOI: 10.1021/acs.jafc.8b00546.M. Ghiyasiyan-Arani, M. Salavati-Niasari, S. Naseh, (2017). Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization, Ultrason. Sonochem. 39, 494–503. ISSN 1350-4177, https://doi.org/10.1016/j.ultsonch.2017.05.025.M.A. Islam, M.J. Ahmed, W.A. Khanday, M. Asif, B.H. Hameed, (2017). Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal, Ecotoxicol. Environ. Saf. 138, 279–285. ISSN 0147-6513, https://doi.org/10.1016/j.ecoenv.2017.01.010.M.K. Goshisht, G.K. Patra, N. Tripathi, (2022). Fluorescent Schiff base sensors as a versatile tool for metal ion detection: strategies, mechanistic insights, and applications, Mater. Adv. 3, 2612-2669. DOI: https://doi.org/10.1039/D1MA01175HMa, Xuelin, et al. (2020). Triazine Derivative for Fluorescence Sensing of Zr 4+, Fe3+Ions and Acetone. Chin. J. Org. Chem. 40, 1745-1751. DOI: 10.6023/cjoc201912007Mario J. F. Calvete, (2020). Multifunctionalization of cyanuric chloride for the stepwise synthesis of potential multimodal imaging chemical entities., Arabian Journal of Chemistry., 13, 1, 2517-2525. ISSN 1878-5352, https://doi.org/10.1016/j.arabjc.2018.06.005.Mooibroek, T.J.; Gamez, P. Inorg. Chim. Acta. (2007), 360-381Moral, M.; Ruiz, A.; Moreno, A.; Díaz-Ortiz, A.; López-Solera, I.; de la Hoz, A.; Sánchez-Migallón, (2010). Microwave-assisted synthesis of pyrazolyl bistriazines., Tetrahedron 66, 121.). https://doi.org/10.1016/j.tet.2009.11.028. ISSN 0040-4020Muhammed Abdalhasan Shallal., (2021). Synthesis and Characterization of New 1,3,5-Triazine Derivatives Based on Benzene Ring., Egypt. J. Chem. Vol. 64, No. 12 pp. 7201 – 7208. DOI: 10.21608/EJCHEM.2021.76395.3737N. Garg, A. Deep, A.L. Sharma, (2022). Recent trends and advances in porous metal- organic framework nanostructures for the electrochemical and optical sensing of heavy metals in water, Crit. Rev. Anal. Chem., 1–25. DOI: https://doi.org/10.1080/10408347.2022.2106543N. Ullah, M. Mansha, I. Khan, A. Qurashi, (2018). Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: Recent advances and challenges, TrAC-Trends Anal. Chem., 100, 155–166. ISSN 0165-9936, https://doi.org/10.1016/j.trac.2018.01.002.N.S. Patil, R.B. Dhake, M.I. Ahamed, U. Fegade, (2020). A mini review on Organic chemosensors for cation recognition., J. Fluor. 30, 1295–1330. https://doi.org/10.1007/s10895-020-02554-7Nosrat Mahmoodi, Hadiseh Yazdani Nyaki y Meysam Pasandideh Nadamani., (2020). Design and Synthesis of New Tripod-Chromogenic Sensor Based on S-Triazine and Thiazolidine-2,4-Dione Ring (TCST) for Naked-Eye Detection of Li-Ions. SSRN., 367158, 1-19. DOI: https://doi.org/10.1139/cjc-2020-0366.Orgel, L. E. (2012). Introducción a la Química de los Metales de Transición. Reverte.P. Devi, P. Rajput, A. Thakur, K.-H. Kim, P. Kumar, (2019). Recent advances in carbon quantum dot-based sensing of heavy metals in water, TrAC-Trends Anal. Chem. 114, 171–195. ISSN 0165-9936, https://doi.org/10.1016/j.trac.2019.03.003.P. Khan, D. Idrees, M.A. Moxley, J.A. Corbett, F. Ahmad, G.V. Figura, W.S. Sly, A. Waheed, M.I. Hassan, (2014). Luminol-based chemiluminescent signals: Clinical and non-clinical application and future uses, Appl. Biochem. Biotechnol. 173, 333–355. doi: 10.1007/s12010-014-0850-1.P. Samanta, S. Let, W. Mandal, S. Dutta, S.K. Ghosh, (2020). Luminescent metal–organic frameworks (LMOFs) as potential probes for the recognition of cationic wáter pollutants, Inorg. Chem. Front., 7, 1801–1821. DOI: https://doi.org/10.1039/D0QI00167HP. Yadav, L. Yadav, H. Laddha, M. Agarwal, R. Gupta, (2022). Upsurgence of smartphone as an economical, portable, and consumer-friendly analytical device/interface platform for digital sensing of hazardous environmental ions, Trends Environ. Anal. Chem. V 36, e00177, 1-19. ISSN 2214-1588, https://doi.org/10.1016/j.teac.2022.e00177.Pal A, Karmakar M, Bhatta SR, Thakur A. (2021). A detailed insight into anion sensing based on intramolecular charge transfer (ICT) mechanism: A comprehensive review of the years 2016 to 2021. Coordination Chemistry Reviews. 448, 214167. ISSN 0010-8545, https://doi.org/10.1016/j.ccr.2021.214167.Popiołek L; Baran I., (2015). Synthesis of New Cyanuric Chloride Derivatives., International Research Journal of Pure & Applied Chemistry 9(4): 1-6, Article no. IRJPAC. 20466 ISSN: 2231-3443. DOI: 10.9734/IRJPAC/2015/20466Pralok K, Misra R, (2023). Intramolecular charge transfer for optical Applications., Journal of Applied Physics., 133, 020901 (1-17). https://doi.org/10.1063/5.0131426R. Iftikhar, A.F. Zahoor, M. Irfan, A. Rasul, F. Rao, (2021). Synthetic molecules targeting yes associated protein activity as chemotherapeutics against cancer, Chem. Biol. Drug Des. 98, 1025–1037. DOI: 10.1111/cbdd.13960R. Sivakumar, N.Y. Lee, (2021). Paper-based fluorescence chemosensors for metal ion detection in biological and environmental samples, BioChip J. 15, 216–232. DOI: https://doi.org/10.1007/s13206-021-00026-zRajasekar M, Vijayanand R, Rajasekar K. (2023). Recent advances in Fluorescent-based cation sensors for biomedical Applications., Results in Chemistry., 5, 100850, 1-30. ISSN 2211-7156, https://doi.org/10.1016/j.rechem.2023.100850.Rangel E. (2019). Síntesis y reactividad de 1,3,5-triazinas derivadas del 2-(aminometil)bencimidazol. Pag 11.Reyes Y. Vergara I, Torres O, Diaz M, González E. (2016). Contaminación por metales pesados: Implicaciones en salud, ambiente y seguridad alimentaria. ISSN Online 2422-4324. Vol. 16 N.º 2, Julio-diciembre, pp. 66-77Rodríguez, D. (2017). Intoxicación ocupacional por metales pesados. Medisan, 21(12), 3372-3385.). ISSN 1029-3019Ruiz N. (2018). Evaluación de la actividad antioxidante de bases de Schiff derivadas de 4-aminoantipirina. Cap. 2, pág. 6. URI: http://www.dspace.uce.edu.ec/handle/25000/16723Segura S, Beltramini T, Takayanagui A, Hering S, Cupo P. (2003). Metales pesados en agua de bebederos de presión. Archivos Latinoamericanos de Nutrición, 53(1), 59-64. ISSN 2309-5806Sharma A, Ayman El-Faham, Beatriz G. de la Torre, Albericio F. (2018). Exploring the Orthogonal Chemoselectivity of 2,4,6-Trichloro-1,3,5-Triazine (TCT) as a Trifunctional Linker With Different Nucleophiles: Rules of the Game. Front. Chem., Sec. Chemical Biology., 6, 1-11, https://doi.org/10.3389/fchem.2018.00516.T. Qin, B. Liu, Z. Xu, G. Yao, H. Xu, C. Zhao, (2021). Flavonol-based small-molecule fluorescent probes., Sens. Actuators B Chem. 336, 129718, 1-23. ISSN 0925-4005, https://doi.org/10.1016/j.snb.2021.129718.T. Skorjanc, D. Shetty, M. Valant, (2021). Covalent organic polymers and frameworks for fluorescence-based sensors, ACS Sens., 6, 1461–1481. DOI: https://doi.org/10.1021/acssensors.1c00183Tappe, H.; Helmling, W.; Mischke, P.; Rebsamen, K.; Reiher, U.; Russ, W.; Schläfer, L.; Vermehren, P., (2006). Reactive Dyes. In Ullmann's Encyclopedia of Industrial Chemistry, 7th ed.; Wiley-VCH: Weinheim, Germany. DOI: https://doi.org/10.1002/14356007.a22_651.pub2Ugozzoli, F.; Massera, C. (2005). Building co-crystals with molecular sense and supramolecular sensibility., Cryst. Eng. Commun. 7, 121., 439-448W.A. Khanday, M. Asif, B.H. Hameed, (2017). Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes, Int. J. Biol. Macromol. 95, 895–902. ISSN 0141-8130, https://doi.org/10.1016/j.ijbiomac.2016.10.075.Wu, L., Huang, (2020). Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents., Chemical Society Reviews, 49(15), 5110-5139. https://doi.org/10.1039/C9CS00318EX. Chen, Z. Huang, L. Huang, Q. Shen, N.-D. Yang, C. Pu, J. Shao, L. Li, C. Yu, W. Huang, (2022). Small-molecule fluorescent probes based on covalent assembly strategy for chemoselective bioimaging, RSC Adv. 12, 1393–1415. DOI: https://doi.org/10.1039/D1RA08037GX. Lu, Y. Zhan, W. He, (2022). Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates, J. Photochem. Photobiol. B: Biol. 234, 112528, 1-21. ISSN 1011-1344, https://doi.org/10.1016/j.jphotobiol.2022.112528.Z. Yan, Y. Cai, J. Zhang, Y. Zhao, (2022). Fluorescent sensor arrays for metal ions detection: a review, Measurement 187, 110355, 1-10. ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2021.110355.Z.H. Yuan, Y.S. Yang, P.C. Lv, H.L. Zhu, (2020). Recent progress in small-molecule fluorescent probes for detecting mercury ions, Crit. Rev. Anal. Chem. 52, 1–25. DOI: https://doi.org/10.1080/10408347.2020.1797466Zheng J., Wai J.L., Ryan J. Lake., Siu Yee New., Zhike He., Yi Lu., (2021). DNAzyme Sensor Uses Chemiluminescence Resonance Energy Transfer for Rapid, Portable, and Ratiometric Detection of Metal Ions., Anal. Chem. 93,31, 10834–10840. DOI: https://doi.org/10.1021/acs.analchem.1c01077Zhou Y, Zhang J, Zhou H, Hu X, Zhang L, Zhang M. (2013). A highly selective fluorescent probe for Al3+ based on 4-aminoantipyrine. https://doi.org/10.1016/j.saa.2012.12.084.ORIGINAL2023ArguelloJeison.pdf2023ArguelloJeison.pdfTrabajo de gradoapplication/pdf3044117https://repository.usta.edu.co/bitstream/11634/51999/1/2023ArguelloJeison.pdff0d96ca7bf1969300299d4c8d96b1e31MD51open access2023ArguelloJeison1.pdf2023ArguelloJeison1.pdfAprobación Facultadapplication/pdf158450https://repository.usta.edu.co/bitstream/11634/51999/2/2023ArguelloJeison1.pdf8745f3312d9b173af113fcd939c8fadfMD52metadata only access2023ArguelloJeison2.pdf2023ArguelloJeison2.pdfAcuerdo de publicaciónapplication/pdf171434https://repository.usta.edu.co/bitstream/11634/51999/3/2023ArguelloJeison2.pdf2968c8fb2b894a740cd267949d132951MD53metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repository.usta.edu.co/bitstream/11634/51999/4/license_rdf217700a34da79ed616c2feb68d4c5e06MD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8807https://repository.usta.edu.co/bitstream/11634/51999/5/license.txtaedeaf396fcd827b537c73d23464fc27MD55open accessTHUMBNAIL2023ArguelloJeison.pdf.jpg2023ArguelloJeison.pdf.jpgIM Thumbnailimage/jpeg5151https://repository.usta.edu.co/bitstream/11634/51999/6/2023ArguelloJeison.pdf.jpgc5cc432e66207a105102720a27ffc01aMD56open access2023ArguelloJeison1.pdf.jpg2023ArguelloJeison1.pdf.jpgIM Thumbnailimage/jpeg7652https://repository.usta.edu.co/bitstream/11634/51999/7/2023ArguelloJeison1.pdf.jpgc3d17e0fc025d4059251ef131a5d1fb3MD57open access2023ArguelloJeison2.pdf.jpg2023ArguelloJeison2.pdf.jpgIM Thumbnailimage/jpeg9609https://repository.usta.edu.co/bitstream/11634/51999/8/2023ArguelloJeison2.pdf.jpg9d52a93141def017f723da53cf4ccd68MD58open access11634/51999oai:repository.usta.edu.co:11634/519992023-09-08 03:15:46.332open accessRepositorio Universidad Santo Tomásrepositorio@usantotomas.edu.coQXV0b3Jpem8gYWwgQ2VudHJvIGRlIFJlY3Vyc29zIHBhcmEgZWwgQXByZW5kaXphamUgeSBsYSBJbnZlc3RpZ2FjacOzbiwgQ1JBSS1VU1RBCmRlIGxhIFVuaXZlcnNpZGFkIFNhbnRvIFRvbcOhcywgcGFyYSBxdWUgY29uIGZpbmVzIGFjYWTDqW1pY29zIGFsbWFjZW5lIGxhCmluZm9ybWFjacOzbiBpbmdyZXNhZGEgcHJldmlhbWVudGUuCgpTZSBwZXJtaXRlIGxhIGNvbnN1bHRhLCByZXByb2R1Y2Npw7NuIHBhcmNpYWwsIHRvdGFsIG8gY2FtYmlvIGRlIGZvcm1hdG8gY29uCmZpbmVzIGRlIGNvbnNlcnZhY2nDs24sIGEgbG9zIHVzdWFyaW9zIGludGVyZXNhZG9zIGVuIGVsIGNvbnRlbmlkbyBkZSBlc3RlCnRyYWJham8sIHBhcmEgdG9kb3MgbG9zIHVzb3MgcXVlIHRlbmdhbiBmaW5hbGlkYWQgYWNhZMOpbWljYSwgc2llbXByZSB5IGN1YW5kbwptZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkw6kgY3LDqWRpdG8gYWwgdHJhYmFqbyBkZQpncmFkbyB5IGEgc3UgYXV0b3IuIERlIGNvbmZvcm1pZGFkIGNvbiBsbyBlc3RhYmxlY2lkbyBlbiBlbCBhcnTDrWN1bG8gMzAgZGUgbGEKTGV5IDIzIGRlIDE5ODIgeSBlbCBhcnTDrWN1bG8gMTEgZGUgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5Mywg4oCcTG9zIGRlcmVjaG9zCm1vcmFsZXMgc29icmUgZWwgdHJhYmFqbyBzb24gcHJvcGllZGFkIGRlIGxvcyBhdXRvcmVz4oCdLCBsb3MgY3VhbGVzIHNvbgppcnJlbnVuY2lhYmxlcywgaW1wcmVzY3JpcHRpYmxlcywgaW5lbWJhcmdhYmxlcyBlIGluYWxpZW5hYmxlcy4K |